CN110526617B - 一种天线基板材料 - Google Patents
一种天线基板材料 Download PDFInfo
- Publication number
- CN110526617B CN110526617B CN201910822025.2A CN201910822025A CN110526617B CN 110526617 B CN110526617 B CN 110526617B CN 201910822025 A CN201910822025 A CN 201910822025A CN 110526617 B CN110526617 B CN 110526617B
- Authority
- CN
- China
- Prior art keywords
- component
- parts
- antenna
- antenna substrate
- substrate material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/045—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Details Of Aerials (AREA)
Abstract
本发明涉及一种天线基板材料,包括以下重量份的组分:A组分5‑40份、B组分1‑10份、C组分5‑40份和D组分30‑90份;所述A组分包括平面型六角晶系铁氧体和NiZn铁氧体中的至少一种;所述B组分为软磁金属,所述B组分包括纯铁、非晶磁性材料、纳米晶磁性合金材料、FeSi和FeSiAl中的至少一种;所述C组分为电介质陶瓷;所述D组分为具有低tanδe(Df)的树脂材料。本发明的天线基板材料具有可以工作在6GHz下、缩小天线的尺寸、良好的阻抗匹配性能、宽的带宽以及较高的天线效率的优点。
Description
技术领域
本发明涉及电子材料技术,特别涉及一种天线基板材料。
背景技术
大规模多输入多输出技术(Massive MIMO)已经不可逆转地成为5G移动通信系统的中提升频谱效率的核心技术。Massive MIMO技术在有限的时间和频率资源基础上,采用上百个天线单元同时服务多达几十个的移动终端,显著提高了数据吞吐率和能量的使用效率。
然而,天线之间的耦合是个技术难题。尤其是在移动终端,数根天线集中在有限空间,耦合问题也愈发严峻。
为此,采用具有高μr、高εr的磁介电材料作为天线的基板,可以缩小天线的几何尺寸,尺寸的缩小倍数与材料的缩波因子n=(μrεr)1/2正相关。
某些电介质材料虽然有高εr值,但其μr为1,用于天线基板时,无法使得天线获得良好的阻抗匹配性能与宽的带宽。
对于金属磁性材料,虽然其饱和磁化强度高,铁磁共振频率高,然后由于存在涡流,损耗高,难以工作在Sub 6GHz条件下。对于软磁铁氧体材料,如镍锌铁氧体、锰锌铁氧体等,由于Snoek极限的限制,应用频率也很难突破GHz。
发明内容
本发明所要解决的技术问题是:提供一种天线基板材料,可以工作在6GHz下。
为了解决上述技术问题,本发明采用的技术方案为:
一种天线基板材料,包括以下重量份的组分:A组分5-40份、B组分1-10份、C组分5-40份和D组分30-90份;
所述A组分包括平面型六角晶系铁氧体和NiZn铁氧体中的至少一种;
所述B组分为软磁金属,所述B组分包括纯铁、非晶磁性材料、纳米晶磁性合金材料、FeSi和FeSiAl中的至少一种;
所述C组分为电介质陶瓷,所述C组分包括TiO2、钛酸盐类陶瓷和Al2O3中的至少一种;
所述D组分为具有低tanδe(Df)的树脂材料,所述D组分包括PP、PS、PPS、PPE、PEEK、PTFE和LCP中的至少一种。
本发明的有益效果在于:
本申请的天线基板材料可以工作在6GHz下,且能够使得天线的尺寸缩小,同时具有良好的阻抗匹配性能、宽的带宽以及较高的天线效率。
附图说明
图1为本发明实施例的天线基板材料制备获得的天线基板以及设置在天线基板上的天线的结构示意图。
标号说明:
1、天线;2、天线基板。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本发明最关键的构思在于:设计上述天线基板材料的具体原料组分。
本申请提供的天线基板材料,包括以下重量份的组分:A组分5-40份、B组分1-10份、C组分5-40份和D组分30-90份;
所述A组分包括平面型六角晶系铁氧体和NiZn铁氧体中的至少一种;
所述B组分为软磁金属,所述B组分包括纯铁、非晶磁性材料、纳米晶磁性合金材料、FeSi和FeSiAl中的至少一种;
所述C组分为电介质陶瓷,所述C组分包括TiO2、钛酸盐类陶瓷和Al2O3中的至少一种;
所述D组分为具有低tanδe(Df)的树脂材料,所述D组分包括PP、PS、PPS、PPE、PEEK、PTFE和LCP中的至少一种。
本发明的天线基板材料,A组分作为陶瓷类的磁性填料,B组分作为合金类的磁性填料,C组分作为电介质陶瓷填料,D组分则作为基体。A组分和B组分联用提高磁导率μ,C组分致力于提高介电常数ε。
D组分中,低tanδe(Df)即指低介电损耗,本领域技术人员可根据实际需求选择低tanδe(Df)的树脂材料,例如Df低于0.005。
从上述描述可知,本发明的有益效果在于:
本申请的天线基板材料可以工作在6GHz下,且能够使得天线的尺寸缩小,同时具有良好的阻抗匹配性能、宽的带宽以及较高的天线效率。
进一步的,所述平面型六角晶系铁氧体为Co2Z铁氧体。
进一步的,所述B组分的粒径小于500nm。
由上述描述可知,可对B组分进行上述粒径设计,以降低涡流。
B组分中,所述非晶磁性材料可选择现有的所有非晶磁性材料,例如,FeSiB合金;所述纳米晶磁性合金材料可选择现有的所有纳米晶磁性合金材料,例如,FeCuNbSiB合金。
C组分中,所述钛酸盐类陶瓷可选择现有的所有钛酸盐类陶瓷,例如,钛酸钡、钛酸镁或钛酸钙。
本发明的实施例具体如下:
实施例1-6的天线基板材料按照下表1所示的组分制成:
表1
按照上述表1中具体组分设置,将实施例1-6的天线基板材料用于制备天线基板,同时,在该天线基板上设置天线(参照图1所示),并对天线的天线尺寸缩小比率、带宽以及天线效率的性能进行测试,测试结果请参见下述表2。
表2
从上表2可知,采用本发明的天线基板材料,能够使得天线的尺寸缩小,同时具有宽的带宽、较高的天线效率等优点。
综上所述,本发明提供的天线基板材料,能够使得天线的尺寸缩小,同时具有良好的阻抗匹配性能、宽的带宽、以及较高的天线效率的优点。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (1)
1.一种天线基板材料,其特征在于,所述天线基板材料应用于6GHz,包括以下重量份的组分:A组分5-40份、B组分1-10份、C组分5-40份和D组分30-90份;
所述A组分为Co2Z铁氧体和Ni-Zn铁氧体的组合;
所述B组分为软磁金属,所述B组分包括纯铁、非晶磁性材料、纳米晶磁性合金材料、FeSi和FeSiAl中的至少一种,所述B组分的粒径小于500nm;
所述C组分为电介质陶瓷,所述C组分包括TiO2、钛酸盐类陶瓷和Al2O3中的至少一种;
所述D组分为具有低tanδe(Df)的树脂材料,所述D组分包括PP、PS、PPS、PPE、PEEK、PTFE和LCP中的至少一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822025.2A CN110526617B (zh) | 2019-09-02 | 2019-09-02 | 一种天线基板材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822025.2A CN110526617B (zh) | 2019-09-02 | 2019-09-02 | 一种天线基板材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110526617A CN110526617A (zh) | 2019-12-03 |
CN110526617B true CN110526617B (zh) | 2022-01-25 |
Family
ID=68666074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910822025.2A Active CN110526617B (zh) | 2019-09-02 | 2019-09-02 | 一种天线基板材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110526617B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111303626A (zh) * | 2019-12-19 | 2020-06-19 | 厦门海洋南方特种光电材料有限公司 | 5g天线柔性绝缘散热片及其制备工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101462872A (zh) * | 2009-01-21 | 2009-06-24 | 电子科技大学 | 一种低频微带天线基板材料及其制备方法 |
CN102130380A (zh) * | 2010-01-15 | 2011-07-20 | 周红卫 | 聚合物基磁性电介质材料及其制造电子器件的工艺 |
CN102408202A (zh) * | 2011-08-17 | 2012-04-11 | 电子科技大学 | 一种微带天线复合基板材料及其制备方法 |
CN102838346A (zh) * | 2012-10-09 | 2012-12-26 | 电子科技大学 | 一种以尖晶石铁氧体为母体的天线基板材料及其制备方法 |
CN103304186A (zh) * | 2013-07-03 | 2013-09-18 | 电子科技大学 | 一种铁氧体基复合磁介天线基板材料及其制备方法 |
CN103401055A (zh) * | 2013-08-06 | 2013-11-20 | 电子科技大学 | 一种磁性材料基板的uhf抗金属标签天线 |
CN104193224A (zh) * | 2014-08-28 | 2014-12-10 | 电子科技大学 | 一种微带天线有机复合基板材料及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103209773B (zh) * | 2010-11-15 | 2016-06-08 | 代表阿拉巴马大学的阿拉巴马大学理事会 | 用于无线通信设备中的m型六角铁氧体天线 |
-
2019
- 2019-09-02 CN CN201910822025.2A patent/CN110526617B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101462872A (zh) * | 2009-01-21 | 2009-06-24 | 电子科技大学 | 一种低频微带天线基板材料及其制备方法 |
CN102130380A (zh) * | 2010-01-15 | 2011-07-20 | 周红卫 | 聚合物基磁性电介质材料及其制造电子器件的工艺 |
CN102408202A (zh) * | 2011-08-17 | 2012-04-11 | 电子科技大学 | 一种微带天线复合基板材料及其制备方法 |
CN102838346A (zh) * | 2012-10-09 | 2012-12-26 | 电子科技大学 | 一种以尖晶石铁氧体为母体的天线基板材料及其制备方法 |
CN103304186A (zh) * | 2013-07-03 | 2013-09-18 | 电子科技大学 | 一种铁氧体基复合磁介天线基板材料及其制备方法 |
CN103401055A (zh) * | 2013-08-06 | 2013-11-20 | 电子科技大学 | 一种磁性材料基板的uhf抗金属标签天线 |
CN104193224A (zh) * | 2014-08-28 | 2014-12-10 | 电子科技大学 | 一种微带天线有机复合基板材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110526617A (zh) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Harris et al. | The self-biased circulator: Ferrite materials design and process considerations | |
Nakamura et al. | Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite | |
Zheng et al. | A miniaturized UHF vivaldi antenna with tailored radiation performance based on magneto-dielectric ferrite materials | |
Andreou et al. | Magnetodielectric materials in antenna design: Exploring the potentials for reconfigurability | |
Bae et al. | Miniaturized broadband ferrite T-DMB antenna for mobile-phone applications | |
Zheng et al. | Novel high-frequency magneto-dielectric properties of CaO–SiO 2 Co-doped NiZnCo spinel ferrites for RF and microwave device applications | |
Geiler et al. | Atom magnetism: ferrite circulators—past, present, and future | |
Feng et al. | Significant high-frequency electromagnetic wave absorption performance of Ni 2+ x Mn 1− x Ga alloys | |
CN110526617B (zh) | 一种天线基板材料 | |
Stergiou et al. | Rare earth substituted hexagonal ferrites for electromagnetic absorber applications. Recent advances and critical issues | |
US20140374644A1 (en) | Magnetic material and device | |
Fujii et al. | Wide Bandwidth CuO-Modified Ba $ _2 $ Co $ _2 $ Fe $ _ {12} $ O $ _ {22} $ Ferrite Antenna | |
Ennajih et al. | Design of a novel compact low specific absorption rate multiple input multiple output antenna for 5G sub-6 GHz terminals | |
CN108424134A (zh) | 一种石榴石型固溶体磁介电功能介质陶瓷材料及制备方法 | |
Kumar et al. | Ferrite Nanoparticles for Telecommunication Application | |
EP4233080A1 (en) | High frequency power inductor material including magnetic multilayer flakes | |
Li et al. | Particle thickness effect on electromagnetic properties of flake‐shaped FeNi alloy | |
JP4183190B2 (ja) | 非可逆回路素子 | |
CN116947475B (zh) | 一种自偏置环行器用高性能复合铁氧体的制备方法 | |
Saitoh et al. | Double-layer type microwave absorber made of magnetic-dielectric composite material | |
Dinh et al. | A compact mimo UWB antenna using different types of dipoles with low mutual coupling | |
Varouti et al. | Properties of aluminum-substituted YIG with applications in tunable notched UWB antennas | |
JPH10152371A (ja) | Ni−Zn系フェライト | |
US20230207169A1 (en) | Ferromagnetic Metal-Ferrite Composites for High Frequency Inductor Applications | |
JP2004224826A (ja) | 接着剤樹脂組成物およびチップ型コイル部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |