CN110560146A - 一种双金属mel分子筛及其制备方法和应用 - Google Patents

一种双金属mel分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN110560146A
CN110560146A CN201910883483.7A CN201910883483A CN110560146A CN 110560146 A CN110560146 A CN 110560146A CN 201910883483 A CN201910883483 A CN 201910883483A CN 110560146 A CN110560146 A CN 110560146A
Authority
CN
China
Prior art keywords
molecular sieve
bimetallic
mel
product
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910883483.7A
Other languages
English (en)
Inventor
刘宝玉
黄嘉晋
廖展图
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910883483.7A priority Critical patent/CN110560146A/zh
Publication of CN110560146A publication Critical patent/CN110560146A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于分子筛材料技术领域,尤其涉及一种双金属MEL分子筛及其制备方法和应用。本发明提供了一种双金属MEL分子筛,所述双金属MEL分子筛具有介孔和微孔,所述介孔和所述微孔内负载有Cu和Fe;所述双金属MEL分子筛的硅铝比为48~50。本发明双金属MEL分子筛为H‑MEL@Cu/Fe双金属分子筛催化剂,该双金属MEL分子筛具有介孔和微孔,具有多级孔结构,而且Cu和Fe金属在分子筛骨架中不容易浸出,本发明双金属MEL分子筛可作为催化剂,在三甲苯和苯甲醇的傅‑克烷基化反应中能表现出优异的催化性能,Cu和Fe双金属的协同作用不仅能够提高烷基化的活性还提高了选择性,拓宽了分子筛催化剂在化工领域应用的前景。

Description

一种双金属MEL分子筛及其制备方法和应用
技术领域
本发明属于分子筛材料技术领域,尤其涉及一种双金属MEL分子筛及其制备方法和应用。
背景技术
傅-克烷基化反应在石油化工生产过程中能够合成高价值的二苯甲烷及二苯甲烷衍生物,在工业应用中通常是使用均相催化剂,这些均相催化剂的固有缺点是它们具有毒性,难以分离和再生。而分子筛具有良好的水热稳定性、高比表面积、酸度可调、回收再生容易和对人体没有毒害等优点,因此在傅-克烷基化反应中具有广阔应用的前景。
但是,催化过程中活性和选择性一直是催化剂设计和应用的难题。因此,寻求一种活性和选择性俱佳的分子筛催化剂一直是本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明提供了一种双金属MEL分子筛及其制备方法和应用,该双金属MEL分子筛作为傅-克烷基化反应催化剂,活性和选择性俱佳。
一种双金属MEL分子筛,所述双金属MEL分子筛具有介孔和微孔,所述介孔和所述微孔内负载有Cu和Fe;
所述双金属MEL分子筛的硅铝比(Si/Al)为48~50。
本发明双金属MEL分子筛为H-MEL@Cu/Fe双金属分子筛催化剂,该双金属MEL分子筛具有介孔和微孔,具有多级孔结构,而且Cu和Fe金属在分子筛骨架中不容易浸出,能够克服金属容易发生团聚和浸出的问题,本发明双金属MEL分子筛可作为催化剂,Cu和Fe双金属的协同作用不仅能够提高傅-克烷基化的活性还提高了选择性,使得本发明双金属MEL分子筛在三甲苯和苯甲醇的傅-克烷基化反应中能表现出优异的催化性能,活性和选择性俱佳。
优选的,所述介孔的孔径为2nm~3.8nm,所述微孔的孔径为0.59nm以下。
本发明还提供了上述技术方案所述双金属MEL分子筛的制备方法,包括以下步骤:
a)将硅源、模板剂、铁源、铜源和去离子水混合,得到第一产物;
b)将所述第一产物进行晶化,得到第二产物;
c)将所述第二产物在含有铝源的有机碱处理液中水热条件下进行脱硅加铝,再依次进行干燥和焙烧,得到双金属MEL分子筛。
优选的,步骤a)所述硅源选自正硅酸乙酯、气相二氧化硅和硅胶中的一种或多种,更优选为正硅酸乙酯;
所述模板剂选自四丁基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的一种或多种,更优选为四丁基氢氧化铵;
所述铁源为有机配体铁,所述铜源为有机配体铜。
有机配体铁选自柠檬酸铁、乙酰丙酮铁和二茂铁中的一种或多种,优选为柠檬酸铁;
有机配体铜选自乙酰丙酮铜、苯基铜和柠檬酸铜中的一种或多种,优选为乙酰丙酮铜。
铝源选自异丙醇铝、偏铝酸钠和铝酸钠中的一种或多种,优选为异丙醇铝;
有机碱选自四丁基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的一种或多种,优选为四丁基氢氧化铵。
优选的,所述硅源、所述模板剂、所述铁源、所述铜源和所述去离子水的摩尔比为1:0.25:(0.005~0.015):0.02:(20~30),优选为1:0.25:0.01:0.02:25。
本发明中,步骤a)优选为在室温磁力搅拌下,将硅源、模板剂和去离子水进行混合均匀制备成混合液,再将铁源和铜源在磁力搅拌下加入至混合液中并混合均匀,得到第一产物。
优选的,步骤b)所述晶化的温度为165℃~170℃;
所述晶化的时间为72h~96h。
本发明中,晶化之后,优选进行过滤、洗涤和干燥,干燥的温度优选为100℃~105℃,干燥的时间优选为12h,得到的第二产物为全硅P-MEL@Cu/Fe分子筛。
优选的,步骤c)所述脱硅加铝的温度为165℃~170℃,所述脱硅加铝的时间为72h~96h;
干燥的温度为100℃~105℃,干燥的时间为12h;
所述焙烧的温度为500℃~550℃,所述焙烧的时间为5h~6h,更优选为6h。
步骤c)进行脱硅加铝之后,优选进行过滤、洗涤,再依次进行干燥和焙烧,得到的双金属MEL分子筛为H-MEL@Cu/Fe分子筛。
本发明还提供了上述技术方案所述双金属MEL分子筛和/或上述技术方案所述制备方法制得的双金属MEL分子筛作为催化剂的应用。
优选的,所述催化剂为傅-克烷基化反应催化剂。
优选的,所述傅-克烷基化反应的反应底物为三甲苯和苯甲醇。
本发明双金属MEL分子筛作为傅-克烷基化反应催化剂,Cu和Fe双金属的协同作用不仅能够提高傅-克烷基化的活性还提高了选择性,使得本发明双金属MEL分子筛在三甲苯和苯甲醇的傅-克烷基化反应中能表现出优异的催化性能,活性和选择性俱佳。
综上所述,本发明提供了一种双金属MEL分子筛,所述双金属MEL分子筛具有介孔和微孔,所述介孔和所述微孔内负载有Cu和Fe;所述双金属MEL分子筛的硅铝比为48~50。本发明双金属MEL分子筛为H-MEL@Cu/Fe双金属分子筛催化剂,该双金属MEL分子筛具有介孔和微孔,具有多级孔结构,而且Cu和Fe金属在分子筛骨架中不容易浸出,本发明双金属MEL分子筛可作为催化剂,在三甲苯和苯甲醇的傅-克烷基化反应中能表现出优异的催化性能,Cu和Fe双金属的协同作用不仅能够提高烷基化的活性还提高了选择性,拓宽了分子筛催化剂在化工领域应用的前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1制备得到的双金属MEL分子筛的X射线衍射图。
图2为本发明实施例1制备得到的双金属MEL分子筛的扫描电镜图。
图3为本发明实施例1制备得到的双金属MEL分子筛的透射电镜图。
图4为本发明实施例1制备得到的双金属MEL分子筛Fe的XPS图(704~738eV);
图5为本发明实施例1制备得到的双金属MEL分子筛Cu的XPS图(926~964eV);
图6为本发明实施例1制备得到的双金属MEL分子筛的氮气吸附脱附等温线;
图7为本发明实施例1制备得到的双金属MEL分子筛的NLDFT孔径分布图;
图8为本发明实施例1制备得到的双金属MEL分子筛的BJH孔径分布图。
具体实施方式
本发明提供了一种双金属MEL分子筛及其制备方法和应用,该双金属MEL分子筛作为傅-克烷基化反应催化剂,活性和选择性俱佳。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例进行双金属MEL分子筛的制备,包括以下步骤:
称取16.22g的四丁基氢氧化铵置于去离子水中得到40wt%水溶液,在磁力搅拌下缓慢加入21.47g的正硅酸乙酯,待溶液澄清后加入38.87mL去离子水得到混合液;磁力搅拌6h后,加入0.12g柠檬酸铁和0.54g乙酰丙酮铜得到第一产物;磁力搅拌8h后将第一产物置于反应釜中在170℃条件下水热晶化72h;将晶化产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,得到第二产物,即全硅P-MEL@Cu/Fe分子筛;将0.015mol/L异丙醇铝和0.1mol/L四丁基氢氧化铵配置成有机碱处理液,然后取30mL的有机碱处理液与1g第二产物混合后置于反应釜中170℃水热条件下进行72h脱硅加铝,脱硅加铝结束后将产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,最后经过550℃煅烧6h,得到双金属MEL分子筛,即H-MEL@Cu/Fe分子筛。本发明实施例中,双金属MEL分子筛的硅铝比为48。
对实施例1制备得到的H-MEL@Cu/Fe分子筛进行表征分析。
采用德国Bruker公司的D8 Advance型X射线衍射仪对实施例1制备得到的H-MEL@Cu/Fe分子筛进行表征,结果请参阅图1,图1表明实施例1双金属MEL分子筛具有MEL沸石的特征衍射峰,且没有氧化铁和氧化铜结晶的杂峰存在。
采用日本Hitachi公司S-4800型冷场发射电子显微镜对实施例1制备得到的H-MEL@Cu/Fe分子筛进行表征,结果请参阅图2,图2表明实施例1双金属MEL分子筛形貌呈现类似橄榄球状结构。
采用日本电子的JEM-2100HR型200kV透射电子显微镜对实施例1制备得到的H-MEL@Cu/Fe分子筛进行表征,结果请参阅图3,图3表明实施例1双金属MEL分子筛形貌呈现出由片层堆积而成类似橄榄球状结构。
采用岛津Thermo Fisher Escalab 250Xi对实施例1制备得到的H-MEL@Cu/Fe分子筛检测铁和铜的存在形式,结果请参阅图4和图5,图4中,在~711.7eV和~725.3eV处分别观察到两个峰,对应于三价氧化态的Fe2p3/2和Fe 2p3/1。此外,在~716.5eV和~730.1eV处可以观察到Fe 2p的卫星峰是Fe2O3中Fe(III)的特征峰。图5中,在Cu 2p3/2和Cu 2p3/1峰在933.4eV和953.4eV归因于CuO,而Cu 2p3/2和Cu 2p3/1峰在~935.3eV和~955.3eV归因于Cu2+离子具有四面体配位。此外,卫星峰位于~972.7eV和~962.7eV是Cu2+物种的特征。图4和图5表明,在H-MEL@Cu/Fe分子筛中,Cu和Fe主要以配位形式存在。
BET吸附等温曲线通过N2吸附在-196℃下对实施例1制备得到的双金属MEL分子筛进行全孔分析,如图6所示,可以看出本发明的分子筛催化具有type-IV型回滞环说明存在微孔和介孔两种孔结构。图7和图8表明介孔的孔径为2nm~3.8nm,微孔的孔径为0.59nm以下。
实施例2
本实施例进行双金属MEL分子筛的制备,包括以下步骤:
称取16.22g的四丁基氢氧化铵置于去离子水中得到40wt%水溶液,在磁力搅拌下缓慢加入21.47g的正硅酸乙酯,待溶液澄清后加入38.87mL去离子水得到混合液;磁力搅拌6h后,加入0.25g柠檬酸铁和0.54g乙酰丙酮铜得到第一产物;磁力搅拌8h后将第一产物置于反应釜中在170℃条件下水热晶化72h;将晶化产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,得到第二产物,即全硅P-MEL@Cu/Fe分子筛;将0.015mol/L异丙醇铝和0.1mol/L四丁基氢氧化铵配置成有机碱处理液,然后取30mL的有机碱处理液与1g第二产物混合后置于反应釜中170℃水热条件下进行72h脱硅加铝,脱硅加铝结束后将产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,最后经过550℃煅烧6h,得到双金属MEL分子筛,即H-MEL@Cu/Fe分子筛。
本发明实施例中,双金属MEL分子筛的硅铝比为50,介孔的孔径为2nm~3.8nm,微孔的孔径为0.59nm以下。
对比例1
本对比例进行Fe金属MEL分子筛的制备,包括以下步骤:
称取16.22g的四丁基氢氧化铵置于去离子水中得到40wt%水溶液,在磁力搅拌下缓慢加入21.47g的正硅酸乙酯,待溶液澄清后加入38.87mL去离子水得到混合液;磁力搅拌6h后,加入0.25g柠檬酸铁得到第一产物;磁力搅拌8h后将第一产物置于反应釜中在170℃条件下水热晶化72h;将晶化产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,得到第二产物,即全硅P-MEL@Fe分子筛;将0.015mol/L异丙醇铝和0.1mol/L四丁基氢氧化铵配置成有机碱处理液,然后取30mL的有机碱处理液与1g第二产物混合后置于反应釜中170℃水热条件下进行72h脱硅加铝,脱硅加铝结束后将产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,最后经过550℃煅烧6h,得到Fe金属MEL分子筛,即H-MEL@Fe分子筛。
本发明实施例中,Fe金属MEL分子筛的硅铝比为47,介孔的孔径为2nm~3.8nm,微孔的孔径为0.59nm以下。
对比例2
本实施例进行双金属MEL微孔分子筛的制备,包括以下步骤:
称取16.22g的四丁基氢氧化铵置于去离子水中得到40wt%水溶液,在磁力搅拌下缓慢加入21.47g的正硅酸乙酯,待溶液澄清后加入38.87mL去离子水得到混合液;磁力搅拌6h后,加入0.25g柠檬酸铁和0.54g乙酰丙酮铜得到第一产物;磁力搅拌8h后将第一产物置于反应釜中在170℃条件下水热晶化72h;将晶化产物过滤和用去离子水反复洗涤,在100℃的干燥箱中干燥12h,得到第二产物,即全硅P-MEL@Cu/Fe分子筛。
本发明实施例中,双金属MEL分子筛的硅铝比为Si/Al=∞,双金属MEL微孔分子筛只具有微孔,微孔孔径为~0.59nm。
实施例4
本实施例以三甲苯和苯甲醇的傅-克烷基化对实施例1~2双金属MEL分子筛和对比例1Fe金属MEL分子筛以及对比例2双金属MEL分子筛进行催化性能评价。
将装有回流冷凝器的三口圆底烧瓶在温控油浴锅中进行催化性能测试,首先,将40mmol的均三甲苯和0.1g MEL分子筛混合,并在100℃下保持搅拌0.5h,然后加入4mmol苯甲醇,以加入时间作为初始反应时间。最后,取出反应液通过气相色谱仪分析产物。苯甲醇的转化率和烷基化产物的选择性见表1,表1表明,本发明双金属MEL分子筛催化剂活性和选择性优于只负载铁的分子筛及只具有微孔的双金属MEL分子筛,本发明双金属MEL分子筛催化剂活性和选择性俱佳。
表1实施例1~2双金属MEL分子筛和对比例1Fe金属MEL分子筛以及对比例2双金属MEL分子筛催化下的苯甲醇的转化率和烷基化产物的选择性
分子筛 苯甲醇转化率(%) 2-苄基-1,3,5-三甲基苯选择性(%)
实施例1 54.11 92.32
实施例2 83.27 62.09
对比例1 33.28 36.94
对比例2 10.28 18.97
其中,
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种双金属MEL分子筛,其特征在于,所述双金属MEL分子筛具有介孔和微孔,所述介孔和所述微孔内负载有Cu和Fe;
所述双金属MEL分子筛的硅铝比为48~50。
2.根据权利要求1所述的双金属MEL分子筛,其特征在于,所述介孔的孔径为2nm~3.8nm,所述微孔的孔径为0.59nm以下。
3.权利要求1或2所述双金属MEL分子筛的制备方法,其特征在于,包括以下步骤:
a)将硅源、模板剂、铁源、铜源和去离子水混合,得到第一产物;
b)将所述第一产物进行晶化,得到第二产物;
c)将所述第二产物在含有铝源的有机碱处理液中水热条件下进行脱硅加铝,再依次进行干燥和焙烧,得到双金属MEL分子筛。
4.根据权利要求3所述的制备方法,其特征在于,步骤a)所述硅源选自正硅酸乙酯、气相二氧化硅和硅胶中的一种或多种;
所述模板剂选自四丁基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的一种或多种;
所述铁源为有机配体铁,所述铜源为有机配体铜。
5.根据权利要求4所述的制备方法,其特征在于,所述硅源、所述模板剂、所述铁源、所述铜源和所述去离子水的摩尔比为1:0.25:(0.005~0.015):0.02:(20~30)。
6.根据权利要求3所述的制备方法,其特征在于,步骤b)所述晶化的温度为165℃~170℃;
所述晶化的时间为72h~96h。
7.根据权利要求3所述的制备方法,其特征在于,步骤c)所述脱硅加铝的温度为165℃~170℃,所述脱硅加铝的时间为72h~96h;
所述焙烧的温度为500℃~550℃,所述焙烧的时间为5h~6h。
8.权利要求1或2所述双金属MEL分子筛和/或权利要求3至7任意一项所述制备方法制得的双金属MEL分子筛作为催化剂的应用。
9.根据权利要求8所述的应用,其特征在于,所述催化剂为傅-克烷基化反应催化剂。
10.根据权利要求9所述的应用,其特征在于,所述傅-克烷基化反应的反应底物为三甲苯和苯甲醇。
CN201910883483.7A 2019-09-18 2019-09-18 一种双金属mel分子筛及其制备方法和应用 Pending CN110560146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910883483.7A CN110560146A (zh) 2019-09-18 2019-09-18 一种双金属mel分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910883483.7A CN110560146A (zh) 2019-09-18 2019-09-18 一种双金属mel分子筛及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110560146A true CN110560146A (zh) 2019-12-13

Family

ID=68781004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910883483.7A Pending CN110560146A (zh) 2019-09-18 2019-09-18 一种双金属mel分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110560146A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517050A (zh) * 2021-01-06 2021-03-19 南京大学 一种包覆活性双金属氧化物的中空囊泡型介孔分子筛催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147269A1 (en) * 2012-06-08 2015-05-28 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve with rho framework structure, and method for preparing the same
CN106145143A (zh) * 2015-04-17 2016-11-23 中国石油化工股份有限公司 一种合成杂原子微介孔复合材料的方法
CN108002402A (zh) * 2017-12-08 2018-05-08 西北大学 一种具有千层饼状形貌的中微双孔mfi型纳米分子筛及其制备方法和应用
CN108940356A (zh) * 2018-05-29 2018-12-07 广东工业大学 一种Fe@ZSM-11介孔分子筛催化剂的制备方法
CN109382137A (zh) * 2018-11-14 2019-02-26 福州大学 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147269A1 (en) * 2012-06-08 2015-05-28 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve with rho framework structure, and method for preparing the same
CN106145143A (zh) * 2015-04-17 2016-11-23 中国石油化工股份有限公司 一种合成杂原子微介孔复合材料的方法
CN108002402A (zh) * 2017-12-08 2018-05-08 西北大学 一种具有千层饼状形貌的中微双孔mfi型纳米分子筛及其制备方法和应用
CN108940356A (zh) * 2018-05-29 2018-12-07 广东工业大学 一种Fe@ZSM-11介孔分子筛催化剂的制备方法
CN109382137A (zh) * 2018-11-14 2019-02-26 福州大学 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAJIN HUANG等: ""Fabrication of Cu-Encapsulated Hierarchical MEL Zeolites for Alkylation of Mesitylene with Benzyl Alcohol"", 《INDUSTRIAL ENGINEERING CHEMISTRY RESEARCH》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517050A (zh) * 2021-01-06 2021-03-19 南京大学 一种包覆活性双金属氧化物的中空囊泡型介孔分子筛催化剂及其制备方法和应用
CN112517050B (zh) * 2021-01-06 2021-11-30 南京大学 一种包覆活性双金属氧化物的中空囊泡型介孔分子筛催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
TWI674148B (zh) Scm-10分子篩、其製造方法及其用途
Chae et al. Physicochemical characteristics of pillared interlayered clays
Du et al. Highly dispersed Pt in MIL-101: An efficient catalyst for the hydrogenation of nitroarenes
Zhan et al. MOF-derived porous Fe 2 O 3 with controllable shapes and improved catalytic activities in H 2 S selective oxidation
CN106669773B (zh) 一种y型分子筛的改性方法
CN102530980B (zh) 一种多级孔道沸石及其制备和应用
CN108002402B (zh) 一种具有千层饼状形貌的中微双孔mfi型纳米分子筛及其制备方法和应用
WO2012005449A2 (ko) 규칙적 또는 불규칙적으로 배열된 메조기공을 포함하는 제올라이트 또는 유사 제올라이트 물질 및 그의 제조방법
CN111437870A (zh) 一种金属@mfi的多级孔结构的封装催化剂及其封装方法和用途
CN102826565A (zh) 一种多级孔道Beta分子筛的制备方法
TW201716329A (zh) Sfe結構分子篩的製造方法、sfe結構分子篩及其用途
Akolekar et al. Investigations on gold nanoparticles in mesoporous and microporous materials
CN104043477A (zh) 一种zsm-5/mcm-48复合分子筛及其制备方法和应用
Pan et al. Facile synthesis of highly ordered mesoporous cobalt–alumina catalysts and their application in liquid phase selective oxidation of styrene
CN110040741A (zh) 一种多级孔zsm-5分子筛及其合成方法
Zepeda et al. Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content
Melero et al. Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: role of iron species in Fenton-like processes
CN110560146A (zh) 一种双金属mel分子筛及其制备方法和应用
Moradiyan et al. Ultrasonic-assisted hydrothermal synthesis and catalytic behavior of a novel SAPO-34/Clinoptilolite nanocomposite catalyst for high propylene demand in MTO process
CN108940356A (zh) 一种Fe@ZSM-11介孔分子筛催化剂的制备方法
CN111250151A (zh) 一种Ni@ZSM-5多级孔结构的双功能催化剂、封装方法及其应用
Xu et al. Tailoring porosity and titanium species of TS-1 zeolites via organic base-assisted sequential post-treatment
Koike et al. Increasing the ion-exchange capacity of MFI zeolites by introducing Zn to aluminosilicate frameworks
CN113184878A (zh) 一种多级孔沸石分子筛及其制备方法和应用
CN108455626A (zh) 块体zsm-5/纳米片层复合结构的zsm-5多级孔分子筛及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191213

WD01 Invention patent application deemed withdrawn after publication