CN110536746B - 铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途 - Google Patents

铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途 Download PDF

Info

Publication number
CN110536746B
CN110536746B CN201780074960.4A CN201780074960A CN110536746B CN 110536746 B CN110536746 B CN 110536746B CN 201780074960 A CN201780074960 A CN 201780074960A CN 110536746 B CN110536746 B CN 110536746B
Authority
CN
China
Prior art keywords
iron
titanium dioxide
doped titanium
visible light
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780074960.4A
Other languages
English (en)
Other versions
CN110536746A (zh
Inventor
R·赫林
V·莫拉迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rh-Imaging Systems Inc
Original Assignee
Rh-Imaging Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rh-Imaging Systems Inc filed Critical Rh-Imaging Systems Inc
Publication of CN110536746A publication Critical patent/CN110536746A/zh
Application granted granted Critical
Publication of CN110536746B publication Critical patent/CN110536746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

提供了一种制备可见光光催化剂的方法,所述方法包括用铁来掺杂二氧化钛纳米晶体以提供铁掺杂的纳米晶体,用酸来洗涤所述铁掺杂的纳米晶体,以产生酸洗的铁掺杂的二氧化钛纳米晶体,以及冲洗所述酸洗的铁掺杂的二氧化钛纳米晶体以去除残留的所述酸,从而提供可见光光催化剂。还提供了所述光催化剂,以及在修复中使用所述光催化剂的方法。

