CN110514441A - 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法 - Google Patents

一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法 Download PDF

Info

Publication number
CN110514441A
CN110514441A CN201910802546.1A CN201910802546A CN110514441A CN 110514441 A CN110514441 A CN 110514441A CN 201910802546 A CN201910802546 A CN 201910802546A CN 110514441 A CN110514441 A CN 110514441A
Authority
CN
China
Prior art keywords
vibration signal
signal
fault diagnosis
follows
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910802546.1A
Other languages
English (en)
Inventor
王梦蛟
陈杨凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910802546.1A priority Critical patent/CN110514441A/zh
Publication of CN110514441A publication Critical patent/CN110514441A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2134Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于振动信号和包络分析的滚动轴承故障诊断方法,属于机械故障诊断及信号处理领域。本发明首先对滚动轴承的外圈故障,内圈故障,滚动体故障和正常情况下四种类别的振动信号进行一次协同滤波去噪处理,然后将协同滤波去噪后的信号再进行一次协同滤波去噪处理,进一步去除信号中干扰故障诊断的噪声,然后再将二次协同滤波去噪后的信号进行经验模态分解(EMD),得到若干个内蕴模态函数(IMF),选取IMF1进行包络分析判断滚动轴承的故障类型。结果表明振动信号经过二次协同滤波后能有效去除噪声,然后对去噪后的振动信号实行基于经验模态分解的包络分析能准确有效的进行故障诊断。

Description

一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法
技术领域
本发明涉及一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法,属于机械故障诊断及信号处理领域。
背景技术
滚动轴承是旋转设备及其他机械设备的最主要零部件之一,它的性能对整个设备的运行起决定性的作用。但是滚动轴承恶劣的工作环境使它出现故障的可能性很大,所以对滚动轴承的运行状态进行诊断以便及时采取措施对设备的正常运行非常重要。因此滚动轴承的诊断技术的研究具有重要的意义。
因为振动信号包含了大部分的设备运转时的状态信息,并且振动信号容易采集,所以对振动信号的分析是最有用的故障诊断方向之一。当滚动轴承出现缺陷时,轴承共振高频会因为受到内圈,外圈,滚动体产生的脉冲激励从而出现故障特征频率(CDF),所以若能分离并找出CDF及其倍频就可判定滚动轴承运行状态和故障类型。但是由于滚动轴承本身的特点,安装误差,运行故障和一些外部因素对轴承运动和受力的作用使轴承以一定速度运转时会产生综合振动,振动信号中包含高斯噪声和脉冲噪声等噪声。由于噪声通常较大,轻微的轴承故障信息容易淹没于噪声中,并很难被提取分离,所以这些噪声会对分离并识别CDF产生很大的干扰,即影响故障诊断。因此本文提出了一种二次协同滤波去噪方法对振动信号进行去噪,然后再利用基于经验模态分解的包络分析方法对CDF分离进行故障诊断的方法,本方法能有效的去除噪声并分离CDF,对滚动轴承进行迅速准确的故障诊断。
发明内容
本发明解决的技术问题是:本发明提供了一种二次协同滤波去噪方法去除振动信号中的噪声,然后对去噪后的振动信号用基于经验模态分解的包络分析方法进行故障诊断。有效的解决了振动信号中噪声的影响导致故障诊断困难的问题。
本发明的技术方案是:一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于包括如下步骤:
Step1:通过实验分别获取滚动轴承的外圈故障,内圈故障,滚动体故障及正常情况四种类型的振动信号。
Step2:对搜集到的振动信号进行二次协同滤波去噪处理,由于滚动轴承自身的特点,装配误差,运行故障等因素搜集到的振动信号包含高斯噪声和脉冲噪声等,所以对搜集的振动信号进行一次协同滤波去噪后再进行一次协同滤波处理去除干扰故障诊断的噪声。
Step2.1:相似块分组:设置搜索窗长为l,在搜索窗内以参考块R为中心搜索与其距离最小的m个块构成分组group(R)。设任意块为S,S与R的相似度用二者的归一化距离来度量,表达式为:
其中符号||·||2表示求2范数;ω为块宽;d表示相似块之间的距离,该距离越小则S块与R的相似度越高。将group(R)以m×ω的二维数组形式保存,即group(R)∈Rm×ω。以步长δ将参考块S从观测信号的始端向末端移动,搜索窗也随之移动,对在每个位置获得的相似组进行记录,并将分组中每个块的位置进行标记。
Step2.2:协同滤波:首先将分组group(R)进行二维离散余弦变换,表达式为:G(R)=T{group(R)},其中G=[gi,j]∈Rm×ω(i=1,…,m;j=1,…,ω)为变换系数矩阵。
然后对二维离散余弦变换后的系数矩阵进行阈值处理,将小于或等于阈值的系数置零而将大于阈值的系数保留,阈值的定义为:
最后通过逆变换获得滤波后的分组。
Step2.3:聚合重构:由于相似块之间存在重叠,一个信号通常会同时属于多个相似块,信号点的重构通过聚合所有包含的相似块在该位置的滤波输出实现,聚合方式采用算术平均,表达式为:
其中xS,R(n)为分组group(R)中相似块S在信号点n的滤波输出,FS(n)的表达式为:
Step3:对去除噪声后的振动信号进行经验模态分解,经验模态分解后的振动信号被分解成若干个内蕴模态函数(IMF)。
Step3.1:获取振动信号x(t)的所有极大值和极小值点,用三次样条函数对极值点进行拟合,分别形成上下包络曲线。
Step3.2:求得上下包络曲线的均值m1,用待分解的振动信号x(t)减去均值m1得到h1,判断h1是否满足成为IMF的两个条件。如果满足则把h1看作是IMF分量,记作c1(t),残差量r1=x(t)-c1(t)看作是待分解信号;如果不满足则把h1看作是待分解信号x(t)。重复Step3.1和Step3.2,重复k次直到满足IMF的条件为止。
Step3.3:把残差量当作待分解信号,令x(t)=r,重复步骤Step3.1和Step3.2继续筛选,直至残差量为一个单调函数不能再分解为止,表达式如下:
最终x(t)经过经验模态分解为:
Step4:选取IMF1进行包络分析,从包络谱中寻找有无特征频率及其倍频,若有则根据频率的大小判断故障类型,若没有则是正常状态。
Step4.1:把经过经验模态分解得到的IMF进行希尔伯特变换:
Step4.2:H[ci(t)]和ci(t)组成分析信号:其中
Step4.3:对yj(t)进行傅里叶变换获得包络谱。
本发明用二次协同滤波方法对振动信号进行去噪,协同滤波方法利用振动信号中的具有相似块的特点和二维线性变换的优点对振动信号中的噪声进行有效的去除,与传统的小波变换和非局部均值去噪相比本发明提出的去噪方法具有更优越的去噪性能,能达到更好的去噪效果,能更加有利于故障诊断。本发明使用基于经验模态分解的包络分析方法进行故障诊断,故障特征频率主要在高频,而经验模态分解可以把信号分解成从高频到低频的IMF,对高频IMF进行包络分析从而分离出故障特征频率,与传统的傅里叶变换相比,本方法能更加有效的分离故障特征频率,因此更有利于故障诊断。
附图说明
图1为本发明的流程图。
图2为二次协同滤波去噪流程图。
图3为正常情况,内圈故障,外圈故障的振动信号时域图。
图4为内圈故障振动信号经过二次协同滤波后再进行基于经验模态分解的包络分析的包络谱。
图5为外圈故障振动信号经过二次协同滤波后再进行基于经验模态分解的包络分析的包络谱。
图6为内圈故障振动信号经过非局部均值去噪后再进行基于经验模态分解的包络分析的包络谱。
图7为外圈故障振动信号经过非局部均值去噪后再进行基于经验模态分解的包络分析的包络谱。
图8为内圈故障振动信号经过小波去噪后再进行基于经验模态分解的包络分析的包络谱。
图9为外圈故障诊断信号经过小波去噪后再进行基于经验模态分解的包络分析的包络谱。
图10为内圈故障直接进行傅里叶变换的频谱图。
图11为外圈故障直接进行傅里叶变换的频谱图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好的理解本发明。但是本发明不限于具体实施方式的范围。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权力要求书所限定的范围。
图1是本发明的流程图,本发明包括以下步骤:
Step1:通过实验分别获取滚动轴承的外圈故障,内圈故障及正常情况三种种类型的振动信号。本发明以美国西储大学轴承数据中心的滚动轴承故障诊断为例,该滚动轴承故障诊断实验装置由一个扭矩仪,一个功率计,一个三相感应电动机等组成,电动机驱动端转子由测试轴承(即诊断对象)支撑,并在测试轴承中通过放电加工设置了单点故障,故障直径包括7mils、14mils、21mils和28mils(即故障严重程度),故障类型包括内圈故障,滚动体故障,外圈故障。电动机驱动端罩壳上安装有一个带宽高达5000HZ的加速计,并通过一个记录仪采集测试轴承在不同工作状态下的振动数据。实验中所用的深沟滚动轴承型号为6205-2RS JEM SKF,其参数如表1所示。本次具体实施方式采用的数据采样频率为4800HZ,故障直径为7mil,3点钟方向故障状态的内圈故障和外圈故障为例,其时域图如图3所示。
表1滚动轴承参数
球的数量 接触角 球的直径 中径 内环直径 外环直径 厚度
9 0 0.3162 1.537 0.9843 2.0472 0.5906
Step2:对搜集到的振动信号进行二次协同滤波去噪处理,由于滚动轴承自身的特点,装配误差,运行故障等因素搜集到的振动信号包含高斯噪声和脉冲噪声等,所以对搜集的振动信号进行一次协同滤波去噪后再进行一次协同滤波处理去除干扰故障诊断的噪声。流程图如图2所示,协同滤波去噪分为三个步骤:相似块分组,协同滤波和聚合重构。具体过程如下:
Step2.1:相似块分组:设置搜索窗长为l,在搜索窗内以参考块R为中心搜索与其距离最小的m个块构成分组group(R)。设任意块为S,S与R的相似度用二者的归一化距离来度量,表达式为:
其中符号||·||2表示求2范数;ω为块宽;d表示相似块之间的距离,该距离越小则S块与R的相似度越高。将group(R)以m×ω的二维数组形式保存,即group(R)∈Rm×ω。以步长δ将参考块S从观测信号的始端向末端移动,搜索窗也随之移动,对在每个位置获得的相似组进行记录,并将分组中每个块的位置进行标记。其中参数搜索窗长度l为4000,块宽ω为30,步长δ为1。
Step2.2:协同滤波:首先将分组group(R)进行二维离散余弦变换,表达式为:G(R)=T{group(R)},其中G=[gi,j]∈Rm×ω(i=1,…,m;j=1,…,ω)为变换系数矩阵。
然后对二维离散余弦变换后的系数矩阵进行阈值处理,将小于或等于阈值的系数置零而将大于阈值的系数保留,阈值的定义为:最后通过逆变换获得滤波后的分组。
Step2.3:聚合重构:由于相似块之间存在重叠,一个信号通常会同时属于多个相似块,信号点的重构通过聚合所有包含的相似块在该位置的滤波输出实现,聚合方式采用算术平均,表达式为:
其中xS,R(n)为分组group(R)中相似块S在信号点n的滤波输出。
Step3:对去除噪声后的振动信号进行经验模态分解,经验模态分解后的振动信号被分解成若干个内蕴模态函数(IMF)。
Step3.1:获取振动信号x(t)的所有极大值和极小值点,用三次样条函数对极值点进行拟合,分别形成上下包络曲线。
Step3.2:求得上下包络曲线的均值m1,用待分解的振动信号x(t)减去均值m1得到h1,判断h1是否满足成为IMF的两个条件。如果满足则把h1看作是IMF分量,记作c1(t),残差量r1=x(t)-c1(t)看作是待分解信号;如果不满足则把h1看作是待分解信号x(t)。重复Step3.1和Step3.2,重复k次直到满足IMF的条件为止。
Step3.3:把残差量当作待分解信号,令x(t)=r,重复步骤Step3.1和Step3.2继续筛选,直至残差量为一个单调函数不能再分解为止,最终x(t)经过经验模态分解为:
Step4:选取IMF1进行包络分析,从包络谱中寻找有无特征频率及其倍频,若有则根据频率的大小判断故障类型,若没有则是正常状态。
Step4.1:把经过经验模态分解得到的IMF进行希尔伯特变换:
Step4.2:H[ci(t)]和ci(t)组成分析信号:其中
Step4.3:对yj(t)进行傅里叶变换获得包络谱。内圈故障和外圈故障包络谱如图4和图5所示。
内圈故障和外圈故障特征频率计算公式为:内圈故障特征频率fa外圈故障特征频率fo内圈故障和外圈故障的故障特征频率如表2所示。
表2故障特征频率
内圈故障 外圈故障
162.2HZ 107.4HZ
为了证明本发明的有效性和优势,本发明选择了传统的非局部均值去噪和小波去噪方法与本发明的方法进行对比,这两种方法的代码来自于网上公开的MATLAB代码。图6和图7是非局部均值去噪后的内圈故障和外圈故障包络谱,图8和图9是小波去噪后的内圈故障和外圈故障包络谱。图10和图11是直接傅里叶变换的频谱图。从图4,图5和图6,图7,图8,图9的对比可以明显看出经过二次协同滤波去噪后的包络谱受噪声影响小,故障特频率幅值相比较于噪声频率幅值更大,更容易识别从而能快速的进行故障诊断;并且有更多的倍频可以识别从而提高了故障诊断的准确性。通过与图10,图11的对比可以看出直接进行傅里叶变换不能分离出故障特征频率,而通过基于经验模态分解的包络分解能分离出故障特征频率及其倍频,有利于故障诊断。综上,本发明提出的二次协同滤波去噪方法能够有效的去除振动信号中的噪声,基于经验模态分解的包络分析能有效分离故障特征频率进而有效快速的进行故障诊断。

Claims (5)

1.一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于包括如下步骤:
Step1:通过实验分别获取滚动轴承的外圈故障,内圈故障,滚动体故障及正常情况四种类型的振动信号。
Step2:对搜集到的振动信号进行二次协同滤波去噪处理,由于滚动轴承自身的特点,装配误差,运行故障等因素搜集到的振动信号包含高斯噪声和脉冲噪声等,所以对搜集的振动信号进行一次协同滤波去噪后再进行一次协同滤波处理去除干扰故障诊断的噪声。
Step3:对去除噪声后的振动信号进行经验模态分解,经验模态分解后的振动信号被分解成若干个内蕴模态函数(IMF)。
Step4:选取IMF1进行包络分析,从包络谱中寻找有无特征频率及其倍频,若有则根据频率的大小判断故障类型,若没有则是正常状态。
2.根据权利要求1所述的基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于所述Step2的具体过程如下:
Step2.1:相似块分组:设置搜索窗长为l,在搜索窗内以参考块R为中心搜索与其距离最小的m个块构成分组group(R)。设任意块为S,S与R的相似度用二者的归一化距离来度量,表达式为:
其中符号||·||2表示求2范数;ω为块宽;d表示相似块之间的距离,该距离越小则S块与R的相似度越高。将group(R)以m×ω的二维数组形式保存,即group(R)∈Rm×ω。以步长δ将参考块S从观测信号的始端向末端移动,搜索窗也随之移动,对在每个位置获得的相似组进行记录,并将分组中每个块的位置进行标记。
Step2.2:协同滤波:首先将分组group(R)进行二维离散余弦变换,表达式为:G(R)=T{group(R)},其中G=[gi,j]∈Rm×ω(i=1,…,m;j=1,…,ω)为变换系数矩阵。
然后对二维离散余弦变换后的系数矩阵进行阈值处理,将小于或等于阈值的系数置零而将大于阈值的系数保留,阈值的定义为:
最后通过逆变换获得滤波后的分组。
Step2.3:聚合重构:由于相似块之间存在重叠,一个信号通常会同时属于多个相似块,信号点的重构通过聚合所有包含的相似块在该位置的滤波输出实现,聚合方式采用算术平均,表达式为:
其中xS,R(n)为分组group(R)中相似块S在信号点n的滤波输出;FS(n)表达式为:
3.根据权利要求1所述的基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于所述Step3的具体过程如下:
Step3.1:获取振动信号x(t)的所有极大值和极小值点,用三次样条函数对极值点进行拟合,分别形成上下包络曲线。
Step3.2:求得上下包络曲线的均值m1,用待分解的振动信号x(t)减去均值m1得到h1,判断h1是否满足成为IMF的两个条件。如果满足则把h1看作是IMF分量,记作c1(t),残差量r1=x(t)-c1(t)看作是待分解信号;如果不满足则把h1看作是待分解信号x(t)。重复Step3.1和Step3.2,重复k次直到满足IMF的条件为止。
Step3.3:把残差量当作待分解信号,令x(t)=r,重复步骤Step3.1和Step3.2继续筛选,直至残差量为一个单调函数不能再分解为止,表达式如下:
最终x(t)经过经验模态分解为:
4.根据权利要求1所述的基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于所述Step4的具体过程如下:
Step4.1:把经过经验模态分解得到的IMF进行希尔伯特变换:
Step4.2:H[ci(t)]和ci(t)组成分析信号:其中
Step4.3:对yj(t)进行傅里叶变换获得包络谱。
5.根据权利要求1所述的基于振动信号去噪和包络分析的滚动轴承故障诊断方法,其特征在于所述Step4中特征频率计算方法为:
设d为滚动体直径,D为节圆直径,α为接触角,N为滚动体个数,fr为转轴转频,轴承各部件的故障特征频率计算如下:
(1)内圈故障特征频率fa
(2)外圈故障特征频率fo
(3)滚动体故障特征频率fb
CN201910802546.1A 2019-08-28 2019-08-28 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法 Pending CN110514441A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910802546.1A CN110514441A (zh) 2019-08-28 2019-08-28 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910802546.1A CN110514441A (zh) 2019-08-28 2019-08-28 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法

Publications (1)

Publication Number Publication Date
CN110514441A true CN110514441A (zh) 2019-11-29

Family

ID=68627485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910802546.1A Pending CN110514441A (zh) 2019-08-28 2019-08-28 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法

Country Status (1)

Country Link
CN (1) CN110514441A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060317A (zh) * 2020-01-03 2020-04-24 上海电器科学研究所(集团)有限公司 一种矿用扇风电动机滚动轴承故障信号的判断方法
CN112557038A (zh) * 2020-12-30 2021-03-26 三峡大学 多重降噪处理的轴承早期故障诊断方法
CN112766203A (zh) * 2021-01-27 2021-05-07 广东海洋大学 一种确定故障信号的方法、装置、存储介质及计算机设备
CN113567561A (zh) * 2021-07-20 2021-10-29 宝宇(武汉)激光技术有限公司 一种金属无损检测设备
CN113654782A (zh) * 2021-08-17 2021-11-16 云南大学 一种机械设备故障诊断方法及系统
CN114118153A (zh) * 2021-11-25 2022-03-01 北京理工大学 基于时变数据与多尺度微观振动数据分析的状态识别方法
CN114112400A (zh) * 2021-12-01 2022-03-01 盐城工学院 一种基于多角度信息融合的机械轴承故障诊断方法
CN114169377A (zh) * 2021-12-17 2022-03-11 郑州滕瑟电子科技有限公司 基于g-mscnn的有噪环境中滚动轴承故障诊断方法
CN114216676A (zh) * 2021-11-30 2022-03-22 上海海事大学 一种时变工况下无转速计的行星齿轮箱复合故障诊断方法
CN114441174A (zh) * 2022-02-09 2022-05-06 上海电气集团股份有限公司 滚动轴承复合故障的诊断方法、系统、设备及介质
CN116202770A (zh) * 2023-03-21 2023-06-02 广东海洋大学 一种轴承故障诊断模拟实验装置
CN116242612A (zh) * 2023-01-09 2023-06-09 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN116883987A (zh) * 2023-09-06 2023-10-13 南京启征信息技术有限公司 一种用于变电站无人巡检的指针仪表读数识别方法
CN117030268A (zh) * 2023-10-07 2023-11-10 太原科技大学 一种滚动轴承故障诊断方法
CN114118153B (zh) * 2021-11-25 2024-05-31 北京理工大学 基于时变数据与多尺度微观振动数据分析的状态识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784366A (zh) * 2016-03-30 2016-07-20 华北电力大学(保定) 一种变转速下的风电机组轴承故障诊断方法
CN105973621A (zh) * 2016-05-02 2016-09-28 国家电网公司 一种基于异常振动分析的gis机械故障诊断方法和系统
CN108444709A (zh) * 2018-04-18 2018-08-24 北京信息科技大学 VMD与FastICA相结合的滚动轴承故障诊断方法
CN108875279A (zh) * 2018-07-27 2018-11-23 中国计量大学 基于emd和形态滤波的轴承声发射信号特征提取方法
CN109030001A (zh) * 2018-10-08 2018-12-18 电子科技大学 一种基于改进hht的滚动轴承故障诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784366A (zh) * 2016-03-30 2016-07-20 华北电力大学(保定) 一种变转速下的风电机组轴承故障诊断方法
CN105973621A (zh) * 2016-05-02 2016-09-28 国家电网公司 一种基于异常振动分析的gis机械故障诊断方法和系统
CN108444709A (zh) * 2018-04-18 2018-08-24 北京信息科技大学 VMD与FastICA相结合的滚动轴承故障诊断方法
CN108875279A (zh) * 2018-07-27 2018-11-23 中国计量大学 基于emd和形态滤波的轴承声发射信号特征提取方法
CN109030001A (zh) * 2018-10-08 2018-12-18 电子科技大学 一种基于改进hht的滚动轴承故障诊断方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOHANTY等: ""Bearing fault analysis using variational mode decomposition"", 《 2014 9TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS 》 *
徐明林: ""基于小波降噪和经验模态分解的滚动轴承故障诊断"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑(月刊)》 *
王梦蛟等: ""混沌信号自适应协同滤波去噪"", 《物理学报》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060317A (zh) * 2020-01-03 2020-04-24 上海电器科学研究所(集团)有限公司 一种矿用扇风电动机滚动轴承故障信号的判断方法
CN112557038A (zh) * 2020-12-30 2021-03-26 三峡大学 多重降噪处理的轴承早期故障诊断方法
CN112766203A (zh) * 2021-01-27 2021-05-07 广东海洋大学 一种确定故障信号的方法、装置、存储介质及计算机设备
CN113567561A (zh) * 2021-07-20 2021-10-29 宝宇(武汉)激光技术有限公司 一种金属无损检测设备
CN113654782A (zh) * 2021-08-17 2021-11-16 云南大学 一种机械设备故障诊断方法及系统
CN114118153A (zh) * 2021-11-25 2022-03-01 北京理工大学 基于时变数据与多尺度微观振动数据分析的状态识别方法
CN114118153B (zh) * 2021-11-25 2024-05-31 北京理工大学 基于时变数据与多尺度微观振动数据分析的状态识别方法
CN114216676A (zh) * 2021-11-30 2022-03-22 上海海事大学 一种时变工况下无转速计的行星齿轮箱复合故障诊断方法
CN114112400A (zh) * 2021-12-01 2022-03-01 盐城工学院 一种基于多角度信息融合的机械轴承故障诊断方法
CN114169377A (zh) * 2021-12-17 2022-03-11 郑州滕瑟电子科技有限公司 基于g-mscnn的有噪环境中滚动轴承故障诊断方法
CN114441174A (zh) * 2022-02-09 2022-05-06 上海电气集团股份有限公司 滚动轴承复合故障的诊断方法、系统、设备及介质
CN116242612A (zh) * 2023-01-09 2023-06-09 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN116242612B (zh) * 2023-01-09 2023-11-21 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN116202770A (zh) * 2023-03-21 2023-06-02 广东海洋大学 一种轴承故障诊断模拟实验装置
CN116883987A (zh) * 2023-09-06 2023-10-13 南京启征信息技术有限公司 一种用于变电站无人巡检的指针仪表读数识别方法
CN117030268A (zh) * 2023-10-07 2023-11-10 太原科技大学 一种滚动轴承故障诊断方法
CN117030268B (zh) * 2023-10-07 2024-01-23 太原科技大学 一种滚动轴承故障诊断方法

Similar Documents

Publication Publication Date Title
CN110514441A (zh) 一种基于振动信号去噪和包络分析的滚动轴承故障诊断方法
Yan et al. Wavelets for fault diagnosis of rotary machines: A review with applications
CN111089726B (zh) 一种基于最优维数奇异谱分解的滚动轴承故障诊断方法
CN108760327B (zh) 一种航空发动机转子故障的诊断方法
CN103499445B (zh) 一种基于时频切片分析的滚动轴承故障诊断方法
CN108388908B (zh) 基于k-svd和滑窗降噪的滚动轴承冲击故障诊断方法
CN110046476B (zh) 滚动轴承故障的三元二进分形小波稀疏诊断方法
Lu et al. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
CN109883706B (zh) 一种滚动轴承局部损伤微弱故障特征提取方法
CN105043766B (zh) 一种基于Hessian局部线性嵌入的轴承变工况故障诊断方法
CN111238813A (zh) 一种强干扰下提取滚动轴承故障特征的方法
Sahu et al. Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method
Jin et al. An image recognition method for gear fault diagnosis in the manufacturing line of short filament fibres
Ou et al. Research on Rolling Bearing Fault Diagnosis Using Improved Majorization‐Minimization‐Based Total Variation and Empirical Wavelet Transform
Zhou et al. Multi-objective sparsity maximum mode de-composition: a new method for rotating machine fault diagnosis on high-speed train axle box
Hu et al. Fault diagnosis based on multi-scale redefined dimensionless indicators and density peak clustering with geodesic distances
CN112345247A (zh) 一种滚动轴承的故障诊断方法及装置
Pang et al. The evolved kurtogram: a novel repetitive transients extraction method for bearing fault diagnosis
Wang et al. A two-stage compression method for the fault detection of roller bearings
CN116625681A (zh) 一种基于短时傅里叶变换的谱幅值调制滚动轴承故障诊断方法
CN114136604A (zh) 一种基于改进稀疏字典的旋转设备故障诊断方法及系统
CN115326396A (zh) 一种轴承故障的诊断方法及装置
CN109446625B (zh) 一种基于贝叶斯推理的直升机动部件动态阈值计算方法
Chen et al. Rotating machinery diagnosis using wavelet packets-fractal technology and neural networks
Lu et al. Bearing Fault Diagnosis Using Convolutional Sparse Representation Combined With Nonlocal Similarity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191129