CN110541811B - 一种快速获取空调压缩机低频转矩补偿角度的方法 - Google Patents

一种快速获取空调压缩机低频转矩补偿角度的方法 Download PDF

Info

Publication number
CN110541811B
CN110541811B CN201910904443.6A CN201910904443A CN110541811B CN 110541811 B CN110541811 B CN 110541811B CN 201910904443 A CN201910904443 A CN 201910904443A CN 110541811 B CN110541811 B CN 110541811B
Authority
CN
China
Prior art keywords
compressor
frequency
low
compensation angle
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910904443.6A
Other languages
English (en)
Other versions
CN110541811A (zh
Inventor
李磊鑫
李越峰
董维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Changhong Air Conditioner Co Ltd
Original Assignee
Sichuan Changhong Air Conditioner Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Changhong Air Conditioner Co Ltd filed Critical Sichuan Changhong Air Conditioner Co Ltd
Priority to CN201910904443.6A priority Critical patent/CN110541811B/zh
Publication of CN110541811A publication Critical patent/CN110541811A/zh
Application granted granted Critical
Publication of CN110541811B publication Critical patent/CN110541811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations

Abstract

本发明涉及压缩机低频转矩补偿控制技术,其公开了一种快速获取空调压缩机低频转矩补偿角度的方法,解决由于配管设计方案变更引起的低频转矩补偿角度需重新测试问题,从而缩短设计周期。该方法包括:a.在进行某配管设计方案i与压缩机匹配时,测得在该配管设计方案的低频转矩控制补偿角度θi以及与该补偿角度相对应的压缩机运行频率fi;b.在进行其它配管设计方案j与压缩机匹配时,通过振动测试扫频得到配管振动最大时的压缩机运行频率fj;c.计算压缩机运行频率为fi和fj时的排气开始角度βi和βj;d.计算获取在配管设计方案j的低频转矩控制补偿角度θj:若fj>fi,则配管设计方案j的低频转矩补偿角度θj=θi‑|βj‑βi|;若fj<fi,则配管设计方案j的低频转矩补偿角度θj=θi+|βi‑βj|。

Description

一种快速获取空调压缩机低频转矩补偿角度的方法
技术领域
本发明涉及压缩机低频转矩补偿控制技术,具体涉及一种快速获取空调压缩机低频转矩补偿角度的方法。
背景技术
为降低压缩机振动及噪音,低频转矩补偿控制技术是空调行业内的常用的基本技术之一,压缩机的低频范围为0—40Hz。低频转矩补偿控制是根据压缩机负载转矩特性,给压缩机电机一前馈补偿电流,使得驱动转矩与负载转矩波形基本一致,即幅值和相位角基本一致,进而可使压缩机转子平稳转动,达到降低其振动噪音的目的。压缩机低频转矩补偿控制技术中的补偿电流幅值可由控制模块计算得出,补偿角度(即相位角)需通过对压缩机扫频测试得出。补偿角度的合理选择对降低空调器压缩机配管系统振动至关重要。
目前,在配管与压缩机匹配设计过程中往往需要对配管进行多次设计才能与压缩机匹配成功,而在匹配过程中,只要配管设计方案发生变更,则相对应的低频转矩控制补偿角度也要变更,即补偿角度需重新测试,延长了设计周期。
发明内容
本发明所要解决的技术问题是:提出一种快速获取空调压缩机低频转矩补偿角度的方法,解决传统技术在配管与压缩机匹配设计过程中,由于配管设计方案变更引起的低频转矩补偿角度需重新测试问题,从而缩短设计周期。
本发明解决上述技术问题所采用的方案是:
一种快速获取空调压缩机低频转矩补偿角度的方法,包括以下步骤:
a.在进行某配管设计方案i与压缩机匹配时,测得在该配管设计方案的低频转矩控制补偿角度θi以及与该补偿角度相对应的压缩机运行频率fi
b.在进行其它配管设计方案j与压缩机匹配时,通过振动测试扫频得到配管振动最大时的压缩机运行频率fj
c.计算压缩机运行频率为fi和fj时的排气开始角度βi和βj
d.计算获取在配管设计方案j的低频转矩控制补偿角度θj
若fj>fi,则配管设计方案j的低频转矩补偿角度θj=θi-|βji|;
若fj<fi,则配管设计方案j的低频转矩补偿角度θj=θi+|βij|。
作为进一步优化,步骤a中,选择配管设计方案i中的配管振动最大情况下压缩机运行频率点处所对应的最优补偿角度作为该配管设计方案的低频转矩控制补偿角度θi
由于压缩机每个运行频率点都对应着一个最优补偿角度,选择配管振动最大情况下压缩机运行频率点处对应的最优补偿角度作为低频转矩控制补偿角度,可以最大化降低振动噪音。
作为进一步优化,步骤b中,所述振动测试扫频的扫频范围为0—40Hz,振动测试部位为配管受力最大部位或者振幅最大部位。
通过0—40Hz扫频范围的扫频,以及在配管受力最大部位或者振幅最大部位进行振动测试可以快速获取配管振动最大时的压缩机运行频率,从而便于后续的快速计算。
作为进一步优化,步骤c中,所述排气开始角度由压缩机转子偏心率、制冷剂等熵指数、压缩机吸气压力和压缩机排气压力决定,通过相应计算软件计算得出。
本发明的有益效果是:
在配管设计方案多次变更与压缩机匹配情况下,只需知道其中一种配管设计方案的低频转矩补偿角度以及相对应的压缩机运行频率,即可快速计算得到其余配管方案与该压缩机匹配时的低频转矩补偿角度,无需再通过测试去寻找该角度值大小,从而降低了测试成本,缩短了设计周期。
附图说明
图1为本发明快速获取空调压缩机低频转矩补偿角度的方法流程图;
图2为实施例中配管设计方案2低频转矩补偿角度为θ1和θ2时的配管振动响应数据对比图。
具体实施方式
本发明旨在提出一种快速获取空调压缩机低频转矩补偿角度的方法,解决传统技术在配管与压缩机匹配设计过程中,由于配管设计方案变更引起的低频转矩补偿角度需重新测试问题,从而缩短设计周期。其核心思想是:在配管设计方案多次变更与压缩机匹配情况下,仅测试其中一种配管设计方案的低频转矩控制补偿角度,利用其余配管设计方案与此配管设计方案的在配管振动最大时,压缩机运行在对应运行频率时的排气开始角度的差值来计算其余配管设计方案的低频转矩补偿角度。因此,本发明方案仅需要测试一种配管设计方案的低频转矩控制补偿角度,即可快速获取其它任意配管方案的低频转矩补偿控制角度,从而降低测试成本,缩短设计周期。
在具体实现上,如图1所示,本发明中快速获取空调压缩机低频转矩补偿角度的方法包括以下实现步骤:
步骤1:配管设计方案i与压缩机匹配时,测得低频转矩控制补偿角度θi以及与该角度相对应的压缩机运行频率fi
需要说明的是:压缩机每个运行频率点都对应着一个最优补偿角度,补偿角度选取的方法是首先选择配管振动最大情况下压缩机运行频率点处所对应的最优补偿角度。
步骤2:配管设计方案j与压缩机匹配时,通过振动测试快速扫频得到配管振动最大时的压缩机运行频率fj
其中,扫频范围为0—40Hz,振动测试部位为配管受力最大部位或者振幅最大部位。
步骤3:计算压缩机运行频率为fi和fj时的排气开始角度βi和βj
其中,排气开始角由压缩机转子偏心率,制冷剂等熵指数,压缩机吸气压力和压缩机排气压力决定,由专用计算软件计算得出。
步骤:4:计算获取在配管设计方案j的低频转矩控制补偿角度θj
低频转矩补偿是通过给定一补偿角度,使驱动力矩与阻力矩在时域中相近,进而减小压缩机转子转速波动,达到降低振动的目的。压缩机转子转动一周,排气开始角度所对应的气体阻力矩为该频率点下转子旋转一周时阻力矩的唯一极值点,若压缩机运行频率为fi时的排气开始角度为βi,转矩补偿角度为θi,即通过给定θi角度,使压缩机驱动力矩在时域中与阻力矩相近;当压缩机运行频率为fj时的排气开始角度为βj,转矩补偿角度为θj,此时,两个转矩补偿角度之间的相位差应该与两个排气角度之间的相位差相等,进而在已知βi、βj、θi时,可求解得出θj,则有:
若fj>fi,则配管设计方案j的低频转矩补偿角度θj=θi-|βji|;
若fj<fi,则配管设计方案j的低频转矩补偿角度θj=θi+|βij|。
实施例:
以某压缩机匹配过程中的两套配管设计方案为例,为便于描述,两套配管设计方案分别命名为方案1和方案2,其实现过程如下:
1、配管设计方案1与压缩机匹配,测试得到其补偿角度θ1以及其对应的压缩机运行频率点f1。本例中,θ1=77.4°,f1=30Hz。
2、配管设计方案2与该压缩机匹配,通过振动测试快速扫频得到配管的振动最大的频率点f2。本例中,振动测试为应力测试,扫频范围为9.6—40Hz,测试部位为配管受力最大弯位处,f2=22Hz。
3、计算压缩机运行频率为f1=30Hz和f2=22Hz处的排气开始角度β1和β2
本例中,β1=188.7°,β2=179.9°。
4、本例中,f2<f1,因此配管设计方案2与压缩机匹配的补偿角度θ2=θ1+(β12)=86.2°。
图2为配管设计方案2低频转矩补偿角度为θ1和θ2时的配管振动响应数据对比,从图2中可以看出,转矩补偿角度为θ2时的配管振动响应要比转矩补偿角度为θ1时的振动响应数据要小很多,即,转矩补偿角度θ2比转矩补偿角度θ1更适合于配管设计方案2,由此也证明了当配管设计方案变更时,低频转矩补偿控制角度也需要改变,以获得更适合的补偿角度,来减小配管振动。

Claims (4)

1.一种快速获取空调压缩机低频转矩补偿角度的方法,其特征在于,包括以下步骤:
a.在进行某配管设计方案i与压缩机匹配时,测得在该配管设计方案的低频转矩控制补偿角度θi以及与该补偿角度相对应的压缩机运行频率fi
b.在进行其它配管设计方案j与压缩机匹配时,通过振动测试扫频得到配管振动最大时的压缩机运行频率fj
c.计算压缩机运行频率为fi和fj时的排气开始角度βi和βj
d.计算获取在配管设计方案j的低频转矩控制补偿角度θj
若fj>fi,则配管设计方案j的低频转矩补偿角度θj=θi-|βji|;
若fj<fi,则配管设计方案j的低频转矩补偿角度θj=θi+|βij|。
2.如权利要求1所述的一种快速获取空调压缩机低频转矩补偿角度的方法,其特征在于,
步骤a中,选择配管设计方案i中的配管振动最大情况下压缩机运行频率点处所对应的最优补偿角度作为该配管设计方案的低频转矩控制补偿角度θi
3.如权利要求1所述的一种快速获取空调压缩机低频转矩补偿角度的方法,其特征在于,
步骤b中,所述振动测试扫频的扫频范围为0—40Hz,振动测试部位为配管受力最大部位或者振幅最大部位。
4.如权利要求1所述的一种快速获取空调压缩机低频转矩补偿角度的方法,其特征在于,
步骤c中,所述排气开始角度由压缩机转子偏心率、制冷剂等熵指数、压缩机吸气压力和压缩机排气压力决定,通过相应计算软件计算得出。
CN201910904443.6A 2019-09-24 2019-09-24 一种快速获取空调压缩机低频转矩补偿角度的方法 Active CN110541811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910904443.6A CN110541811B (zh) 2019-09-24 2019-09-24 一种快速获取空调压缩机低频转矩补偿角度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910904443.6A CN110541811B (zh) 2019-09-24 2019-09-24 一种快速获取空调压缩机低频转矩补偿角度的方法

Publications (2)

Publication Number Publication Date
CN110541811A CN110541811A (zh) 2019-12-06
CN110541811B true CN110541811B (zh) 2021-01-29

Family

ID=68714398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910904443.6A Active CN110541811B (zh) 2019-09-24 2019-09-24 一种快速获取空调压缩机低频转矩补偿角度的方法

Country Status (1)

Country Link
CN (1) CN110541811B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446899B (zh) * 2020-04-07 2023-04-18 四川长虹空调有限公司 压缩机转动振动补偿控制方法
CN114234411B (zh) * 2021-12-21 2022-12-02 珠海格力电器股份有限公司 一种压缩机的转矩计算方法及具有其的空调器
CN114244221A (zh) * 2022-02-24 2022-03-25 四川奥库科技有限公司 一种限制补偿量的低频力矩补偿控制方法
CN114577498A (zh) * 2022-02-28 2022-06-03 北京小米移动软件有限公司 空调转矩补偿参数的测试方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005199A (ja) * 2010-06-15 2012-01-05 Toshiba Corp モータ制御装置、圧縮機およびヒートポンプ装置
TWI533586B (zh) * 2014-04-25 2016-05-11 財團法人工業技術研究院 馬達頓轉矩補償裝置及其方法
CN106152391A (zh) * 2015-04-28 2016-11-23 青岛海尔空调电子有限公司 一种用于控制长配管空调的压缩机排气温度过高的方法
CN106762653A (zh) * 2016-12-26 2017-05-31 广东美的制冷设备有限公司 压缩机转矩补偿方法、装置和压缩机及其控制方法
CN109039193A (zh) * 2018-07-27 2018-12-18 华中科技大学 一种基于I/f启动策略抑制电机转速波动的方法及系统
WO2019118955A1 (en) * 2017-12-17 2019-06-20 Microchip Technology Incorporated Closed loop torque compensation for compressor applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005199A (ja) * 2010-06-15 2012-01-05 Toshiba Corp モータ制御装置、圧縮機およびヒートポンプ装置
TWI533586B (zh) * 2014-04-25 2016-05-11 財團法人工業技術研究院 馬達頓轉矩補償裝置及其方法
CN106152391A (zh) * 2015-04-28 2016-11-23 青岛海尔空调电子有限公司 一种用于控制长配管空调的压缩机排气温度过高的方法
CN106762653A (zh) * 2016-12-26 2017-05-31 广东美的制冷设备有限公司 压缩机转矩补偿方法、装置和压缩机及其控制方法
CN106762653B (zh) * 2016-12-26 2018-08-17 广东美的制冷设备有限公司 压缩机转矩补偿方法、装置和压缩机及其控制方法
WO2019118955A1 (en) * 2017-12-17 2019-06-20 Microchip Technology Incorporated Closed loop torque compensation for compressor applications
CN109039193A (zh) * 2018-07-27 2018-12-18 华中科技大学 一种基于I/f启动策略抑制电机转速波动的方法及系统

Also Published As

Publication number Publication date
CN110541811A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN110541811B (zh) 一种快速获取空调压缩机低频转矩补偿角度的方法
CN106440191B (zh) 一种空调性能自动匹配方法及装置
US9817408B2 (en) Vibration control for a variable speed cooling system
CN109063312B (zh) 变频空调器双转子压缩机配管系统振动仿真方法
CN106415145B (zh) Hvac系统和控制
US9458771B2 (en) Multi-engine performance margin synchronization adaptive control system and method
CN104807152B (zh) Pm电机直接功率控制的恒风量控制方法及其应用的hvac系统
CN110030690B (zh) 用于空调器的控制方法
CN111102196B (zh) 压缩机转矩补偿方法及空调器
WO2018188520A1 (zh) 在线检测空调制冷能效比和制冷量的方法
CN111651925A (zh) 空调管路低频噪声声源识别方法及系统
CN109408963B (zh) 空调器不同环境工况下的配管振动响应函数关系拟合方法
CN113280533A (zh) 一种多联空调压缩机回油方法
CN112733600A (zh) 一种无转速参考信号的叶片故障诊断方法
KR20090041146A (ko) 터보 챠저 시험 장치
CN101344429A (zh) 变频空调配管振动特性的实验分析方法
JP2019070383A (ja) 圧力ベースのサブシステムを有する圧縮機用制御システム、合成プラント、および制御方法
CN109406042B (zh) 变频空调器压力数据拟合方法
CN112525539A (zh) 一种汽车发动机扭矩检测方法、装置及汽车环境仓
CN102052735B (zh) 车辆电动空调压缩机的控制方法
CN110553366A (zh) 一种空调器的自适应控制方法、控制装置和空调器
CN105182235A (zh) 一种低温低压环境下电机的测试方法
JP6400440B2 (ja) オイルポンプ制御方法
CN102741554A (zh) 压缩机控制方法和系统
CN112378666A (zh) 发动机排气热端耐久性试验方法、试验装置及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant