CN110552035A - 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用 - Google Patents

一种抗菌多肽固定的导电聚合物电极及其制备方法与应用 Download PDF

Info

Publication number
CN110552035A
CN110552035A CN201910658707.4A CN201910658707A CN110552035A CN 110552035 A CN110552035 A CN 110552035A CN 201910658707 A CN201910658707 A CN 201910658707A CN 110552035 A CN110552035 A CN 110552035A
Authority
CN
China
Prior art keywords
electrode
conductive polymer
antibacterial polypeptide
conductive
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910658707.4A
Other languages
English (en)
Inventor
宁成云
邢君
于鹏
王珍高
张珂嘉
代聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910658707.4A priority Critical patent/CN110552035A/zh
Publication of CN110552035A publication Critical patent/CN110552035A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种抗菌多肽固定的导电聚合物电极及其制备方法与应用,所述制备方法包括以下步骤:(1)沉积导电聚合物预成核层;(2)沉积聚多巴胺功能化的导电聚合物涂层;(3)将抗菌多肽溶解于磷酸盐缓冲液中,得抗菌多肽溶液;将步骤(2)制备的沉积有聚多巴胺功能化的导电聚合物涂层的导电电极浸入到抗菌多肽溶液中,得抗菌多肽固定的导电聚合物电极。聚多巴胺功能化的导电聚合物电极表面富含邻苯酚羟基,易于进一步固定抗菌多肽,从而提高电极表面的电化学性能;抗菌多肽固定的导电聚合物电极具有消除细菌粘附,在细菌环境中高电化学稳定性,以及长期抗菌效果的能力,实现了电极活性损失的最小化,从而拓宽了电化学传感器的应用。

Description

一种抗菌多肽固定的导电聚合物电极及其制备方法与应用
技术领域
本发明涉及一种电极设备的技术领域,尤其是一种抗菌多肽固定的导电聚合物电极及其制备方法与应用。
背景技术
导电聚合物电极由于其独特的机械,氧化还原和阻抗特性,并且易于功能化,广泛用于临床,食品,环境和生物加工领域的快速信号检测和监测。然而,在各种环境中,细菌很容易粘附在电极表面上。{V. Villalobos, A. Leiva, H. E. Rios, J. Pavez, C. P.Silva, M. Ahmar, Y. Queneau, J. M. Blamey, F. 18 P. Chavez, M. D. Urzua, ACS Appl. Mater. Interfaces 2018, 10, 28147.}尽管通过使用无菌技术降低了在医院环境中发现的细菌水平,但仍然可以在大多数电极中观察到微生物。一旦细菌附着在电极表面,电极涂层的物理化学性质可被吸附的生物膜掩盖,生物膜会阻塞电极表面,并导致电极污染,严重干扰信号检测,减少电极的有效性。{A. L. Arcanjo Oliveira Cordeiro, M. M.Carneiro Oliveira, J. D. Fernandes, C. S. Marinho Antunes Barros, L. M. CostaCastro, Acta Paul Enferm. 2015, 28, 160.}因此,开发能够消除细菌粘附并在细菌环境中同时保持电化学性能的功能性导电聚合物电极是必要的。
目前很多表面处理技术已被用于减少装置表面上的细菌污染,包括将杀生物剂和聚阳离子结合到亲水聚合物(聚(乙二醇)(PEG)或其衍生物)中以防止细菌粘附到表面。这些策略可有效预防细菌粘附。然而,由于空间位阻效应,电极表面上的活性分子被削弱。酶,抗生素,金属离子及其金属氧化物也被用于形成抗菌电极。然而,抗菌剂的易浸出和持续时间短,产生耐药菌的风险和电极材料的电化学稳定性受损限制了它们的应用。{R. Zhao,W. Kong, M. Sun, Y. Yang, W. Liu, M. Lv, S. Song, L. Wang, H. Song, R. Hao,ACS Appl. Mater. Interfaces 2018, 10, 17617}
已有研究表明,抗菌多肽具有快速和广谱的杀菌特性,降低了诱导细菌抗性的风险。此外,抗菌多肽丰富官能团(氨基,羧基,巯基等)使其容易通过共价接枝固定在目标基质表面上,并且小分子短链线性结构,不会产生较大的空间位阻效应。因此,抗菌多肽是导电电极功能化的理想候选者,可在细菌环境中同时实现消除细菌和维持电化学稳定性能。
发明内容
为了克服现有技术的缺点和不足,本发明的目的在于一种抗菌多肽固定的导电聚合物电极及其制备方法与应用。本发明通过电化学沉积的方法在电极表面构建了一层多巴胺掺杂的导电聚合物分子层,并进一步以多巴胺为分子锚接枝抗菌多肽,实现电极电化学稳定性和抗菌性能长期有效性。
本发明的目的至少是通过以下技术方案之一实现的。
本发明提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,所用电解质溶液为包含导电聚合物单体和氯离子的磷酸盐缓冲液,采用计时电流法控制电化学反应,得表面沉积有导电聚合物预成核层的导电电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的导电聚合物预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,工作电极为步骤(1)制备的表面沉积有导电聚合物预成核层的导电电极,所用电解质溶液为包含导电聚合物单体和多巴胺的磷酸盐缓冲液,采用计时电位法控制电化学反应,得沉积有聚多巴胺功能化的导电聚合物涂层的导电电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于磷酸盐缓冲液中,得抗菌多肽溶液;将步骤(2)制备的沉积有聚多巴胺功能化的导电聚合物涂层的导电电极浸入到抗菌多肽溶液中,得抗菌多肽固定的导电聚合物电极。
优选地,步骤(1)中所述氯离子的源为氯化氢、氯化钾或氯化钠;
电解质溶液中氯离子的浓度为0.1~0.5mol/L,导电聚合物单体的浓度为0.01~0.5mol/L;
电化学反应的时间为5~60秒,电化学反应电压为0.6~1.2V。
优选地,步骤(2)的电解质溶液中导电聚合物单体的浓度为0.01~0.5mol/L,多巴胺的浓度为0.01~0.5mol/L;
电化学反应的时间为5~50分钟,电化学反应电流密度为0.4~2.0m A/cm2
优选地,步骤(1)和(2)中所述的导电聚合物单体为噻吩,吡咯或苯胺中的任意一种;对电极为导电金属;导电金属为铂或铜;导电电极为钛电极,铂电极或金电极中的任意一种;参比电极为饱和甘汞电极;磷酸盐缓冲液的pH为5.3~7.4。
优选地,步骤(3)抗菌多肽为马盖宁2;抗菌多肽溶液中抗菌多肽的浓度为0.1~5g/L;磷酸盐缓冲液的pH值为6.8~8.5;浸入的条件为在20~37℃的抗菌多肽溶液中浸泡24~72小时。
优选地,步骤(1)中的氯离子的源为氯化氢。
优选地,步骤(2)中电解质溶液中导电聚合物单体的浓度为0.2mol/L,多巴胺的浓度为0.1mol/L,电化学反应的时间为40分钟,电流密度为1.5mA/cm2
优选地,步骤(1)和(2)中的导电聚合物单体为吡咯;磷酸盐缓冲液的pH为6.8;对电极为铜电极;导电电极为钛电极。
本发明还提供了所述制备方法制备的抗菌多肽固定的导电聚合物电极。
本发明还提供了所述抗菌多肽固定的导电聚合物电极在环境、食品或医疗检测中的应用。
和现有技术相比,本发明具有以下有益效果和优点:
(1)在电极表面采用无污染快捷可控的电化学方法构建聚多巴胺功能化的导电聚合物涂层;本发明提供的制备方法简单,环保,易实现;
(2)聚多巴胺功能化的导电聚合物电极表面富含邻苯酚羟基,易于进一步固定抗菌多肽,从而提高电极表面的电化学性能;
(3)抗菌多肽固定的导电聚合物电极具有消除细菌粘附,在细菌环境中高的电化学稳定性,以及长期抗菌效果的能力,实现了电极活性损失的最小化,从而拓宽了电化学传感器的应用。
附图说明
图1为实施例1~6所制备的抗菌多肽固定的导电聚合物电极的抗菌性能的细菌存活率柱状图;
图2为实施例2所制备的抗菌多肽固定的导电聚合物电极在细菌环境中的交流阻抗谱。
具体实施方式
下面结合具体实施例对本发明以及本发明达到的抗菌效果作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
实施例1
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和氯化氢的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。吡咯的浓度为0.2mol/L,氯化氢的浓度为0.25mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.9V,反应20秒之后钛电极上沉积一层致密均匀黑色的聚吡咯,浸泡在去离子水中以除去表面没有反应的吡咯和氯化氢,得表面沉积有聚吡咯预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚吡咯预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚吡咯预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8,吡咯的浓度为0.2mol/L,多巴胺的浓度为0.1mol/L,采用计时电位法控制电化学反应,反应电流密度为1.5mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚吡咯涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为0.5g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚吡咯涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
实施例2
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和氯化氢的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。吡咯的浓度为0.2mol/L,氯化氢的浓度为0.25mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.9V,反应20秒之后钛电极上沉积一层致密均匀黑色的聚吡咯,浸泡在去离子水中以除去表面没有反应的吡咯和氯化氢,得表面沉积有聚吡咯预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚吡咯预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚吡咯预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8,吡咯的浓度为0.2mol/L,多巴胺的浓度为0.1mol/L,采用计时电位法控制电化学反应,反应电流密度为1.5mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚吡咯涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为1.0g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚吡咯涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
实施例3
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和氯化氢的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。吡咯的浓度为0.2mol/L,氯化氢的浓度为0.25mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.9V,反应20秒之后钛电极上沉积一层致密均匀黑色的聚吡咯,浸泡在去离子水中以除去表面没有反应的吡咯和氯化氢,得表面沉积有聚吡咯预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚吡咯预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚吡咯预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为5.7,吡咯的浓度为0.2mol/L,多巴胺的浓度为0.1mol/L,采用计时电位法控制电化学反应,反应电流密度为1.5mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚吡咯涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为2.0 g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚吡咯涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
实施例4
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和氯化钾的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。吡咯的浓度为0.2mol/L,氯化钾的浓度为0.20mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.8V,反应30秒之后钛电极上沉积一层致密均匀黑色的聚吡咯,浸泡在去离子水中以除去表面没有反应的吡咯和氯化钾,得表面沉积有聚吡咯预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚吡咯预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚吡咯预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8,吡咯的浓度为0.2mol/L,多巴胺的浓度为0.2mol/L,采用计时电位法控制电化学反应,反应电流密度为0.8mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚吡咯涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为0.5g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚吡咯涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
(4)将步骤(3)制得的抗菌多肽固定的导电聚合物电极置于空气中,放置30天。
实施例5
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含苯胺和氯化氢的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。苯胺的浓度为0.2mol/L,氯化氢的浓度为0.25mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.8V,反应30秒之后钛电极上沉积一层致密均匀墨绿色的聚苯胺,浸泡在去离子水中以除去表面没有反应的苯胺和氯化氢,得表面沉积有聚苯胺预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚苯胺预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚苯胺预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含苯胺和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8,苯胺的浓度为0.2mol/L,多巴胺的浓度为0.2mol/L,采用计时电位法控制电化学反应,反应电流密度为1.5mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚苯胺涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为1.0 g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚苯胺涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
(4)将步骤(3)制得的抗菌多肽固定的导电聚合物电极置于空气中,放置30天。
实施例6
本实施例提供了一种抗菌多肽固定的导电聚合物电极的制备方法,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,导电电极为钛电极,对电极为铜片,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和氯化氢的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8。吡咯的浓度为0.2mol/L,氯化钾的浓度为0.25mol/L,采用计时电流法控制电化学反应,反应电位(相对于参比电极)为0.8V,反应20秒之后钛电极上沉积一层致密均匀黑色的聚吡咯,浸泡在去离子水中以除去表面没有反应的吡咯和氯化氢,得表面沉积有聚吡咯预成核层的钛电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的聚吡咯预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,对电极为铜片,工作电极为步骤(1)制备的表面沉积有聚吡咯预成核层的钛电极,参比电极为饱和甘汞电极,所用电解质溶液为包含吡咯和多巴胺的磷酸盐缓冲液,磷酸盐缓冲液的pH为6.8,吡咯的浓度为0.2mol/L,多巴胺的浓度为0.2mol/L,采用计时电位法控制电化学反应,反应电流密度为1.5mA/cm2,反应40分钟,得沉积有聚多巴胺功能化的聚吡咯涂层的钛电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于pH值为7.4的磷酸盐缓冲液中,得抗菌多肽溶液,抗菌多肽的浓度为2.0 g/L;将步骤(2)制备的沉积有聚多巴胺功能化的聚吡咯涂层的钛电极浸入到抗菌多肽溶液中,在在37℃条件下浸泡24h后,用磷酸盐缓冲液和去离子水分别清洗四次,得抗菌多肽固定的导电聚合物电极。
(4)将步骤(3)制得的抗菌多肽固定的导电聚合物电极置于空气中,放置30天。
抗菌效果测试
通过菌落计数法(CFU)来测定电极的表面抗菌活性。将大肠杆菌在新鲜营养肉汤(NB)培养基中于37℃培养8小时,离心并用PBS(pH = 7.4)洗涤后重悬,得浓度为106CFU mL-1的细菌悬浮液,将500μL的该细菌悬浮液与实施例1~6所制备的抗菌多肽固定的导电聚合物电极在37℃条件下共培养4小时。孵育结束后,用去离子水轻轻冲洗所有电极三次以除去未附着的细菌。然后将抗菌多肽固定的导电聚合物电极在浴超声波仪(KQ3200DB,Kun Shan,China)中在25℃下在1mL PBS(pH = 7.4)中超声处理7分钟以获得电极表面附着的活细菌的悬浮液。将所得悬浮液连续稀释100倍,并将100μL稀释后的该悬浮液均匀涂布在LB琼脂平板上。然后,在37℃过夜温育后计数细菌菌落。实施例1~6所制备的抗菌多肽固定的导电聚合物电极的抗菌性能测试结果如图1所示。
所有实施例所得的电极均表现出显著的抗菌效果:实施例3所得电极抗菌效果最佳,杀菌率可达99.5%;实施例2比实施例1抗菌多肽浓度增加一倍,抗菌效果从73%提高到97%;实施例4~6表明所得电极放置一个月后仍然保持抗菌能力(仍可达95%以上);实施例4与实施例1相比较,抗菌多肽浓度一致,步骤(2)电流密度从1.5mA/cm2降为0.8 mA/cm2,电解质溶液中氯化物不同,杀菌率下降了约10%;实施例5与实施例2相较聚合物单体不同,且所得电极放置了一个月,抗菌率下降6%。以上结果说明通过调控聚合物单体,电解质,电沉积反应条件和抗菌多肽的浓度可以得到长期具有抗菌效果的电极。
电极电化学稳定性评估
电化学交流阻抗谱用于评估抗菌多肽固定的导电聚合物电极在细菌环境中的电化学效率和长期稳定性。将实施例2所制备的抗菌多肽固定的导电聚合物电极分别在细菌溶液(1×104CFU mL-1)中孵育0小时,0.5小时,1小时,2小时,3小时和4小时,然后进行电化学分析说明。电阻值是从Bode图中提供的数据,通过使用ZSimpWin软件根据电路图计算获得的。图2为实施例2所制备的抗菌多肽固定的导电聚合物电极在细菌环境中的交流阻抗谱。
如图2所示,实施例2所得抗菌多肽固定的导电聚合物电极具有较低的阻抗性能,频率为10Hz的低频时,阻抗仅为360Ω/cm2;且所得抗菌多肽固定的导电聚合物电极在细菌溶液中随着时间变化,电极阻抗曲线表现出极好的重合性(1Hz~105Hz),表明所得电极在细菌环境中具有较高的电化学稳定性。
本发明的上述实施例仅是为清楚地说明本发明所举的实施例,而并非是对本发明的实施方式的限定,在该领域上述说明的基础上还可以做出其它不同形式的变化或变动,在此不一一赘述。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,包括以下步骤:
(1)沉积导电聚合物预成核层:
采用三电极模式在导电电极的表面用电化学法沉积导电聚合物预成核层,所述三电极包括对电极、工作电极和参比电极,工作电极为导电电极,所用电解质溶液为包含导电聚合物单体和氯离子的磷酸盐缓冲液,采用计时电流法控制电化学反应,得表面沉积有导电聚合物预成核层的导电电极;
(2)沉积聚多巴胺功能化的导电聚合物涂层:
采用三电极模式在步骤(1)中沉积的导电聚合物预成核层表面电化学沉积多巴胺掺杂的导电聚合物涂层,所述三电极包括对电极、工作电极和参比电极,工作电极为步骤(1)制备的表面沉积有导电聚合物预成核层的导电电极,所用电解质溶液为包含导电聚合物单体和多巴胺的磷酸盐缓冲液,采用计时电位法控制电化学反应,得沉积有聚多巴胺功能化的导电聚合物涂层的导电电极;
(3)接枝抗菌多肽
将抗菌多肽溶解于磷酸盐缓冲液中,得抗菌多肽溶液;将步骤(2)制备的沉积有聚多巴胺功能化的导电聚合物涂层的导电电极浸入到抗菌多肽溶液中,得抗菌多肽固定的导电聚合物电极。
2.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(1)中所述氯离子的源为氯化氢、氯化钾或氯化钠;
电解质溶液中氯离子的浓度为0.1~0.5mol/L,导电聚合物单体的浓度为0.01~0.5mol/L;电化学反应的时间为5~60秒,电化学反应电压为0.6~1.2V。
3.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(2)的电解质溶液中导电聚合物单体的浓度为0.01~0.5mol/L,多巴胺的浓度为0.01~0.5mol/L;电化学反应的时间为5~50分钟,电化学反应电流密度为0.4~2.0m A/cm2
4.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(1)和(2)中所述的导电聚合物单体为噻吩,吡咯或苯胺中的任意一种;对电极为导电金属;导电金属为铂或铜;导电电极为钛电极,铂电极或金电极中的任意一种;参比电极为饱和甘汞电极;磷酸盐缓冲液的pH为5.3~7.4。
5.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(3)抗菌多肽为马盖宁2;抗菌多肽溶液中抗菌多肽的浓度为0.1~5g/L;磷酸盐缓冲液的pH值为6.8~8.5;浸入的条件为在20~37℃的抗菌多肽溶液中浸泡24~72小时。
6.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(1)中的氯离子的源为氯化氢。
7.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(2)中电解质溶液中导电聚合物单体的浓度为0.2mol/L,多巴胺的浓度为0.1mol/L,电化学反应的时间为40分钟,电流密度为1.5mA/cm2
8.根据权利要求1所述的抗菌多肽固定的导电聚合物电极的制备方法,其特征在于,步骤(1)和(2)中的导电聚合物单体为吡咯;磷酸盐缓冲液的pH为6.8;对电极为铜电极;导电电极为钛电极。
9.权利要求1至8任一项所述的制备方法制备的抗菌多肽固定的导电聚合物电极。
10.权利要求9所述的抗菌多肽固定的导电聚合物电极在环境、食品或医疗检测中的应用。
CN201910658707.4A 2019-07-22 2019-07-22 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用 Pending CN110552035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910658707.4A CN110552035A (zh) 2019-07-22 2019-07-22 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910658707.4A CN110552035A (zh) 2019-07-22 2019-07-22 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN110552035A true CN110552035A (zh) 2019-12-10

Family

ID=68735649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910658707.4A Pending CN110552035A (zh) 2019-07-22 2019-07-22 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110552035A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546223A (zh) * 2021-06-22 2021-10-26 华南理工大学 利用多巴胺和重组水蛭素复合构建抗凝血表面涂层的方法
CN114369241A (zh) * 2021-12-15 2022-04-19 华南理工大学 一种导电聚合物生物传感器电极材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106474546A (zh) * 2016-09-09 2017-03-08 华南理工大学 一种导电聚吡咯/聚多巴胺纳米纤维及其制备方法与应用
CN107789664A (zh) * 2017-10-26 2018-03-13 陕西师范大学 镁合金表面原位生长NaMgF3纳米棒的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106474546A (zh) * 2016-09-09 2017-03-08 华南理工大学 一种导电聚吡咯/聚多巴胺纳米纤维及其制备方法与应用
CN107789664A (zh) * 2017-10-26 2018-03-13 陕西师范大学 镁合金表面原位生长NaMgF3纳米棒的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN XING等: ""Antimicrobial Peptide Functionalized Conductive Nanowire Array Electrode as a Promising Candidate for Bacterial Environment Application"", 《ADV.FUNCT.MATER.》 *
ZHENGAO WANG等: ""Polydopamine-Assisted Electrochemical Fabrication of Polypyrrole Nanofibers on Bone Implants to Improve Bioactivity"", 《MACROMOL.MATER.ENG.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546223A (zh) * 2021-06-22 2021-10-26 华南理工大学 利用多巴胺和重组水蛭素复合构建抗凝血表面涂层的方法
CN114369241A (zh) * 2021-12-15 2022-04-19 华南理工大学 一种导电聚合物生物传感器电极材料及其制备方法与应用
CN114369241B (zh) * 2021-12-15 2023-01-24 华南理工大学 一种导电聚合物生物传感器电极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
US6569654B2 (en) Electroactive materials for stimulation of biological activity of stem cells
Dong et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique
CN110552035A (zh) 一种抗菌多肽固定的导电聚合物电极及其制备方法与应用
CN108878940B (zh) 一种电活性生物膜的成膜方法及其应用
Biffinger et al. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis
CN103275887B (zh) 一株鲍希瓦氏菌及其在产生物电中的应用
Wickham et al. Electroactive biomimetic collagen-silver nanowire composite scaffolds
Li et al. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay
Kramer et al. Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes
CN104233436A (zh) 一种壳聚糖/明胶/纳米银导电抗菌生物材料及其制备方法
CN103751841B (zh) 一种改性医用钛金属材料及其制备方法
Xing et al. Antimicrobial peptide functionalized conductive nanowire array electrode as a promising candidate for bacterial environment application
González et al. Silver deposition on polypyrrole films electrosynthesized in salicylate solutions
Molina et al. Electrochemical sensor for bacterial metabolism based on the detection of NADH by polythiophene nanoparticles
Ragupathy et al. Electrochemical grafting of poly (2, 5-dimethoxy aniline) onto multiwalled carbon nanotubes nanocomposite modified electrode and electrocatalytic oxidation of ascorbic acid
Hubenova et al. Electrochemical performance of Paenibacillus profundus YoMME encapsulated in alginate polymer
Jia et al. The application of Ag@ PPy composite coating in the cathodic polarization antifouling
CN109962249A (zh) 聚间氨基苯硼酸的碳基微生物燃料电池阳极及其制备方法
CN112121237B (zh) 具备生物活性的脑深部植入复合导电涂层电极及制备方法
CN106267334B (zh) 一种促神经修复的植入式电极及其制备方法
Mahrokh et al. An efficient microbial fuel cell using a CNT–RTIL based nanocomposite
Aiyer et al. An improvised microtiter dish biofilm assay for non-invasive biofilm detection on microbial fuel cell anodes and studying biofilm growth conditions
Becerro et al. Multiparametric biosensor for detection and monitoring of bacterial biofilm adhesion and growth
CN107271524A (zh) 一种基于(CNTs/PANI)n‑ITO阳极的MFC生物传感器用于药敏试验的方法
CN107789670A (zh) 具有抗菌性的聚吡咯/磺基水杨酸纳米棒及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191210

RJ01 Rejection of invention patent application after publication