Description

铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途
相关申请的交叉引用
本申请要求于2016年10月4日提交的题为“铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途(IRON DOPED TITANIUM DIOXIDE NANOCRYSTALS AND THEIR USE ASPHOTOCATALYSTS)”的美国临时专利申请序列号62404006的权益,其内容通过引用并入本文。
技术领域
本技术涉及低氧化铁、铁掺杂的二氧化钛纳米晶体作为光催化剂。更具体地,本技术是酸洗的铁掺杂的氧化钛可见光光催化剂。
背景技术
近几十年来,锐钛矿二氧化钛(TiO2)由于其低成本、高化学稳定性和优异的电荷传输能力而在诸如水净化、水裂解和太阳能电池的光催化应用中得到广泛研究。然而,由于其大的带隙能量(≈3.2eV),通过可见光其表现出差的光催化活性,需要UV光激活。已经表明,用过渡金属离子掺杂TiO2可以改善其在可见光辐照下的光催化活性。人们认为Ti的3d轨道与过渡金属的d轨道的相互作用引入了可导致带隙能量减小的带内间隙状态(intra-band gap state),其导致光子吸收的红移(较长波长)。此外,由于电荷载流子的有效分离,金属掺杂剂可抑制电子/空穴的复合,从而增强光催化活性。光生电子与空穴的快速复合可降低TiO2的光催化活性。使用金属掺杂剂,可以捕获电子和/或空穴,导致电荷载流子的寿命延长,从而增加其到达催化剂表面以引发光催化反应的时间。据报道,在过渡金属中,Fe3+可以通过捕获光生电子和空穴来最好地抑制电子/空穴复合。由于Fe3+/Fe4+的能级高于TiO2的价带能量且Fe3+/Fe2+的能级低于TiO2的导带能量,Fe3+可与空穴或电子反应形成Fe4+或Fe2+阱(trap),从而减少电荷载流子的复合。另一方面,基于与获得或失去电子有关的晶体场理论,Fe2+和Fe4+不如Fe3+稳定,导致其最终回到Fe3+状态,这将释放电子和空穴以便其迁移到催化剂表面以引发光催化反应。
先前的报道使用XPS和原子吸收光谱表明,Fe3+的表面浓度显著高于体相浓度(bulk concentration)(Bajnóczi,
Figure GDA0002424156870000026
G.;Balázs,N.;Mogyorósi,K.;Srankó,D.F.;Pap,Z.;Ambrus,Z.;Canton,S.E.;Norén,K.;Kuzmann,E.;Vértes,A.;Homonnay,Z.;Oszkó,A.;Pálinkó,I.;Sipos,P.,The influence of the local structure of Fe(III)on thephotocatalytic activity of doped TiO2 photo-catalysts—An EXAFS,XPS and
Figure GDA0002424156870000025
spectroscopic study.Applied Catalysis B:Environmental 2011,103,232-239)。
Fe3+的作用仍有争议;Serpone等人(Spectroscopic,Photoconductivity,andPhotocatalytic Studies of TiO2 Colloids:Naked and with the Lattice Doped withCr3+,Fe3+,and V5+ Cations.Langmuir 1994,10,643-652)报道了,铁可增加电子与空穴的复合,这对光催化活性是有害的,其中他们描述了通过增加掺杂剂的量,光催化活性降低。另一方面,Choi等人(The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier RecombinationDynamics.The Journal of Physical Chemistry 1994,98,13669-13679)和Zhou等人(Zhou,M.;Yu,J.;Cheng,B.;Yu,H.,Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photo-catalysts.MaterialsChemistry and Physics 2005,93,159-163)建议,添加铁离子作为掺杂剂可减少电子/空穴复合并提高光催化活性。他们得出结论,Fe3+可以捕获电子和空穴两者,这有利于光催化效率。然而,基于先前的研究,在可见光照射下,Fe掺杂的TiO2的降解效率低(在5小时和3小时的反应时间内,甲基橙的降解率分别为7.8%和5.5%)(Kerkez-Kuyumcu,
Figure GDA0002424156870000021
Kibar,E.;
Figure GDA0002424156870000022
K.;Gedik,F.;Akin,A.N.;
Figure GDA0002424156870000023
Figure GDA0002424156870000024
A comparative study forremoval of different dyes over M/TiO2(M=Cu,Ni,Co,Fe,Mn and Cr)photo-catalysts under visible light irradiation.Journal of Photochemistry andPhotobiology A:Chemistry 2015,311,176-185)。因此,用铁掺杂可能会或可能不会使紫外线被可见光替代,并且如果可以被可见光取代,则分解效率极低。
所需要的是一种提高Fe掺杂的二氧化钛的光催化活性的方法。如果所述方法成本低且易于实施将是有利的。如果所述方法提供了显著更好的产品将是有利的。如果将所述产品用于使用可见光来清洁废水和其它污染的水性溶液的方法中,将是更有利的。更具体地,如果所述产品和使用其的方法可用于处理废水中的氨将是有利的,因为没有有效的方法来处理这种氨。如果产品和使用其的方法可用于处理废水中的有机物也将是有利的。废水中的有机物现在通过易受感染、温度、pH等影响的生物方法来进行处理,并且易出现氨中毒,这需要用淡水或海水稀释废水,其进一步影响我们的环境。如果所述产品和方法能够控制、抑制或消除微生物生长,将是更有利的。
发明内容
本技术提供了一种用于提高Fe掺杂的二氧化钛的光催化活性的易于实施的、低成本的方法。本技术还提供了一种具有显著更高的光催化活性的Fe掺杂的二氧化钛。本技术还提供了一种使用可见光来处理废水中的有机废物的产品。本技术还提供了一种可用于控制、抑制或消除微生物生长的产品。
在一个实施方案中,提供了一种合成可见光光催化剂的方法,所述方法包括用铁来掺杂二氧化钛纳米晶体以提供铁掺杂的二氧化钛纳米晶体,用pH不高于约4的酸来洗涤所述铁掺杂的二氧化钛纳米晶体,以产生酸洗的铁掺杂的二氧化钛纳米晶体以及冲洗所述酸洗的铁掺杂的二氧化钛纳米晶体以去除残留的所述酸,从而提供所述可见光光催化剂。
在所述方法中,所述冲洗可以是水冲洗。
在所述方法中,所述酸的pH可以为约2.5至约3.5。
在所述方法中,所述酸可以是盐酸。
在另一个实施方案中,提供了一种制备低氧化铁可见光光催化剂的方法,所述方法包括用铁来掺杂二氧化钛纳米晶体以提供铁掺杂的纳米晶体,用pH不高于约4的酸来洗涤所述铁掺杂的纳米晶体以减少或去除至少一种氧化铁沉积物,从而产生酸洗的铁掺杂的二氧化钛纳米晶体,以及冲洗所述酸洗的铁掺杂的二氧化钛纳米晶体以去除残留的所述酸,从而提供所述低氧化铁可见光光催化剂。
在所述方法中,可以在约2.5至约3.5的pH下进行二氧化钛的铁掺杂。
在所述方法中,可以在约2.5至约3.5的pH下进行所述酸洗。
在所述方法中,所述酸可以是盐酸。
在另一个实施方案中,提供了一种用于修复水性溶液的可见光光催化剂,所述水性溶液包含有机物质、至少一种微生物、至少一种有机化合物和至少一种有机金属化合物中的一种或多种,所述光催化剂包含酸洗的铁掺杂的二氧化钛纳米晶体,其氧化铁含量低。
在另一个实施方案中,提供了一种修复水性溶液的方法,所述水性溶液包含至少一种有机化合物、有机物质、微生物污染物或至少一种有机金属化合物中的一种或多种,所述方法包括:将所述水性溶液暴露于光催化剂,所述光催化剂包含酸洗的铁掺杂的二氧化钛,其具有降低的氧化铁含量;以及使所述光催化剂暴露于光,从而修复所述水性溶液并产生至少一种修复产物。
在所述方法中,所述光可以是可见光。
在所述方法中,暴露可包括将所述光催化剂混合在所述水性溶液中。
在所述方法中,暴露可包括使所述水性溶液流过固定的所述光催化剂。
在所述方法中,暴露可包括使所述水性溶液流过其中固定有所述光催化剂的管。
在所述方法中,暴露可包括将水性溶液保持在其上固定有所述光催化剂的容纳结构(containment structure)中。
在所述方法中,所述水性溶液可以包含所述微生物污染物,并且修复可以减少或消除微生物生长。
在所述方法中,所述微生物污染物可以是革兰氏阳性或革兰氏阴性细菌污染物。
在又一个实施方案中,提供了一种修复水性溶液的方法,所述水性溶液包含氨,所述方法包括:将所述水性溶液暴露于可见光光催化剂,所述光催化剂包含基本上不含氧化铁的、铁掺杂的二氧化钛;以及将所述光催化剂暴露于光,从而修复所述水性溶液。
在所述方法中,所述光可以是可见光。
在所述方法中,所述水性溶液还可包含至少一种有机化合物。
在另一个实施方案中,提供了一种用于修复水性溶液的结合物,所述结合物包括:可见光光催化剂,所述光催化剂包含酸洗的铁掺杂的二氧化钛,其具有降低的氧化铁含量;以及基底,所述光催化剂附着在所述基底上。
在所述结合物中,所述基底可以是玻璃。
在所述结合物中,所述玻璃可以是玻璃管。
在所述结合物中,所述基底可以是铝。
在所述结合物中,所述铝可以至少部分地涂覆废水管的内表面。
所述结合物还可包括定位成辐照所述光催化剂的光源。
在所述结合物中,所述基底可以是容纳结构的内表面。
所述结合物还可包括涂料。
附图说明
图1A至图1D示出了透射电子显微镜(TEM)图像。图1A是未洗涤的Fe0.5-TiO2颗粒的TEM图像;图1B是酸洗的Fe0.5-TiO2颗粒的TEM图像;图1C是未洗涤的Fe10-TiO2颗粒的高分辨率(HR)-TEM;图1D是酸洗的Fe10-TiO2颗粒的HR-TEM。图1C中的区域周围的虚线轮廓描绘了在纳米颗粒的表面上形成的无定形沉积物。
图2示出了酸洗(w)和未洗涤(unw)的样品的X射线衍射(XRD)图,所述样品为在400℃下煅烧3小时的未掺杂的TiO2和掺杂有不同铁含量(0.25%摩尔比、0.5%摩尔比和10%摩尔比)的TiO2。从上到下,Fe10-TiO2 w、Fe10-TiO2 uw、Fe0.25-TiO2 w、Fe0.25-TiO2 uw、Fe0.5-TiO2 w和Fe0.5-TiO2 uw。
图3示出了未掺杂的TiO2和具有不同铁含量(0.25%摩尔比、0.5%摩尔比和10%摩尔比)的Fe掺杂的TiO2的UV-可见漫反射光谱。
图4A至图4G示出了X射线光电子能谱(XPS)光谱。图4A是未洗涤的Fe10掺杂的TiO2的XPS全谱(survey spectra);图4B是酸洗的Fe10掺杂的TiO2的XPS全谱;图4C是未洗涤的Fe5-TiO2中Fe 2p的高分辨率XPS光谱;图4D是酸洗的Fe5-TiO2中Fe 2p的高分辨率XPS光谱;图4E是未洗涤的Fe5-TiO2中O1s的高分辨率XPS光谱;图4F是酸洗的Fe5-TiO2中O1s的高分辨率XPS光谱;图4G是未掺杂的TiO2以及未洗涤的和酸洗的Fe5-TiO2的高分辨率XPS光谱。
图5示出了二氧化钛和酸洗的具有不同掺杂剂比(0.5摩尔%、5.0摩尔%)的铁掺杂的二氧化钛的Tauc图。
图6示出了具有不同掺杂剂比(0.25摩尔%、0.5摩尔%和1摩尔%)的掺杂的TiO2的光催化活性,其在自然pH和酸性pH(pH=3)下合成,未经洗涤和在HCl溶液中洗涤,并且在1小时的反应时间内在可见光下照射。插图描述了洗涤之前和之后的未掺杂的样品的性能。两者均用UV光照射来照射1小时的反应时间。还示出了仅通过UV光和仅通过可见光的降解。
图7示出了酸洗的铁掺杂的二氧化钛对稳定的酚类的降解效率的浓度依赖性。
图8示出了在荧光光源和紫色光源下在酸洗的铁掺杂的二氧化钛纳米晶体中培养的大肠杆菌(E.coli)的存活率。
