CN110500970B - 一种多频率结构光三维测量方法 - Google Patents

一种多频率结构光三维测量方法 Download PDF

Info

Publication number
CN110500970B
CN110500970B CN201910707645.1A CN201910707645A CN110500970B CN 110500970 B CN110500970 B CN 110500970B CN 201910707645 A CN201910707645 A CN 201910707645A CN 110500970 B CN110500970 B CN 110500970B
Authority
CN
China
Prior art keywords
grating
camera
frequency
phase
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910707645.1A
Other languages
English (en)
Other versions
CN110500970A (zh
Inventor
王华龙
李凡
毛骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Nanhai Guangdong Technology University CNC Equipment Cooperative Innovation Institute
Foshan Guangdong University CNC Equipment Technology Development Co. Ltd
Original Assignee
Foshan Nanhai Guangdong Technology University CNC Equipment Cooperative Innovation Institute
Foshan Guangdong University CNC Equipment Technology Development Co. Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Nanhai Guangdong Technology University CNC Equipment Cooperative Innovation Institute, Foshan Guangdong University CNC Equipment Technology Development Co. Ltd filed Critical Foshan Nanhai Guangdong Technology University CNC Equipment Cooperative Innovation Institute
Priority to CN201910707645.1A priority Critical patent/CN110500970B/zh
Publication of CN110500970A publication Critical patent/CN110500970A/zh
Application granted granted Critical
Publication of CN110500970B publication Critical patent/CN110500970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种多频率结构光三维测量方法,该三维测量设备主要包括载物平台、支撑杆、紧固支架、X轴滑轨、Y轴滑轨、光栅投影仪、摄像机、以及用于采集被测物图像的采集设备。该测量方法主要包括步骤S11:成像系统机械位置校准;步骤S12:设备标定步骤;步骤S13:摄像机和光栅投影仪内外参数计算;步骤S21:触发摄像机、采集图像;步骤S22:相位解包裹;步骤S23:左右投影数据配准;步骤S24:根据点云进行三维重建。本发明采用高帧率DLP投影机,能有效提高投影光栅正弦性精度,同时提高光栅的投射效率,另一方面使用四步相移和五频率迭代算法计算物体三维坐标,可将精度提升到0.005mm。

Description

一种多频率结构光三维测量方法
技术领域
本发明涉及光学检测技术领域,尤其涉及一种多频率结构光三维测量设备及测量方法。
背景技术
三维形貌测量在工业、农业、生物医学、文物保护、逆向工程等领域有广泛的应用。主动式测量中的结构光测量技术因其固有的非接触、精度高、速度快、易于实现等优点受到越来越广泛的重视,而其中相位解包裹的方法是中外科研人员研究的热点和难点。现有的双频外差解相位方法,因受条纹光栅频率的限制,测量精度不高,单投影测量装置易受光照阴影的影响,而多目测量又会大幅增加了硬件成本和时间消耗。
因此,现有技术还需要进一步改进和完善。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于多频率结构光的高精度、双投影三维测量装置。
本发明的另一目的在于克服现有技术的不足,提供一种基于上述测量装置的测量方法。
本发明的目的通过下述技术方案实现:
一种多频率结构光三维测量设备,该三维测量设备主要包括载物平台、支撑杆、紧固支架、X轴滑轨、Y轴滑轨、光栅投影仪、摄像机、以及用于采集被测物图像的采集设备。所述载物平台固定设置。所述支撑杆的一端安装在载物平台上,另一端竖直向上延伸并与紧固支架连接。所述紧固支架设置在支撑杆上,与支撑杆滑动连接并可锁紧在支撑杆上。所述X轴滑轨固定在紧固支架上,并垂直紧固支架设置。所述摄像机朝下安装在X轴滑轨上,并分别与光栅投影仪和采集设备电连接。所述Y轴滑轨分别安装在紧固支架的两侧上,并关于X轴滑轨对称设置。所述光栅投影仪朝下分别安装在两侧的Y轴滑轨上,并与采集设备电连接。所述采集设备设为工控电脑或用于采集并分析图像的设备。
作为本发明的优选方案,所述紧固支架采用凸形结构设计,凸形的上部安装X轴滑轨,两侧安装Y轴滑轨。
进一步的,为了便于调节X轴滑轨的安装高度,从而方便调节摄像机的视野范围,本发明所述凸形上部还设有用于调节X轴滑轨安装高度的引导槽;所述引导槽设为两根,并排且竖直设置。所述X轴滑轨通过螺钉安装在引导槽上。
作为本发明的优选方案,所述光栅投影仪的光轴与摄像机光轴相交于载物平台,且二者之间的夹角小于30°。
作为本发明的优选方案,所述摄像机对载物平台的视野面积不大于60mm*70mm。
作为本发明的优选方案,所述摄像机采用高分辨率式面阵工业相机,其图像采集频率大于60Hz;所述摄像机采集延时小于6ms,且以每秒60张的速率采集图像;所述光栅投影仪使用高分辨率式DLP投影仪,其投射光栅频率最高为120Hz。
本发明的另一目的通过下述技术方案实现:
一种多频率结构光三维测量设备的测量方法,所述测量方法主要包括步骤S1:设备初始化和步骤S2:测量工作两大部分,所述步骤S1包括如下具体步骤:
步骤S11:成像系统机械位置校准:调节紧固支架的高度,来改变摄像机的物距。调节摄像机镜头的焦距使待测物体清晰成像。调节光栅投影仪的位置、角度和焦距,使其在视野中心呈清晰、完整的像。
步骤S12:设备标定步骤:使用9*11圆心平板标定板进行设备标定,摄像机和光栅投影仪位置固定后,将标定板放置在摄像机视野范围内,左、右光栅投影仪依次投射光栅,触发摄像机获取两组图像。移动标定板至视野范围内5个不同的位置采集图像,将采集图像发送至主机进行标定计算。
步骤S13:摄像机和光栅投影仪内外参数计算:将拍摄的图像转换成灰度图,找到标定图像中圆形,获取圆形参数,计算摄像机和光栅投影仪的内参、外参。
设备初始化后,设备可进行测量,所述步骤S2具体包括如下步骤:
步骤S21:触发摄像机、采集图像:将待测物体放置在摄像机视野中心位置,启动左、右投影依次投射光栅,同时触发摄像机采集图像,使用四步相移法,投射五频率光栅,单投影采集20张光栅图和1张白光图。
步骤S22:相位解包裹:使用多频率光栅迭代法计算出每个像素点的绝对相位值。
具体的,所述步骤S22采用四步相移法来抑制环境光和噪声的干扰,使用五频率迭代法来解相位,从而提高测量的精度,其具体步骤如下:
步骤S221:光栅投影仪投射正弦光栅到三维物体表面,摄像机摄取物体表面的变形条纹图,图像为:
In(x,y)=I′(x,y)+I″(x,y)cos[φn(x,y)+2πn/N] (1)
其中:In(x,y)为该像素点的灰度值,I′(x,y)为背景光强,I″(x,y)为光栅条纹增益,φ(x,y)为待求相位场,2πn/N为相移,采用四步相移,则n∈{0,1,2,3},N=4;
步骤S222:计算包裹相位值:使用摄像机拍摄光栅图像,四步相移法同频率光栅可获得四幅图像,通过图像处理,获取图像每一像素的灰度值,同频率光栅同一像素点可获得四个灰度值,分别为I0,I1,I2,I3,由公式(2)
Figure GDA0002940347050000031
可计算出相位主值Φ(x,y),其被包裹在(-π,π)的区间内,为了得到绝对相位需要进行解相位,又叫相位解包裹;
步骤S223:绝对相位计算原理:光栅投影仪向待测物体投射五频率光栅,光栅频率用fi表示,分别为x0,x1,x2,x3,x4,相应的光栅节距用p0,p1,p2,p3,p4表示。其中x0=1,当光栅频率f0=1时,相位主值等于绝对相位,ni,i∈{0,1,2,3,4}为条纹的级数,有如下等式成立:
pini=pjnj,i,j∈{0,1,2,3,4} (3)
ni=Ni+Δni,Ni∈Z (4)
Figure GDA0002940347050000032
其中,Φi(x,y)是第i幅光栅条纹的包裹相位,Ni为条纹级数中的整数部分,Δni为条纹级数的小数部分,由公式
φi(x,y)=2πNii(x,y) (6)
可计算出绝对相位φi(x,y);
步骤S224:计算绝对相位:当光栅频率f0=1时,节距p0覆盖整个视场,有n0=Δn0,n0p0=n1p1,由(4)式可知
Figure GDA0002940347050000041
其中floor()表示向下取整,又由
Figure GDA0002940347050000042
和公式(5)得
Figure GDA0002940347050000043
由公式(6)和公式(8)可算出φ1,如公式(9)所示
φ1(x,y)=2πN11(x,y) (9);
步骤S225:使用频率迭代法计算绝对相位:由等式(3)和等式(7)可得
Figure GDA0002940347050000044
则计算出φ2,同理,经过4次迭代计算出绝对相位φ4
步骤S226:第五种条纹光栅的频率为x4,当x=3时光栅的节距为1280/81个像素,可实现高精度测量。
步骤S23:左右投影数据配准:对左、右投影分别获取的物体三维信息进行配准、筛选,删除多余三维坐标,生成点云。
步骤S24:根据点云进行三维重建。
与现有技术相比,本发明还具有以下优点:
(1)本发明所提供的多频率结构光三维测量设备及方法使用高帧率DLP投影机,能有效提高投影光栅正弦性精度,同时提高光栅的投射效率。
(2)本发明所提供的多频率结构光三维测量设备及方法采用双投影可有效消除阴影效应。
(3)本发明所提供的多频率结构光三维测量设备及方法使用高分辨率、高帧率、低延时摄像机,采集速率最高70Hz,可满足在线测量的要求。
(4)本发明所提供的多频率结构光三维测量设备及方法使用四步相移和五频率迭代算法计算物体三维坐标,可将精度提升到0.005mm。
附图说明
图1是本发明所提供的多频率结构光三维测量设备的结构示意图。
图2是本发明所提供的标定板样图。
图3是本发明所提供的三维测量总流程图。
图4是本发明所提供的设备操作流程图。
图5是本发明所提供的相位解包裹流程图。
上述附图中的标号说明:
1-载物平台,2-紧固支架,3-X轴滑轨,4-Y轴滑轨,5-光栅投影仪,6-摄像机。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明作进一步说明。
实施例1:
如图1和图2所示,本实施例公开了一种多频率结构光三维测量设备,该三维测量设备主要包括载物平台、支撑杆、紧固支架、X轴滑轨、Y轴滑轨、光栅投影仪、摄像机、以及用于采集被测物图像的采集设备。所述载物平台固定设置。所述支撑杆的一端安装在载物平台上,另一端竖直向上延伸并与紧固支架连接。所述紧固支架设置在支撑杆上,与支撑杆滑动连接并可锁紧在支撑杆上。所述X轴滑轨固定在紧固支架上,并垂直紧固支架设置。所述摄像机朝下安装在X轴滑轨上,并分别与光栅投影仪和采集设备电连接。所述Y轴滑轨分别安装在紧固支架的两侧上,并关于X轴滑轨对称设置。所述光栅投影仪朝下分别安装在两侧的Y轴滑轨上,并与采集设备电连接。所述采集设备设为工控电脑或用于采集并分析图像的设备。
作为本发明的优选方案,所述紧固支架采用凸形结构设计,凸形的上部安装X轴滑轨,两侧安装Y轴滑轨。
进一步的,为了便于调节X轴滑轨的安装高度,从而方便调节摄像机的视野范围,本发明所述凸形上部还设有用于调节X轴滑轨安装高度的引导槽;所述引导槽设为两根,并排且竖直设置。所述X轴滑轨通过螺钉安装在引导槽上。
作为本发明的优选方案,所述光栅投影仪的光轴与摄像机光轴相交于载物平台,且二者之间的夹角小于30°。
作为本发明的优选方案,所述摄像机对载物平台的视野面积不大于60mm*70mm。
作为本发明的优选方案,所述摄像机采用高分辨率式面阵工业相机,其图像采集频率大于60Hz;所述摄像机采集延时小于6ms,且以每秒60张的速率采集图像;所述光栅投影仪使用高分辨率式DLP投影仪,其投射光栅频率最高为120Hz。
结合图3和图4所示,本发明还公开了一种多频率结构光三维测量设备的测量方法,所述测量方法主要包括步骤S1:设备初始化和步骤S2:测量工作两大部分,所述步骤S1包括如下具体步骤:
步骤S11:成像系统机械位置校准:调节紧固支架的高度,来改变摄像机的物距。调节摄像机镜头的焦距使待测物体清晰成像。调节光栅投影仪的位置、角度和焦距,使其在视野中心呈清晰、完整的像。
步骤S12:设备标定步骤:使用9*11圆心平板标定板进行设备标定,摄像机和光栅投影仪位置固定后,将标定板放置在摄像机视野范围内,左、右光栅投影仪依次投射光栅,触发摄像机获取两组图像。移动标定板至视野范围内5个不同的位置采集图像,将采集图像发送至主机进行标定计算。
步骤S13:摄像机和光栅投影仪内外参数计算:将拍摄的图像转换成灰度图,找到标定图像中圆形,获取圆形参数,计算摄像机和光栅投影仪的内参、外参。
设备初始化后,设备可进行测量,所述步骤S2具体包括如下步骤:
步骤S21:触发摄像机、采集图像:将待测物体放置在摄像机视野中心位置,启动左、右投影依次投射光栅,同时触发摄像机采集图像,使用四步相移法,投射五频率光栅,单投影采集20张光栅图和1张白光图。
步骤S22:相位解包裹:使用多频率光栅迭代法计算出每个像素点的绝对相位值。
具体的,如图5所示,所述步骤S22采用四步相移法来抑制环境光和噪声的干扰,使用五频率迭代法来解相位,从而提高测量的精度,其具体步骤如下:
步骤S221:光栅投影仪投射正弦光栅到三维物体表面,摄像机摄取物体表面的变形条纹图,图像为:
In(x,y)=I′(x,y)+I″(x,y)cos[φn(x,y)+2πn/N] (1)
其中:In(x,y)为该像素点的灰度值,I′(x,y)为背景光强,I″(x,y)为光栅条纹增益,φ(x,y)为待求相位场,2πn/N为相移,采用四步相移,则n∈{0,1,2,3},N=4;
步骤S222:计算包裹相位值:使用摄像机拍摄光栅图像,四步相移法同频率光栅可获得四幅图像,通过图像处理,获取图像每一像素的灰度值,同频率光栅同一像素点可获得四个灰度值,分别为I0,I1,I2,I3,由公式(2)
Figure GDA0002940347050000071
可计算出相位主值Φ(x,y),其被包裹在(-π,π)的区间内,为了得到绝对相位需要进行解相位,又叫相位解包裹;
步骤S223:绝对相位计算原理:光栅投影仪向待测物体投射五频率光栅,光栅频率用fi表示,分别为x0,x1,x2,x3,x4,相应的光栅节距用p0,p1,p2,p3,p4表示。其中x0=1,当光栅频率f0=1时,相位主值等于绝对相位,ni,i∈{0,1,2,3,4}为条纹的级数,有如下等式成立:
pini=pjnj,i,j∈{0,1,2,3,4} (3)
ni=Ni+Δni,Ni∈Z (4)
Figure GDA0002940347050000072
其中,Φi(x,y)是第i幅光栅条纹的包裹相位,Ni为条纹级数中的整数部分,Δni为条纹级数的小数部分,由公式
φi(x,y)=2πNii(x,y) (6)
可计算出绝对相位φi(x,y);
步骤S224:计算绝对相位:当光栅频率f0=1时,节距p0覆盖整个视场,有n0=Δn0,n0p0=n1p1,由(4)式可知
Figure GDA0002940347050000073
其中floor()表示向下取整,又由
Figure GDA0002940347050000074
和公式(5)得
Figure GDA0002940347050000075
由公式(6)和公式(8)可算出φ1,如公式(9)所示
φ1(x,y)=2πN11(x,y) (9);
步骤S225:使用频率迭代法计算绝对相位:由等式(3)和等式(7)可得
Figure GDA0002940347050000081
则计算出φ2,同理,经过4次迭代计算出绝对相位φ4
步骤S226:第五种条纹光栅的频率为x4,当x=3时光栅的节距为1280/81个像素,可实现高精度测量。
步骤S23:左右投影数据配准:对左、右投影分别获取的物体三维信息进行配准、筛选,删除多余三维坐标,生成点云。
步骤S24:根据点云进行三维重建。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种多频率结构光三维测量方法,其特征在于,所述测量方法包括步骤S1:设备初始化和步骤S2:测量工作两大部分,步骤S1包括如下具体步骤:
步骤S11:成像系统机械位置校准:调节紧固支架的高度,来改变摄像机的物距;调节摄像机镜头的焦距使待测物体清晰成像;调节光栅投影仪的位置、角度和焦距,使其在视野中心呈清晰、完整的像;
步骤S12:设备标定步骤:使用9*11圆心平板标定板进行设备标定,摄像机和光栅投影仪位置固定后,将标定板放置在摄像机视野范围内,左、右光栅投影仪依次投射光栅,触发摄像机获取两组图像;移动标定板至视野范围内5个不同的位置采集图像,将采集图像发送至主机进行标定计算;
步骤S13:摄像机和光栅投影仪内外参数计算:将拍摄的图像转换成灰度图,找到标定图像中圆形,获取圆形参数,计算摄像机和光栅投影仪的内参、外参;
设备初始化后,设备可进行测量,所述步骤S2具体包括如下步骤:
步骤S21:触发摄像机、采集图像:将待测物体放置在摄像机视野中心位置,启动左、右投影依次投射光栅,同时触发摄像机采集图像,使用四步相移法,投射五频率光栅,单投影采集20张光栅图和1张白光图;
步骤S22:相位解包裹:使用多频率光栅迭代法计算出每个像素点的绝对相位值;
步骤S23:左右投影数据配准:对左、右投影分别获取的物体三维信息进行配准、筛选,删除多余三维坐标,生成点云;
步骤S24:根据点云进行三维重建;
所述步骤S22采用四步相移法来抑制环境光和噪声的干扰,使用五频率迭代法来解相位,从而提高测量的精度,其具体步骤如下:
步骤S221:光栅投影仪投射正弦光栅到三维物体表面,摄像机摄取物体表面的变形条纹图,图像为:
In(x,y)=I′(x,y)+I″(x,y)cos[φn(x,y)+2πn/N] (1)
其中:In(x,y)为该像素点的灰度值,I′(x,y)为背景光强,I″(x,y)为光栅条纹增益,φ(x,y)为待求相位场,2πn/N为相移,采用四步相移,则n∈{0,1,2,3},N=4;
步骤S222:计算包裹相位值:使用摄像机拍摄光栅图像,四步相移法同频率光栅可获得四幅图像,通过图像处理,获取图像每一像素的灰度值,同频率光栅同一像素点可获得四个灰度值,分别为I0,I1,I2,I3,由公式(2)
Figure FDA0002940347040000021
可计算出相位主值Φ(x,y),其被包裹在(-π,π)的区间内,为了得到绝对相位需要进行解相位,又叫相位解包裹;
步骤S223:绝对相位计算原理:光栅投影仪向待测物体投射五频率光栅,光栅频率用fi表示,分别为x0,x1,x2,x3,x4,相应的光栅节距用p0,p1,p2,p3,p4表示,其中x0=1,当光栅频率f0=1时,相位主值等于绝对相位,ni,i∈{0,1,2,3,4}为条纹的级数,有如下等式成立:
pini=pjnj,i,j∈{0,1,2,3,4} (3)
ni=Ni+Δni,Ni∈Z (4)
Figure FDA0002940347040000022
其中,Φi(x,y)是第i幅光栅条纹的包裹相位,Ni为条纹级数中的整数部分,Δni为条纹级数的小数部分,由公式
φi(x,y)=2πNii(x,y) (6)
可计算出绝对相位φi(x,y);
步骤S224:计算绝对相位:当光栅频率f0=1时,节距p0覆盖整个视场,有n0=Δn0,n0p0=n1p1,由(4)式可知
Figure FDA0002940347040000023
其中floor{}表示向下取整,又由
Figure FDA0002940347040000024
和公式(5)得
Figure FDA0002940347040000025
由公式(6)和公式(8)可算出φ1,如公式(9)所示
φ1(x,y)=2πN11(x,y) (9);
步骤S225:使用频率迭代法计算绝对相位:由等式(3)和等式(7)可得
Figure FDA0002940347040000026
则计算出φ2,同理,经过4次迭代计算出绝对相位φ4
步骤S226:第五种条纹光栅的频率为x4,当x=3时光栅的节距为1280/81个像素,可实现高精度测量。
CN201910707645.1A 2019-08-01 2019-08-01 一种多频率结构光三维测量方法 Active CN110500970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910707645.1A CN110500970B (zh) 2019-08-01 2019-08-01 一种多频率结构光三维测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910707645.1A CN110500970B (zh) 2019-08-01 2019-08-01 一种多频率结构光三维测量方法

Publications (2)

Publication Number Publication Date
CN110500970A CN110500970A (zh) 2019-11-26
CN110500970B true CN110500970B (zh) 2021-05-11

Family

ID=68587006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910707645.1A Active CN110500970B (zh) 2019-08-01 2019-08-01 一种多频率结构光三维测量方法

Country Status (1)

Country Link
CN (1) CN110500970B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325799A (zh) * 2021-01-07 2021-02-05 南京理工大学智能计算成像研究院有限公司 一种基于近红外光投影的高精度三维人脸测量方法
CN113670229A (zh) * 2021-08-10 2021-11-19 南京中车浦镇城轨车辆有限责任公司 一种轨道车辆车体底架曲面面型检测系统及其检测方法
CN113916156B (zh) * 2021-12-13 2022-06-24 英特维科技(深圳)有限公司 一种高速高精度三维检测系统及方法
CN116664796B (zh) * 2023-04-25 2024-04-02 北京天翔睿翼科技有限公司 轻量级头部建模系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758020A (zh) * 2005-11-18 2006-04-12 北京航空航天大学 基于自适应正弦条纹投射的立体视觉检测系统
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN110595387A (zh) * 2019-08-01 2019-12-20 佛山市南海区广工大数控装备协同创新研究院 一种基于多频率结构光的三维重建系统标定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2150037A5 (zh) * 1971-08-09 1973-03-30 Ibm
JPS5533679A (en) * 1978-09-01 1980-03-08 Fuji Photo Optical Co Ltd Measuring method of distance
CN101464619B (zh) * 2008-12-26 2011-03-16 顾金昌 一种数码立体拼图投影成像感光设备及其操作方法
CN103376071B (zh) * 2012-04-20 2017-06-30 德律科技股份有限公司 三维测量系统与三维测量方法
CN102920513B (zh) * 2012-11-13 2014-10-29 吉林大学 一种基于投影仪的增强现实系统试验平台
CN103292740B (zh) * 2013-05-24 2016-04-13 贵阳嘉瑜光电科技咨询中心 一种三维扫描仪测量方法及其装置
CN105300311B (zh) * 2015-11-10 2017-11-14 广东工业大学 线结构光扫描测量设备中的视觉传感器
CN105423913B (zh) * 2015-11-10 2018-01-09 广东工业大学 基于线结构光扫描的三维坐标测量方法
CN106989695B (zh) * 2017-04-28 2020-03-31 广东工业大学 一种投影仪标定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758020A (zh) * 2005-11-18 2006-04-12 北京航空航天大学 基于自适应正弦条纹投射的立体视觉检测系统
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN110595387A (zh) * 2019-08-01 2019-12-20 佛山市南海区广工大数控装备协同创新研究院 一种基于多频率结构光的三维重建系统标定方法

Also Published As

Publication number Publication date
CN110500970A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110500970B (zh) 一种多频率结构光三维测量方法
CN109489585B (zh) 基于改进多频条纹结构光的三维测量方法
CA2378867C (en) Method and system for measuring the relief of an object
WO2015188515A1 (zh) 基于纵横转换放大的宏微复合光栅尺测量系统
CN102519390B (zh) 三编码周期灰度梯形相移结构光三维信息获取方法
CN103994731B (zh) 柱面干涉拼接测量装置及其调整方法
JP5375201B2 (ja) 三次元形状測定方法及び三次元形状測定装置
CN104655051A (zh) 一种高速结构光三维面形垂直测量方法
CN1267699C (zh) 基于相移的光栅投影式三维轮廓测量装置及测量方法
CN110595387A (zh) 一种基于多频率结构光的三维重建系统标定方法
CN102261896A (zh) 一种基于相位测量的物体三维形貌测量方法及系统
CN102519393A (zh) 用两个正交正弦光栅实现快速调制度测量轮廓术的方法
CN106524943B (zh) 一种双旋转激光的三维重构装置及方法
CN109631798A (zh) 一种基于π相移方法的三维面形垂直测量方法
CN109855559B (zh) 一种全空间标定系统及方法
CN110398199A (zh) 一种建筑限界检测方法
CN115479557A (zh) 一种基于相移偏折术的高反射物体表面缺陷检测
CN109297434A (zh) 基于光学相干层析的全深式曲面轮廓测量装置及控制方法
CN109712139A (zh) 基于线性运动模组的单目视觉的尺寸测量方法
CN209085557U (zh) 基于光学相干层析的全深式曲面轮廓测量装置
CN102519396B (zh) 三个灰度对称线性编码周期的采样点三维信息获取方法
CN114252025A (zh) 一种多平行线激光物体三维轮廓测量装置及测量方法
CN110141800B (zh) 一种加速器光距尺设备、标定方法及光距尺生成方法
Tang et al. Calibration of an arbitrarily arranged projection moiré system for 3D shape measurement
CN109945801A (zh) 一种基于空域相移单帧图像调制度解调方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant