CN110536791B - 复合材料 - Google Patents

复合材料 Download PDF

Info

Publication number
CN110536791B
CN110536791B CN201880026129.6A CN201880026129A CN110536791B CN 110536791 B CN110536791 B CN 110536791B CN 201880026129 A CN201880026129 A CN 201880026129A CN 110536791 B CN110536791 B CN 110536791B
Authority
CN
China
Prior art keywords
aggregate
conductive
aggregates
composite material
semiconductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201880026129.6A
Other languages
English (en)
Other versions
CN110536791A (zh
Inventor
莎拉·杰西卡·登普西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peratech Holdco Ltd
Original Assignee
Peratech Holdco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peratech Holdco Ltd filed Critical Peratech Holdco Ltd
Publication of CN110536791A publication Critical patent/CN110536791A/zh
Application granted granted Critical
Publication of CN110536791B publication Critical patent/CN110536791B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/242Moulding mineral aggregates bonded with resin, e.g. resin concrete
    • B29C67/243Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/811Heating the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/15Use of centrifuges for mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0459Numerical values of dimensionless numbers, i.e. Re, Pr, Nu, transfer coefficients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/06Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种复合材料的制备方法,包括获取聚集体(102),将聚集体加入包含能够固化以生成固化聚合材料的组分的液态载体中,并将聚集体与液态载体(103)混合以制备复合材料(101)。各聚集体通过以下步骤预制:获取导电或半导电颗粒,在造粒容器中将导电或半导电颗粒(201)混合。混合步骤包括以220‑1100Fr操作造粒容器,以及添加造粒粘合剂粘附导电或半导电颗粒,以形成聚集体。

Description

复合材料
相关申请的交叉引用
本申请要求于2017年4月21日提交的英国专利申请GB1706363.7的优先权,其全部公开内容通过引用整体结合于此。
技术领域
本发明涉及一种复合材料的制备方法和聚集体的制备方法,以及一种用于电响应复合材料的电响应复合材料和聚集体。
背景技术
众所周知,用户输入设备基本上是平的,并且对触笔或手指在xy平面中的移动作出响应,并且在某些情况下,还对在z向上施加的压力敏感。当结合到触摸屏中时,以前已经证明过很难制备出在xy平面和z向上均可操作的透明触摸屏,这一问题以前在申请人的专利EP2689431中已得到了确认。
EP2689431提供了一种压敏复合材料,其包括分散在载体层内的聚集体。在制备时,这些聚集体是在将导电或半导电颗粒与聚合物材料混合以制备上述复合材料的过程中自发形成的。在混合时,导电或半导电颗粒与其他导电或半导电颗粒结合,从而形成了载体层内的聚集体。因此,形成的聚集体取决于复合材料的混合步骤,并且需要限制超分散剂的含量,以便可以形成聚集体。所得的聚集体通常是不规则的,具有变化的机械和电性能,并且复合材料中通常包括小的聚集体,这些小的聚集体提供了穿透载体层的有限导电性,以及透过透明或半透明材料的光雾(optical haze)。
发明内容
根据本发明的一个方面,提供了一种包含在电响应复合材料中的聚集体的制备方法,包括以下步骤:获取导电或半导电颗粒;在离心混合机中将所述导电或半导电颗粒混合,所述混合步骤包括以220-1100Fr操作所述离心混合机;以及添加造粒粘合剂并将所述造粒粘合剂与所述导电或半导电颗粒混合,以粘附所述导电或半导电颗粒,从而形成所述聚集体;其中,在将所述聚集体加入所述电响应复合材料之前,通过各所述获取、混合和粘附所述导电或半导电颗粒的步骤预制了所述聚集体。
本发明的实施例将参照附图仅以示例的方式描述。详细的实施例示出了发明人已知的最佳模式,并为所要求保护的发明提供了支持。但是,它们仅是示例性的,不应用于解释或限制权利要求的范围。其目的是为本领域技术人员提供一种教导。
以诸如“第一”和“第二”之类的序数词区别的组件和过程不一定定义任何顺序或等级。
附图说明
图1示出了电响应复合材料;
图2示意性地示出了聚集体的制备方法;
图3示出了双轴离心混合机形式的造粒容器的示意图;
图4示出了根据本发明的造粒容器的Fr与转速的关系图;
图5示出了根据本发明的造粒容器的转速与造粒时间的关系图;
图6示出了聚集体的表面具有凹痕;
图7示出了聚集体的制备方法;
图8示出了具有预制的聚集体的复合材料;
图9A和9B示出了通过复合材料得到的导电路径的示意图;以及
图10示出了复合材料的抗力响应曲线。
具体实施方式
图1
在图1中示出了电响应复合材料101。电响应复合材料101适于应用于合适的基板上,因此可以被结合到诸如触摸屏的电子设备中。复合材料101包括分散在载体层103内的聚集体102。载体层103包括聚合粘合剂,该聚合粘合剂可以是可交联的、溶剂基的、可热固化或可紫外固化的。聚合粘合剂还可以是不透明的、半透明的或基本透明的,并在交联、溶剂蒸发或固化后保持不透明、半透明或基本透明。
各聚集体102包括多个导电或半导电颗粒103,这些颗粒粘附在一起以形成聚集体102。在制备时,聚集体预先制备,然后以图1的方式分散在载体层中。在本说明书中,使用预制来表示聚集体是通过将导电或半导电颗粒独立组合并且在将聚集体与载体层组合之前制备的。另外,在整个说明书中聚集体是指通过造粒方法由导电或半导电颗粒形成并且能够通过聚集体自身实现导电的粒状颗粒。这样,各单独的聚集体接着可与合适的载体粘合剂结合以制备导电复合材料。
聚集体的尺寸和分散度(在图1中放大显示)使得肉眼不可见。因此,聚集体的尺寸使得电响应复合材料的薄涂层在光学上看起来与不添加填料颗粒的涂层基本相同。此外,由于聚集体分散在载体层内,因此复合材料整体上可以具有聚合粘合剂的光学外观。
图2
图2示出了适合于包含在电响应复合材料(如图1的描述所述的电复合材料101)中的聚集体102的制备方法的示意图。应当注意的是,该示意图本质上是示意性的,因此不按比例绘制。
为了制备聚集体102,获取导电或半导电颗粒201并将其放置在造粒容器202中。还将造粒粘合剂203添加到造粒容器202中。造粒容器202被配置为执行混合步骤,使得导电或半导电颗粒201在混合步骤中彼此粘附。在本实施例中,由于粘合剂203的存在,颗粒201粘附在一起。以这种方式,聚集体102包括导电或半导电颗粒201,这些颗粒通过造粒容器202执行的混合步骤粘附在一起。
在本实施例中,导电或半导电颗粒201与造粒粘合剂203的质量比为10:1。因此,可以理解的是,与形成各聚集体的颗粒的量相比,用于将颗粒粘合在一起的造粒粘合剂的量较少。还应理解的是,在另一实施例中,使得导电和/或半导电颗粒彼此粘附的质量比是可变的。
在一个实施例中,导电颗粒包括掺杂锑的氧化锡颗粒。这些被示为球形颗粒。然而,应当理解的是,在另一实施例中,颗粒为针尖状(或针状)。导电或半导电颗粒的最大尺寸通常在10-100nm之间。
在一个实施例中,造粒粘合剂203包括硅酮液体粘合剂,并且特别地包括主要成分为聚二甲基硅氧烷(PDMS)的双组分半透明固体橡胶(highconsistency rubber)。在另一个实施例中,造粒粘合剂包括碳基(有机)粘合剂,例如耐醇/汽油清漆(APR)。在又一实施例中,造粒粘合剂包括水基粘合剂,例如不含有机溶剂的透明丝网印刷油墨。在其他实施例中,可以使用其他合适的造粒粘合剂。
造粒容器202被配置为以较高的能量混合颗粒和造粒粘合剂,从而制备出不易破碎的聚集体。在一个实施例中,造粒容器是离心混合机。在一个具体实施例中,离心混合机具有双旋转轴,例如将在图3中进一步详细描述的SpeedMixerTM DAC 150.1FVZ实验室用双不对称离心混合机。
图3
图3示出了双轴离心混合机形式的造粒容器的示意图,该造粒容器适合于进行根据本发明的造粒步骤。可以理解的是,图2的造粒容器可以是能够产生本文所述类型的聚集体的任何其他合适的容器,图3提供了能够获得本文所述聚集体的合适实例。
提供了样品容器301,可以将导电或半导电颗粒201与相应的造粒粘合剂203一起添加到其中。样品容器301位于旋转臂302的一端,该旋转臂围绕着具有半径305的圆柱形容器相对于水平面304以角度303倾斜。在一个实施例中,角度303相对于水平面304设置为40°,具有80mm的半径。
在使用中,旋转臂302绕中心旋转轴306旋转,使得样品容器301由于其在旋转臂302的端部的位置而沿箭头307的方向以圆周方式移动。如箭头309所示,双轴离心混合机202还被配置为沿与中心旋转轴306相反的方向绕第二旋转轴线308旋转样品容器301。
使用这种类型的双不对称离心机的优点是,其促进了容器中样品的快速均质化并减少了样品中的气泡。这是由于相对的轴具有较高的加速度和相反的向心力。通常,这种类型的混合机不用于造料,而是用于将两种单独的液体混合在一起。然而,申请人发现,这种类型的双轴混合机适用于制备电响应复合材料的合适的聚集体。
该特定造粒容器的特性是可改变诸如旋转半径和旋转速度的参数,以得到合适的结果。在该实施例中,虽然特定混合机保持了旋转半径,但是旋转速度较高,从而产生了如图4的描述所述的高Fr。
图4
如图3所述的双轴离心混合机被配置为以具有220-1100Fr的高能量来运行。造粒机的Fr(Froude number,弗劳德数)为作用在样品容器中的样品上的向心加速度与重力加速度的比的值。因此,其由角速度的平方乘以造粒容器的特征半径再除以重力加速度来定义。通过控制所使用的造粒容器的Fr可用于控制赋予颗粒的造粒能量。
图4示出了Fr与中心轴306的以每分钟转速(rpm)为单位的旋转速度的关系图。线401显示了Fr随着转速增加的变化。在该实施例中,图3所示的离心混合机以1000-3500rpm的转速运行,相应地产生了220-1100Fr。特别是,在3500的转速下测得Fr为1096。在另一个实施例中,229-1095Fr与转速1600-3500rpm相对应。
在传统的造粒容器中,Fr的范围通常为0.2-100,因此本发明赋予样品(即造粒粘合剂和导电或半导电性颗粒)的能量比通常在造粒步骤中预期的要高得多。
虽然这里描述了双轴离心混合机,但是应当理解的是,可以使用替代的造粒容器,只要它们能够输入适当的高Fr,以便通过基本相似的造粒步骤提供合适的聚集体。
图5
为了进一步说明适用于电响应性导电材料的预制聚集体的制备方法中使用的参数,图5中显示了旋转速度(每分钟转速,rpm)与造粒时间(min)的关系图。图5所示的曲线图说明了通过造粒形成聚集体的过程。造粒步骤涉及生成较小的聚集体的成核阶段。随后为越来越多的导电颗粒连接或粘附在形成的聚集体上的快速生长阶段。因此,图5的曲线图说明了如何控制这些阶段的时间,以产生具有不同特性的聚集体。
该图示出了三个区域,501、502和503表示两个参数与所生成的聚集体的相应尺寸之间的关系。在区域501中,生成的聚集体的最大尺寸小于10微米(10μm)。因此,在该区域中,生成的聚集体相对较小。在区域502中,生成了了较大的、表面光滑的聚集体,其最大尺寸通常为20-40微米(20-40μm)。在区域503中,聚集体更大,其最大尺寸可能超过40微米(40μm)。区域503中的聚集体的表面上包括凹痕,这些凹痕使得其具有类似于高尔夫球的外观。
因此,在一个实施例中,聚集体的最大尺寸为4-20微米(4-20μm),优选为4-10微米(4-10μm),并且通常具有光滑的表面和相对一致的整体尺寸。但是,在另一个实施例中,如图6中将进一步详细描述的,所产生的聚集体更大并且其表面上具有凹痕。
图6
图6中示出了根据本发明的示例性的聚集体。聚集体601和602通过先前图2中描述的方法制备。
在该实施例中,根据图5的曲线图的区域3的参数制备了聚集体。因此,聚集体601和602包括了例如为聚集体601的表面605上的凹痕603和604的凹痕。与具有光滑表面的聚集体相比,这些聚集体具有更大的表面积。在该实施例中,聚集体的最大尺寸(在本示例中为直径)通常为20-40微米(20-40μm)。但是,可以用这种方式制备超过40微米(40μm)的聚集体。
图7
在图7中以示意图的形式示出了一种本文前述类型的聚集体的制备方法。
在步骤701中,获取导电或半导电颗粒201。在一个实施例中,颗粒201包括掺杂锑的氧化锡球形颗粒。在另一个实施例中,掺杂锑的氧化锡颗粒呈针尖状(acicular)或针状(needle-shaped)。各颗粒的最大尺寸通常为10-100纳米(10-100nm)。
在步骤702中,获取造粒粘合剂203。造粒粘合剂为液态,通常为硅酮液体粘合剂,例如为主要成分是聚二甲基硅氧烷(PDMS)的双组分半透明固体橡胶。在另一个实施例中,造粒粘合剂203包括碳基(有机)粘合剂,例如耐醇/汽油清漆(APR)。在又一个实施例中,造粒粘合剂包括水基粘合剂,例如不含有机溶剂的透明丝网印刷油墨。
将颗粒和造粒粘合剂以图2的方式加入到造粒容器中,并在步骤703中进行将颗粒粘附在一起以制备聚集体的混合步骤。混合和粘附步骤可以如上所述改变,以获得具有特定性质(如粒径、形状或孔隙率不同)的聚集体,这些性质受造粒时间的影响。
然后从造粒容器中移出聚集体,并在步骤704中进行固化步骤。在一个实施例中,这涉及将聚集体放置在合适的烘箱中并对聚集体进行加热的步骤。
在步骤705中,聚集体经历进一步的尺寸选择,以确保各所述聚集体在预定的尺寸范围内。例如,在一个实施例中,聚集体在20微米(20μm)下过筛,从而将聚集体保持在小于20微米(20μm)。这有助于确保聚集体的尺寸适合于任何将来的应用,例如包含在电响应复合材料中。应当理解的是,可以利用其他尺寸选择步骤,以允许根据聚集体的将来的应用对聚集体进行分类。
一旦如前述适当地形成了聚集体,它们就可以用于制备复合材料,该复合材料又可以成为触摸屏或其它电子设备的一部分。
为了生产复合材料,如图8的描述所述,将聚集体加入液态载体并与液态载体混合以生产复合材料。
图8
图8示出了具有例如为通过本文所述方法预制的聚集体802和803的聚集体的复合材料801。
将聚集体(802、803)加入液态载体中,以通过固化制备固化的聚合材料。在一个实施例中,载体层包括任何合适的液态载体,其包含能够通过固化制备固化的聚合材料的组分,并且为了制备复合材料,在固化之前,将聚集体加入液态载体中并混合,以在液态载体内分散聚集体。
所得的载体层804具有长度和宽度,厚度805小于宽度。在该实施例中,厚度805为4-6微米(4-6μm)。
聚集体(802、803)的最大尺寸为4-20微米(4-20μm),但是在该实施例中,最大尺寸通常为4-10微米(4-10μm)。特别地,载体层804的厚度805小于各聚集体的最大尺寸。例如,对于6微米(6μm)的载体层厚度,聚集体的最大尺寸为8-10微米(8-10μm)。因此,通过这种方式,聚集体从固化的载体层中略微突出,使得聚集体能够提供导电路径。
与以前的制备方法不同的是,因为聚集体在加入液体粘合剂之前已预先制备,所以能够提供机械和电性能一致的聚集体。因此,这减少了不能形成可用的聚集体(例如,那些太小而无法提供穿透载体层的导电路径的聚集体)的颗粒的数量。
图9
在图9中示出了通过本发明的复合材料得到的导电路径的示意图。在该示例性实施例中,复合材料被结合至具有氧化铟锡(ITO)的可变形电极901和氧化铟锡(ITO)的刚性电极902的触摸屏。复合材料903夹在两个电极901和902之间,该复合材料包括固化的聚合绝缘载体层904和例如为聚集体905的聚集体。
如图9A所示,当如箭头906所示向可变形电极901施加较低的力时,聚集体905与电极901接触,从而形成了如箭头907所示的有限导电路径。相反,对于图9B,当如箭头908所示向电极901施加较大的力时,电极不仅与聚集体905接触还与聚集体909和910接触。箭头911、912和913示出了导电路径。因此,随着力的增加,接触的聚集体的数量增加,从而增加了导电路径。此外,聚集体本身可呈现出压敏电阻,从而在较高的作用力下,还使得导电性进一步地增加。
图10
在图10中示出了对应于先前由申请人的专利EP2689431制备的复合材料的类型的样品和本发明的复合材料的力-抗力曲线。
线1001示出了本发明的样品的力-抗力响应,该样品中预先制备了聚集体。线1002示出了根据先前已知方法的样品的力-抗力响应,该样品中自发地产生了聚集体。在这里使用的样品中,聚集体通过使用图3中的离心混合机在2000rpm的转速下旋转4min预先制备。
需要注意的是,本发明在较低的力下产生了更不敏感的力-抗力响应,这意味着复合材料相较于传统方法更不频繁地以开关方式工作。这在数码设备的开/关应用中非常有用。由于通过减少不导电的小聚集体减小了雾影,使得可见光的传输也得到了改善。
因此,本发明不仅提供了控制聚集体的参数以适应特定应用的合适方法,还提供了自发产生的聚集体所不能提供的特性。

Claims (14)

1.一种包含在电响应复合材料中的聚集体的制备方法,包括以下步骤:
获取导电或半导电颗粒;
在离心混合机中将所述导电或半导电颗粒混合,所述混合步骤包括以220-1100Fr操作所述离心混合机;以及
添加造粒粘合剂并将所述造粒粘合剂与所述导电或半导电颗粒混合,以粘附所述导电或半导电颗粒,从而形成所述聚集体;其中,
在将所述聚集体加入所述电响应复合材料之前,通过各所述获取、混合和粘附所述导电或半导电颗粒的步骤预制了所述聚集体。
2.根据权利要求1所述的聚集体的制备方法,还包括以下步骤:执行尺寸选择步骤,以确保各所述聚集体在预定的尺寸范围内。
3.根据权利要求2所述的聚集体的制备方法,其中,所述尺寸选择步骤包括筛分。
4.根据权利要求1至3中任一项所述的聚集体的制备方法,还包括通过加热工艺固化各所述聚集体的步骤。
5.一种复合材料的制备方法,包括以下步骤:
获取聚集体;
将所述聚集体加入液态载体中,所述液态载体包含能够固化以生成固化聚合材料的组分;和
将所述聚集体与所述液态载体混合,以制备复合材料;其中,各所述聚集体根据权利要求1中所述的方法预制。
6.根据权利要求5所述的复合材料的制备方法,其中,所述离心混合机具有双旋转轴。
7.根据权利要求6所述的复合材料的制备方法,其中,所述离心混合机的旋转速度为1000-3500rpm。
8.根据权利要求5至7中任一项所述的复合材料的制备方法,其中,所述造粒粘合剂根据所述导电或半导电颗粒与造粒粘合剂的质量比为10:1添加。
9.根据权利要求5所述的复合材料的制备方法,其中,所述造粒粘合剂包括硅酮液体粘合剂。
10.根据权利要求5所述的复合材料的制备方法,其中,各所述聚集体包括具有凹痕的表面,并且最大尺寸大于40µm。
11.根据权利要求5所述的复合材料的制备方法,其中,各所述聚集体的最大尺寸为4-20µm。
12.根据权利要求11所述的复合材料的制备方法,其中,各所述聚集体的最大尺寸为4-10µm。
13.根据权利要求5所述的复合材料的制备方法,其中,所述导电或半导电颗粒包括掺杂锑的氧化锡球形颗粒。
14.根据权利要求5所述的复合材料的制备方法,其中,各所述导电或半导电颗粒的最大尺寸为10-100nm。
CN201880026129.6A 2017-04-21 2018-04-18 复合材料 Expired - Fee Related CN110536791B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1706363.7 2017-04-21
GB1706363.7A GB2561609B (en) 2017-04-21 2017-04-21 Method of producing agglomerates for inclusion in a composite material
PCT/GB2018/000069 WO2018193222A1 (en) 2017-04-21 2018-04-18 Composite material

Publications (2)

Publication Number Publication Date
CN110536791A CN110536791A (zh) 2019-12-03
CN110536791B true CN110536791B (zh) 2021-10-15

Family

ID=58795705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880026129.6A Expired - Fee Related CN110536791B (zh) 2017-04-21 2018-04-18 复合材料

Country Status (7)

Country Link
US (1) US20210147638A1 (zh)
EP (1) EP3612376B1 (zh)
JP (1) JP2020519704A (zh)
KR (1) KR20190141716A (zh)
CN (1) CN110536791B (zh)
GB (1) GB2561609B (zh)
WO (1) WO2018193222A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115485A (zh) * 1994-05-10 1996-01-24 日立化成工业株式会社 各向异性的导电树脂膜
CN101496114A (zh) * 2006-07-29 2009-07-29 肖克科技有限公司 具有导电或半导电有机材料的电压可切换介电材料
CN102138188A (zh) * 2008-08-29 2011-07-27 佩拉泰克有限公司 电响应合成材料和其制造方法以及采用该材料的传感器产品
CN102677202A (zh) * 2011-03-11 2012-09-19 艾普特佩克股份有限公司 纤维、纤维聚集体以及具有所述纤维聚集体的粘着剂
EP2689431A2 (en) * 2011-03-25 2014-01-29 Peratech Limited Pressure sensitive polymer composite material adapted for touch screen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2457962A (en) * 1945-02-19 1949-01-04 Phillips Petroleum Co Agglomeration of powdered material
JPS5273399A (en) * 1975-12-17 1977-06-20 Inoue Japax Res Pressure sensing resistor
US4745301A (en) * 1985-12-13 1988-05-17 Advanced Micro-Matrix, Inc. Pressure sensitive electro-conductive materials
DE3789325T2 (de) * 1986-01-14 1994-10-27 Raychem Corp Leitfähige Polymerzusammensetzung.
CN1149588C (zh) * 1998-01-23 2004-05-12 佩拉泰克有限公司 聚合物组合物
US8197719B2 (en) * 2006-11-17 2012-06-12 American Lithium Energy Corp. Electroactive agglomerated particles
CN103140441B (zh) * 2010-08-11 2015-12-16 英默里斯石墨及活性炭瑞士有限公司 粉碎的膨胀石墨聚结体、其制备方法、及其应用
JP5699230B2 (ja) * 2012-12-06 2015-04-08 積水化学工業株式会社 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP6262503B2 (ja) * 2013-11-26 2018-01-17 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体二次電池および全固体二次電池の製造方法
US9870843B2 (en) * 2014-03-11 2018-01-16 The Hong Kong University Of Science And Technology Electrical and thermal conductive paste composition and method of reducing percolation threshold and enhancing percolating conductivity using the same
CN105185469B (zh) * 2015-09-23 2017-04-19 彩虹集团电子股份有限公司 一种高稳定性触摸屏用导电银浆的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115485A (zh) * 1994-05-10 1996-01-24 日立化成工业株式会社 各向异性的导电树脂膜
CN101496114A (zh) * 2006-07-29 2009-07-29 肖克科技有限公司 具有导电或半导电有机材料的电压可切换介电材料
CN102138188A (zh) * 2008-08-29 2011-07-27 佩拉泰克有限公司 电响应合成材料和其制造方法以及采用该材料的传感器产品
CN102677202A (zh) * 2011-03-11 2012-09-19 艾普特佩克股份有限公司 纤维、纤维聚集体以及具有所述纤维聚集体的粘着剂
EP2689431A2 (en) * 2011-03-25 2014-01-29 Peratech Limited Pressure sensitive polymer composite material adapted for touch screen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structure and functionality of novel nanocomposite granules for a pressure-sensitive ink with applications in touchscreen technologies;SARAH JESSICA DEMPSEY;《Structure and functionality of novel nanocomposite granules for a pressure-sensitive ink with applications in touchscreen technologies》;20160427;第55-58, 130-135, 169-177, 191-215页以及附图4.3-4.4, 7.12, *

Also Published As

Publication number Publication date
KR20190141716A (ko) 2019-12-24
US20210147638A1 (en) 2021-05-20
EP3612376B1 (en) 2021-10-06
JP2020519704A (ja) 2020-07-02
EP3612376A1 (en) 2020-02-26
WO2018193222A1 (en) 2018-10-25
GB2561609A (en) 2018-10-24
CN110536791A (zh) 2019-12-03
GB201706363D0 (en) 2017-06-07
GB2561609B (en) 2019-12-18

Similar Documents

Publication Publication Date Title
Wu et al. Screen-printed flexible temperature sensor based on FG/CNT/PDMS composite with constant TCR
KR101980388B1 (ko) 터치 스크린에 적합한 압력 민감 폴리머 복합 재료
Liu et al. Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites
CN102374910B (zh) 碳纳米管/聚合物复合膜阵列式柔性力敏传感器及制法
KR101693486B1 (ko) 은나노와이어를 포함한 코팅액 조성물, 그를 이용한 전도성 박막 및 그의 제조 방법
US20130115420A1 (en) Nano composite with superhydrophobic surface and method of manufacturing the same
CN108668431A (zh) 柔性可拉伸导电线路及电路的制备方法与用途
Xing et al. Metallic gels for conductive 3D and 4D printing
CN109192391A (zh) 一种基于改性柔性衬底的导电薄膜的制备方法
US12031047B2 (en) Highly conductive, printable ink for highly stretchable soft electronics
CN110536791B (zh) 复合材料
CN109671250A (zh) 一种多刺激源响应的变形变色纸基纳米复合智能薄膜驱动器、制备方法及应用
CN106952677A (zh) 一种耐高温传感用导电碳浆及其制备方法
CN109749518A (zh) 一种石墨稀导电油墨及其制备方法
Taning et al. Characterization of solvent-dependent ink structure and catalyst layer morphology based on ink sedimentation dynamics and catalyst-ionomer cast films
KR20110136144A (ko) 터치패널용 전극 페이스트 조성물 및 이를 이용한 전극 형성방법
US20130087459A1 (en) Device for varying wetting properties of droplet and device for separating particles using the same
KR101706165B1 (ko) 플렉시블 압전저항 소재
Wang et al. Increasing the apparent shear viscosity of polymer composites by uptake of a small amount of water
JP2011257217A (ja) センサ用材料およびこれを備えた感圧センサ
WO2020136373A2 (en) New composition of matter
CN110602812A (zh) 一种新型可降解薄膜加热器及其制备方法
Lin et al. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal
JP2020519704A5 (zh)
JP5417149B2 (ja) 導電性粒子の製造方法及びその方法により製造された導電性粒子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211015

CF01 Termination of patent right due to non-payment of annual fee