图9示出了在100,000ppm的酸洗的铁掺杂的二氧化钛纳米晶体中培养4小时的大肠杆菌的菌落形成单位的数量。
具体实施方式
除非另有明确规定,否则以下解释规则适用于本说明书(书面说明书、权利要求书和附图):(a)本文所使用的所有词语均应根据情况需要解释为具有这样的词性或数量(单数或复数)的词语;(b)除非上下文另有明确规定,否则说明书和所附权利要求中所使用的指代物前不含有数量词可以旨在包括了多个指代物的情况;(c)应用于所述范围或值的先行术语“约”表示在本领域已知或预期的测量方法的范围或值的偏差内的近似值;(d)除非另有说明,否则词语“此处(herein)”、“由此(hereby)”、“于此(hereof)”、“对此(hereto)”、“在此之前(hereinbefore)”和“在此之后(hereinafter)”以及具有类似含义的词语是指本说明书的全部内容,而不是指任何特定的段落、权利要求或其它细分部分;(e)描述性标题仅为方便起见,并不得控制或影响说明书任何部分的含义或结构;以及(f)“或”和“任何”不是排他性的并且“包括(include)”和“包括(including)”不是限制性的。此外,除非另有说明,否则术语“包含(comprising)”、“具有(having)”、“包括(including)”和“含有(containing)”应解释为开放式术语(即,意指“包括但不限于”)。
在提供描述性支持所必需的程度上,所附权利要求的主题和/或文本通过引用以其全部内容并入本文。
除非本文另有说明,否则本文中对数值范围的描述仅旨在用作单独提及的落入所述范围内的每个单独值的速记方法,并且每个单独值并入本说明书中,如同其在本文中单独引用一样。在提供值的特定范围的情况下,应当理解,除非上下文另有明确指示,否则在该范围的上限与下限之间的精确到下限单位的十分之一的每个中间值以及在该规定范围中的任何其它规定值或中间值都包括在其中。还包括所有较小的子范围。这些较小范围的上限和下限也包括在其中,但须符合所规定的范围内任何特别排除的限制。
除非则另有定义,否本文所用的所有技术和科学术语具有与相关领域普通技术人员通常理解的相同的含义。尽管也可以使用与本文描述的那些类似或等同的任何方法和材料,但现在描述可接受的方法和材料。
定义:
层—在本技术的上下文中,层是部分涂层、表面上的沉积物、完整涂层或多个层。为了清楚起见,在下面的表面暴露的地方可能会出现间隙。
基本上—在本技术的上下文中,基本上,且更具体地,基本上不含氧化铁,意指去除大量的氧化铁,留下使用本技术的实验方法测量可忽略不计的量。
详细描述:
实验方法
使用异丙醇钛(TTIP)作为前体和硝酸铁(Fe(NO3)3.9H2O)作为铁源,通过溶胶-凝胶法制备催化剂。首先,将所需量的硝酸铁(0.25摩尔%、0.5摩尔%、1摩尔%、5摩尔%和10摩尔%)溶解于水中,然后将上述溶液添加到30mL无水乙醇中并搅拌10分钟。使用HNO3(也可以使用其它酸)将上述溶液的酸度调节至约pH=3(约pH2.5至约pH3.5),以产生更好的Fe掺杂的TiO2,即将Fe掺入到TiO2纳米晶体中。其次,将TTIP逐滴加入到上述溶液中。然后按照Ti:H2O的比率为1:4将去离子水添加到上述混合物中。将溶液搅拌2小时,并且然后在80℃下干燥2小时。
然后用去离子水将粉末洗涤三次。接着,将粉末在400℃下煅烧3小时。为了比较酸洗对煅烧粉末的光催化性能的影响,将其一部分在HCl溶液中搅拌(酸洗),然后用去离子水洗涤三次。酸洗在约pH2.5至约pH3.5,或约pH4的溶液中进行,优选使用一元酸,诸如,例如但不限于乙酸(CH3CO2H或HOAc)、盐酸(HCl)、氢碘酸(HI)、氢溴酸(HBr)、高氯酸(HClO4)、硝酸(HNO3)或硫酸(H2SO4),其中HCl是优选的。
实验结果
图1A至图1D示出了在pH3下合成的Fe0.5-TiO2的透射电子显微镜(TEM)图像。合成可以在约2.5至约3.5的pH下进行。如从颗粒的XRD图案获得的,从具有均匀尺寸分布的TEM图像可以看出10nm的平均粒径。在未洗涤的Fe0.5-TiO2颗粒周围可以观察到无定形沉积物(图1A),其在酸洗之后(图1B)大部分从颗粒表面去除。该无定形沉积物在高分辨率(HR)-TEM显微照片中更明显(图1C和1D)。对于大多数颗粒,HR-TEM示出了在未洗涤的颗粒周围的无定形沉积物(由虚线标明)(图1C),而对于酸洗样品(图1D),无定形沉积物大部分被去除并且晶体平面延伸到颗粒边缘的末端。应该提到的是,对于一些酸洗样品也观察到无定形相,但与未洗涤的样品相比,其可以忽略不计。使用电子能量损失能谱(EELS)映射(mapping)研究(Fe10-TiO2)颗粒的组成,其示出了颗粒表面上的薄沉积物由Fe和O组成。
图2示出了未掺杂的TiO2和Fe掺杂的TiO2(具有不同的铁含量)的X射线衍射(XRD)图案。在35.962θ度处的峰对应于主锐钛矿峰。在任何光谱中都没有观察到α-Fe2O3的峰,表明氧化铁形成为无定形相,或者其可能作为非常薄的沉积物存在于催化剂颗粒的表面上,不足以被X射线衍射。应用谢乐(Scherrer)公式,由XRD峰的增宽确定颗粒的平均晶粒尺寸(Rao,Y.;Antalek,B.;Minter,J.;Mourey,T.;Blanton,T.;Slater,G.;Slater,L;Fornalik,J.,Organic Solvent-Dispersed TiO2NanoparticleCharacterization.Langmuir 2009,25,12713-12720)。平均晶粒尺寸从未掺杂的样品的13.31nm减小到Fe10-TiO2样品的5.09nm。发现TiO2颗粒的结晶度随着样品中铁含量的增加而降低。用酸性溶液洗涤样品不会改变结晶度,并且也不会改变颗粒的粒径。
在图3中示出使用UV和可见漫反射光谱的未掺杂和掺杂的TiO2的光学性质。未掺杂的样品在可见光波长内没有显示出任何吸收,而Fe掺杂的TiO2显著地增加了其可见光吸收。具有最高铁含量的催化剂在可见区域内显示出最高的光吸收。这归因于Ti的3d轨道与铁的d轨道的相互作用,其引入带内间隙状态,从而导致光吸收的红移。随着铁的比率增加,吸收边缘在400nm至650nm显著增加。带隙能量从未掺杂的TiO2的3.2eV降低到Fe10-TiO2的2.6eV。
如图4A至图4G所示,X射线光电子能谱(XPS)用于分析颗粒的化学组成。X射线光电子能谱(XPS)对表面的组成非常敏感。XPS用于分析颗粒的化学组成。从Fe10-TiO2的全扫描(如图4A和图4B所示)可以看出,在用HCl洗涤催化剂随后在用去离子水洗涤样品之后,表面上没有氯残留的痕迹。在用HCl溶液进行酸洗之前和之后,全扫描清楚地示出,在用HCl溶液洗涤催化剂颗粒之后,表面铁的原子百分比显著降低,在图4A和图4B中通过圆圈表示。来自Fe10-TiO2、Fe5-TiO2和Fe1-TiO2的全扫描示出,铁与钛的原子比为8.5%、5%和1.4%,这与用于合成该催化剂的掺杂剂的摩尔比非常接近。酸洗之后,所有样品的铁的原子百分比降低至一半。掺杂的催化剂的晶格中的掺杂铁不受酸洗影响;因此,可以得出结论,铁含量的降低与合成步骤期间在催化剂表面上形成的氧化铁层有关。在将颗粒搅拌并在HCl酸性溶液中洗涤后,该层溶解,这证实了从EELS映射光谱获得的结果。图4C和图4D描绘了未洗涤的样品(图4C)和洗涤的样品(图4D)两者的Fe5-TiO2的Fe 2p的光谱。未洗涤的样品的Fe 2p3/2峰位于709.26eV、710.64eV、711.8eV、713.71eV;同时,Fe 2pl/2的峰出现在725.08eV附近。考虑到结合能的常见变化,这些峰与之前研究(Grosvenor,A.P.;Kobe,B.A.;Biesinger,M.C;Mclntyre,N.S.,Investigation of multiplet splitting of Fe 2p XPSspectra and bonding in iron compounds.Surface and Interface Analysis 2004,36,1564-1574;Wang,G.;Ling,Y.;Wheeler,D.A.;George,K.E.N.;Horsley,K.;Heske,C;Zhang,J.Z.;Li,Y.,Facile Synthesis of Highly Photoactiveα-Fe2O3-Based Filmsfor Water Oxidation.Nano Letters 2011,11,3503-3509.)中观察到的Fe3O4的峰非常一致。掺杂的和未掺杂的样品的O1s信号(图4E和4F)显示530.2eV处的峰,其归因于Fe2O3(530.0Moulder,J.F.S.,W.F.;Sobol,P.E.;Bomben,K.D.Handbook of X-rayPhotoelectron Spectrosc°py.In Physical Electronics Division,Perkin-ElmerCorporation:Eden rairie,MN,1992;Fujii,T.;de Groot,F.M.F.;Sawatzky,G.A.;Voogt,F.C;Hibma,T.;Okada,K.,\textit{In situ}XPS analysis of various iron oxidefilms grown by${\mathrm{NO}}_{2}$-assisted molecular-beam epitaxy.PhysicalReview B 1999,59,3195-3202)以及529.9eV(Mills,P.;Sullivan,J.L.,A study of thecore level electrons in iron and its three oxides by means of X-rayphotoelectron spectroscopy.Journal of Physics D:Applied Physics1983,16,723.)和Fe3O4(530.3eV(Mills,P.;Sullivan,J.L,A study of the core level electrons iniron and its three oxides by means of X-ray photoelectronspectroscopy.Journal of Physics D:Applied Physics 1983,16,723.))。此外,可以观察到O1s在532.1eV处的另一个峰,据报道,其可以归属于表面H2O的氧。图4G说明了Fe5-TiO2和未掺杂的TiO2的Ti 2p的高分辨率扫描。在458.7eV和464.3eV附近可以看到两个峰,其分别归因于Ti 2p3/2和Ti 2pl/2。
图5示出了二氧化钛和具有不同掺杂剂比(0.5摩尔%、5.0摩尔%)的酸洗的铁掺杂的二氧化钛的Tauc图。Tauc图给出了数据的拟合线与水平轴相交的点处的带隙。酸洗的铁掺杂的二氧化钛的Fe掺杂减小了带隙。减小的带隙可以吸收更长波长的光。使用铁代替其它金属是因为铁由于具有三种电荷状态Fe+3、Fe+2和Fe+4而分离了光子诱导的电荷载流子。
图6示出了使用100mL体积的20mg/L甲基橙溶液作为代表性污染物来测量的催化剂的光催化活性。研究了铁掺杂量、合成pH和酸洗作为影响参数对光催化活性的影响。为了研究合成pH的影响,在天然和酸性pH(pH=3)下均合成了Fe0.5-TiO2样品。与在天然pH下制备的催化剂颗粒的18%的去除效率相比,在酸性条件下合成的催化剂显示出24%的更高的甲基橙去除效率。用HCl溶液洗涤Fe0.5-TiO2可显著提高去除效率,从24%提高到98%。根据EELS成像谱和XPS光谱获得的结果,在HCl溶液中洗涤样品从催化剂的表面去除了氧化铁沉积物。不受理论限制,这可能是因为表面上存在更多可用的反应性位点,导致光催化活性的显著增强。而且,如前所述,氧化铁沉积物可能充当光生电子和空穴的复合中心,其降低了催化剂颗粒的性能;因此,去除该沉积物增加了电荷载流子的寿命,其有利于降解过程。此外,从插图中可以看出,用酸性溶液洗涤未掺杂的催化剂并没有提高UV光照射下的去除效率,表明洗涤样品的光催化活性的提高是由于从表面去除了氧化铁沉积物。未掺杂的TiO2在可见光照射下(300W氙灯,以400nm截止滤波片用于确保没有UV光)的光催化性能高于未洗涤的铁含量为1%摩尔比、5%摩尔比和10%摩尔比的样品。不受理论限制,这可能是由于高浓度的掺杂剂污染了催化剂表面并增加了电子/空穴复合。因此,这些样品的去除效率甚至低于未掺杂的样品。然而,当样品用酸性溶液洗涤时,与未掺杂的TiO2相比,去除效率显示出显著的提高。在60分钟内100%降解。
实施例1
将酸洗的铁掺杂的二氧化钛用于与水反应以产生水离子自由基。然后使这些水离子自由基与有机物反应,以最终产生CO2气体,并与氨反应产生NO2和NO3硝酸盐。去除硝酸盐以生产肥料从而生产我们的食物。将CO2捕获并在高温(约600度)下与催化剂反应以产生甲烷,从甲烷能产生所有其它有机分子,从而实现另一个完整的循环。优选的酸是HCl。
实施例2
将酸洗的Fe掺杂的二氧化钛用于处理稳定的酚类。如图7所示,浓度为3000mg/L的酸洗的铁掺杂的二氧化钛在90分钟内降解了约80%的稳定的酚。
实施例3
将酸洗的Fe掺杂的二氧化钛用于清洁城市废水。废水一级出水中的总有机物含量(TOC)降低了50%。二级出水中的TOC降低了100%。
实施例4
将酸洗的Fe掺杂的二氧化钛用于清洁城市废水。废水二级出水中的氨含量降低了73%。
实施例5
酸洗的铁掺杂的二氧化钛纳米晶体在其合成过程中附着在玻璃表面上。玻璃容易地将可见光透射给催化剂。净化玻璃中被碳基化合物和氨污染的水。
实施例6
酸洗的铁掺杂的二氧化钛纳米晶体有效减少了微生物生长。如图8和图9所示,显著抑制了革兰氏阴性细菌大肠杆菌的生长。使用紫光和来自荧光光源的环境光两者。对于紫光,生存百分比从在100ppm酸洗的铁掺杂的二氧化钛下的约89%降至在100,000ppm酸洗的铁掺杂的二氧化钛下的约18%。可见光的结果更好,示出存活百分比为在100ppm酸洗的铁掺杂的二氧化钛下的约40%至在100,000ppm酸洗的铁掺杂的二氧化钛下的约9%。500,000ppm酸洗的铁掺杂的二氧化钛,在紫色和环境光(白光)下在单独的实验中均导致约10%的存活率。如图9所示,生长减少的处理时间相对较短,其中每mL菌落形成单位的数量从零时的700,000个降至4小时时紫光下的约90,000个和白光下的约40,000个。对于白光,这表示减少了94%。
实施例7
酸洗的铁掺杂的二氧化钛纳米晶体有效地减少了革兰氏阳性细菌表皮葡萄球菌(Staphylococcus epidermidis)的生长。观察到当暴露于1000ppm铁掺杂的二氧化钛纳米晶体24小时时,革兰氏阳性(表皮葡萄球菌(Staph epi))细胞的数量比革兰氏阴性(大肠杆菌)细胞的数量持续地减少更多。估计减少量是大肠杆菌的约100倍。
实施例8
酸洗的铁掺杂的二氧化钛将用于处理被多氯联苯(PCB)、阻燃剂、雌激素、睾酮和布洛芬中的一种或多种污染的水。将产生二氧化碳。
实施例9
将酸洗的铁掺杂的钛纳米晶体撒在墙壁和其它表面上。这产生了不可见的涂层或层。每20cm×20cm面积使用约1克。用水洗涤表面,催化剂与水和有机污染物反应并清洁表面。
实施例10
将酸洗的铁掺杂的二氧化钛以约5%至约20%的浓度添加到壁球场涂料中。壁球在墙壁上留下光线无法透过,或穿透不良的深色的磨损痕迹。发明人发现当涂料还包含约10%至约20%的二氧化钛时,酸洗的铁掺杂的二氧化钛清洁磨损痕迹的能力大大增加。不受理论限制,假设二氧化钛的折射率允许环境光在涂料内反射,从而将光反射到磨损痕迹下面的纳米晶体上。用肥皂和水,或湿布很容易去除磨损痕迹,因为在运动员完成比赛后,球场内的湿度很高。
实施例11
在光反应器的玻璃管上制备酸洗的铁掺杂的二氧化钛纳米晶体。将光反应器设计为比使用UV光反应器可清洁的流出液更大量的流出液(UV光必须靠近流出液,因为其不会渗入流出液很远,尤其是如果流出液中有颗粒或固体,因此管很小(直径1mm),或者如果流出液流过紫外光源,则流出液的流很浅(1mm深))。管的直径为约1cm。将可见光照在管上。如实施例3和4所示,含有有机物质和有机化合物的流出液在其流过光反应器时被清洁。
实施例12
在光反应器的玻璃基底上制备酸洗的铁掺杂的二氧化钛纳米晶体。将光反应器设计为使流出液以高达约1cm的深度流过玻璃基底。将可见光照射在流出液上。含有有机物质和有机化合物的流出液在其流过玻璃基底时被清洁。
实施例13
经酸洗的铁掺杂的二氧化钛纳米晶体将与水溶液中的至少一种有机金属化合物混合。金属将与有机部分解离并作为金属氧化物回收。
实施例14
在光反应器的玻璃基底上制备酸洗的铁掺杂的二氧化钛纳米晶体。纳米晶体在玻璃上生长并保持附着在玻璃上。将可见光照射在含有至少一种有机金属化合物的流出液上。流出液在其流过玻璃基底时被清洁。流出液的深度可高达约1cm。
实施例15
使用粘合剂将经酸洗的铁掺杂的二氧化钛纳米晶体固定在光反应器的聚丙烯腈基底上。将流出液暴露于经酸洗的铁掺杂的二氧化钛纳米晶体,并且流出液被清洁。
实施例16
使用粘合剂将酸洗的铁掺杂的二氧化钛纳米晶体固定在铝上。铝反射活化纳米颗粒的光的波长。纳米颗粒将被固定在铝上,所述铝涂覆废水排水管道内部的至少一部分。在管道内部提供光源,该光源优选为发光二极管(LED)光源。当废水通过管道时,该废水将被清洁。这将应用于石油工业,更具体地应用于从焦油砂中提取油的工厂中。铝将冷却热的废水,并且有机污染物被去除。
实施例17
使用粘合剂将酸洗的铁掺杂的二氧化钛纳米晶体固定在铝上。纳米颗粒将被固定在铝上,所述铝涂覆废水储罐或流出液处理池或者流出液或废水的其它容纳结构的内部的至少一部分。根据需要,在容纳结构内部提供光源。该光源优选为发光二极管(LED)光源。当将废水保持在容纳结构中时,该废水将被清洁。
实施例18
使用粘合剂将酸洗的铁掺杂的二氧化钛纳米晶体固定在金上。当光照射在纳米晶体和金上时,金起到表面等离子体的作用,增加了到达纳米晶体的光量。
结论
在这项工作中,在Fe掺杂的二氧化钛催化剂的表面上显示出薄的氧化铁沉积物。该沉积物在其合成过程中形成,并通过在HCl溶剂中洗涤颗粒来去除。去除该污染沉积物显著地将降解效率从23%提高到98%。酸洗未掺杂的TiO2催化剂不影响其光催化活性,这证实了实质上增强的原因是去除了氧化铁沉积物。
虽然已经详细描述了本技术,但是认为这样的描述是示例性的而不是限制性的,并且应当理解,其是本技术的当前优选实施方案,因此代表了本技术广泛考虑的主题,并且期望保护在本公开的精神内的所有变化和修改。

Claims (15)

1.一种合成可见光光催化剂的方法,所述方法包括使用异丙醇钛作为前体和硝酸铁作为铁源通过溶胶-凝胶法制备铁掺杂的二氧化钛纳米晶体,干燥所述铁掺杂的二氧化钛纳米晶体以提供干燥的铁掺杂的二氧化钛纳米晶体粉末,煅烧所述干燥的铁掺杂的二氧化钛纳米晶体粉末,用pH不高于4的酸性溶液来洗涤所述煅烧的铁掺杂的二氧化钛纳米晶体粉末,以产生酸洗的铁掺杂的二氧化钛纳米晶体,冲洗所述酸洗的铁掺杂的二氧化钛纳米晶体以去除残留的所述酸性溶液,以及干燥所述酸洗的铁掺杂的二氧化钛纳米晶体从而提供所述可见光光催化剂。
2.根据权利要求1所述的方法,其中,所述冲洗是去离子水冲洗。
3.根据权利要求1或2所述的方法,其中,所述酸性溶液的pH为2.5至3.5。
4.根据权利要求1或2所述的方法,其中,所述酸性溶液是盐酸溶液。
5.根据权利要求3所述的方法,其中,所述酸性溶液是盐酸溶液。
6.根据权利要求1或2所述的方法,其中将所述干燥的铁掺杂的二氧化钛纳米晶体粉末在400℃煅烧3小时。
7.一种用于修复包含有机物质、至少一种微生物、至少一种有机化合物和至少一种有机金属化合物中的一种或多种的水性溶液的可见光光催化剂,所述可见光光催化剂通过权利要求1所述的方法合成。
8.一种修复水性溶液的方法,所述水性溶液包含至少一种有机化合物、有机物质、微生物污染物或至少一种有机金属化合物中的一种或多种,所述方法包括:将所述水性溶液暴露于通过权利要求1至6中任一项所述的方法合成的所述可见光光催化剂;以及使所述光催化剂暴露于光,从而修复所述水性溶液并产生至少一种修复产物。
9.根据权利要求8所述的方法,其中,所述光是可见光。
10.根据权利要求9所述的方法,其中,所述暴露包括将所述可见光光催化剂混合在所述水性溶液中。
11.根据权利要求10所述的方法,其中,所述暴露包括使所述水性溶液流过固定的所述可见光光催化剂。
12.根据权利要求11所述的方法,其中,所述暴露包括使所述水性溶液流过其中固定有所述可见光光催化剂的管。
13.根据权利要求12所述的方法,其中,所述暴露包括将所述水性溶液保持在其上固定有所述可见光光催化剂的容纳结构中。
14.根据权利要求12所述的方法,其中,所述水性溶液包含所述微生物污染物,并且修复减少了或消除了微生物生长。
15.根据权利要求14所述的方法,其中,所述微生物污染物是革兰氏阳性细菌污染物或革兰氏阴性细菌污染物。
CN201780074960.4A 2016-10-04 2017-09-29 铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途 Active CN110536746B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662404006P 2016-10-04 2016-10-04
US62/404,006 2016-10-04
PCT/CA2017/000217 WO2018064747A1 (en) 2016-10-04 2017-09-29 Iron doped titanium dioxide nanocrystals and their use as photocatalysts

Publications (2)

Publication Number Publication Date
CN110536746A CN110536746A (zh) 2019-12-03
CN110536746B true CN110536746B (zh) 2023-02-21

Family

ID=61830738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780074960.4A Active CN110536746B (zh) 2016-10-04 2017-09-29 铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途

Country Status (6)

Country Link
US (1) US10413888B2 (zh)
EP (1) EP3523022A4 (zh)
JP (1) JP6945623B2 (zh)
CN (1) CN110536746B (zh)
CA (1) CA3039505C (zh)
WO (1) WO2018064747A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3033255A1 (en) * 2019-02-04 2020-08-04 Rodney HERRING Photoreactor and formulations for environmental remediation and methods of use thereof
DK180333B1 (en) * 2019-03-19 2020-12-04 Act Global R&D Aps A transparent photocatalytic coating for in-situ generation of free radicals combating microbes, odors and organic compounds in visible light
CA3076157A1 (en) * 2020-03-16 2021-09-16 Rodney HERRING Mask for protecting a user from airborne pathogens
CA3084778A1 (en) * 2020-06-24 2021-12-24 Rodney HERRING Electrocatalytic reactor and remediation of wastewater using same
CN111889145B (zh) * 2020-07-20 2022-08-30 齐鲁工业大学 一种铁掺杂钛氧簇材料及其合成方法与应用
CN114162856B (zh) * 2021-12-07 2023-12-05 贵州民族大学 一种高温高压合成铁掺杂氧化钛的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461735A (zh) * 2002-05-30 2003-12-17 中国科学院广州能源研究所 家庭式光催化饮用水净化装置
CN1538002A (zh) * 2003-04-17 2004-10-20 中国科学院化学研究所 含有光催化杀菌剂的织物及其制备方法
CN101219371A (zh) * 2007-01-08 2008-07-16 北京化工大学 光催化氧化处理高浓度有机工业废水
CN101326126A (zh) * 2005-10-11 2008-12-17 有限会社K2R 光催化反应水生成装置
CN101537355A (zh) * 2009-02-27 2009-09-23 四川农业大学 活性炭纤维负载掺铁二氧化钛光催化剂及其制备方法
JP2010094101A (ja) * 2008-10-20 2010-04-30 Green Com:Kk 簡易型水耕装置及び水耕栽培方法
CN104445511A (zh) * 2014-12-11 2015-03-25 厦门市宇洲环保科技有限公司 一种处理废水中氨氮的组合装置
WO2016152487A1 (ja) * 2015-03-23 2016-09-29 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113015B (fi) * 2002-04-02 2004-02-27 Kemira Pigments Oy Titaanidioksidia sisältävä fotokatalyytti, sen valmistusmenetelmä sekä sen käyttö
JP3885825B2 (ja) * 2003-08-08 2007-02-28 株式会社豊田中央研究所 可視光活性を有する光触媒体及びその製造方法
JP5055271B2 (ja) * 2006-04-28 2012-10-24 石原産業株式会社 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
JP2008150232A (ja) * 2006-12-15 2008-07-03 Titan Kogyo Kk 光触媒酸化チタン原料用メタチタン酸スラリー及びその製造方法
JP5750319B2 (ja) * 2011-06-30 2015-07-22 株式会社ダイセル ブルッカイト型酸化チタンの製造方法
TWI651269B (zh) * 2013-09-23 2019-02-21 歐洲泰奧色得有限公司 二氧化鈦粒子及其製備方法
CN105709687A (zh) 2016-01-21 2016-06-29 广西大学 一种应用于废水处理的纳米二氧化钛复合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461735A (zh) * 2002-05-30 2003-12-17 中国科学院广州能源研究所 家庭式光催化饮用水净化装置
CN1538002A (zh) * 2003-04-17 2004-10-20 中国科学院化学研究所 含有光催化杀菌剂的织物及其制备方法
CN101326126A (zh) * 2005-10-11 2008-12-17 有限会社K2R 光催化反应水生成装置
CN101219371A (zh) * 2007-01-08 2008-07-16 北京化工大学 光催化氧化处理高浓度有机工业废水
JP2010094101A (ja) * 2008-10-20 2010-04-30 Green Com:Kk 簡易型水耕装置及び水耕栽培方法
CN101537355A (zh) * 2009-02-27 2009-09-23 四川农业大学 活性炭纤维负载掺铁二氧化钛光催化剂及其制备方法
CN104445511A (zh) * 2014-12-11 2015-03-25 厦门市宇洲环保科技有限公司 一种处理废水中氨氮的组合装置
WO2016152487A1 (ja) * 2015-03-23 2016-09-29 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Photocatalytic degradation of humic acids using substrate-supported Fe3+-doped TiO2 nanotubes under UV/O-3 for water purification;Yuan Rongfang 等;《ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH》;20150714;第22卷(第22期);第17955-17964页 *
Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process;Moradi Vahid 等;《APPLIED SURFACE SCIENCE》;20180101;第427卷;第791-799页 *
Visible Light-Active Nano-Sized Fe-doped TiO2 Photocatalysts and Their Characterization;Wetchakun N. 等;《2008 2nd IEEE International Nanoelectronics Conference》;20080327;第836-841页 *

Also Published As

Publication number Publication date
WO2018064747A1 (en) 2018-04-12
CA3039505C (en) 2023-11-07
JP2019531185A (ja) 2019-10-31
US10413888B2 (en) 2019-09-17
EP3523022A1 (en) 2019-08-14
JP6945623B2 (ja) 2021-10-06
EP3523022A4 (en) 2020-09-30
US20190240644A1 (en) 2019-08-08
CN110536746A (zh) 2019-12-03
CA3039505A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
CN110536746B (zh) 铁掺杂的二氧化钛纳米晶体及其作为光催化剂的用途
Senasu et al. Sunlight-driven photodegradation of oxytetracycline antibiotic by BiVO4 photocatalyst
Ali et al. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light
Baladi et al. Synthesis and characterization of g–C3N4–CoFe2O4–ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic
Jongnavakit et al. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method
Casbeer et al. Synthesis and photocatalytic activity of ferrites under visible light: a review
US9868109B2 (en) Titanate / titania composite nanoparticle
Tiwari et al. Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions
AU2017202483A1 (en) Doped catalytic carbonaceous composite materials and uses thereof
Rakkesh et al. Facile synthesis of ZnO/TiO2 core–shell nanostructures and their photocatalytic activities
Zhang et al. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property
Tiwari et al. Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano-structured Ce3+@ TiO2 thin film catalyst
Jabbar et al. Developing a magnetic bismuth-based quaternary semiconductor boosted by plasmonic action for photocatalytic detoxification of Cr (VI) and norfloxacin antibiotic under simulated solar irradiation: Synergistic work and radical mechanism
Mishra et al. Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials
Janczarek et al. Transparent thin films of Cu-TiO2 with visible light photocatalytic activity
Saroj et al. Photodegradation of Direct Blue‐199 in carpet industry wastewater using iron‐doped TiO2 nanoparticles and regenerated photocatalyst
Li et al. Magnetically separable Fe3O4/mZrO2/Ag nanocomposites: Fabrication and photocatalytic activity
Rajeev et al. Europium decorated hierarchical TiO2 heterojunction nanostructure with enhanced UV light photocatalytic activity for degradation of toxic industrial effluent
Venkatesan et al. Removal of Toluidine blue in water using green synthesized nanomaterials
Tao et al. Rb (Dy)-doped SrSn (OH) 6 for the photodegradation of gentian violet
Kammara et al. Preparation, characterization and visible light photocatalytic studies of Ag/AgBr/Li2ZrO3 composite
Bansal et al. Environmental remediation of wastewater containing azo dyes with a heterostructured nanophotocatalyst
Fernández et al. A photochemical route in the synthesis and characterization of La2Ti2O7 and La2Ti2O7/AgO films and its evaluation in Congo red degradation and as antibacterial control to Staphylococcus aureus
Kumar et al. Innovations in pn type heterostructure composite materials (La2O3/CeO2) for environmental contamination remediation: synthesis, characterization, and performance assessment
Odeh et al. Modification of the photocatalytic activity of zinc oxide by doping silver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40019009

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant