CN110499153A - 一种线粒体定位的碳点、制备方法及其在银离子检测中的应用 - Google Patents

一种线粒体定位的碳点、制备方法及其在银离子检测中的应用 Download PDF

Info

Publication number
CN110499153A
CN110499153A CN201910969065.XA CN201910969065A CN110499153A CN 110499153 A CN110499153 A CN 110499153A CN 201910969065 A CN201910969065 A CN 201910969065A CN 110499153 A CN110499153 A CN 110499153A
Authority
CN
China
Prior art keywords
carbon dots
mitochondria
preparation
silver ion
mitochondria positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910969065.XA
Other languages
English (en)
Other versions
CN110499153B (zh
Inventor
于明明
卜丹丹
李占先
刘含笑
魏柳荷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Publication of CN110499153A publication Critical patent/CN110499153A/zh
Application granted granted Critical
Publication of CN110499153B publication Critical patent/CN110499153B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于分析化学技术领域,尤其涉及一种线粒体定位的碳点、制备方法及其在银离子检测中的应用,所制备的碳点在银离子的浓度为0至1毫摩尔每升发光强度呈现线性降低,具有比较宽的pH应用范围、很好的光和热稳定性、选择性、抗干扰性,并且能够定位线粒体,适用于细胞内银离子的双通道荧光检测。

Description

一种线粒体定位的碳点、制备方法及其在银离子检测中的 应用
技术领域
本发明属于分析化学技术领域,尤其涉及一种线粒体定位的碳点、制备方法及其在银离子检测中的应用。
背景技术
银离子是水生环境中经常被发现的有害离子,此外,银离子在许多行业中都有广泛的应用,主要涉及药品、摄影,成像,身体喷雾剂,牙膏和沐浴产品的生产等。据世界卫生组织(WHO)称,人体中Ag+的含量低于0.05 ppm(0.05 µg/mL)对人体是安全的。任何方式过量摄入人体内的银离子(Ag+)都可能使其与不同代谢物和水生微生物发生相互作用,进而引起不可逆转的皮肤问题,神经系统损害,胃痛、甚至致命。目前,人们通常利用化学传感器检测水介质中银离子,进而对其定性和定量研究,如电化学、伏安法和比色分析法等。但是这些方法存在一些缺陷,如选择性和灵敏度较低,并且受其他金属离子的干扰,水溶性差,预制剂制备困难,昂贵且耗时等。因此,设计和开发一种简单、快速和灵敏地用于水介质中选择性检测Ag+的探针非常必要。
荧光成像技术由于其检测具有非破坏性、高灵敏性、响应速度快、高信噪比等特点已经成为研究生物细胞中生物分子、路径和过程的重要工具,已经报道的银离子的荧光探针包括有机分子、碳点纳米材料。有机分子化学稳定性差、光漂白和光降解现象比较严重,生物相容性不好问题,限制了其应用。碳点具有良好的水溶性、生物相容性、低毒性和光谱多样性等特点吸引了越来越多的科研工作者研究它们在生物医学相关领域的应用。目前报道的碳点大多数是短波长的光激发,并且发射光以蓝光居多,这些特点很大程度上限制了这类材料在生物医学方面的应用。
发明内容
本发明的目的是提供一种线粒体定位的碳点、制备方法及其在银离子检测中的应用。
为达到上述目的,本发明采用的技术方案是:
一种线粒体定位碳点的制备方法,包括以下步骤:
(1)将邻苯二胺和聚合度为1700-2400的聚乙烯醇加入到10~50 mL去离子水中,充分混合以后将混合溶液转移至聚四氟乙烯内衬的不锈钢反应釜中,并向反应釜中加入磷酸溶液,然后将反应釜置于215-220℃的电热恒温鼓风干燥箱中反应6-12小时,然后将反应釜冷却至室温后取出,取上清液放入截留分子量为500D的透析袋中透析24小时,并每隔8小时换一次水;
(2)向步骤(1)所得溶液中加入聚合度为1200的聚乙烯醇,于超声条件下处理1-2小时,再于150℃下水热反应3-6小时,过滤,滤液真空干燥得到固体粉末;
(3)向步骤(2)所得的固体粉末中加入无水乙醇后超声并离心处理,除去上清液并用截留分子量为1000D的透析袋透析后,取沉淀进行冷冻干燥后得到亮黄色的线粒体定位碳点。
进一步的,所述步骤(1)中邻苯二胺与聚乙烯醇的质量比为1:3~3:1,磷酸与去离子水的体积比为1:2~3:2。
进一步的,所述步骤(2)中聚乙烯醇的质量为步骤(1)中的一半。
进一步的,所述步骤(3)中离心转速为10000-16000r/min,离心时间10-35min,透析时间24-48小时。
一种用线粒体定位碳点的制备方法制备的线粒体定位碳点。
一种线粒体定位碳点在银离子检测中的应用,所制备的线粒体定位碳点在银离子的浓度为0至1毫摩尔每升发光强度呈现线性降低,在pH为5~13时均可以检测银离子、在0~1mM的银离子浓度范围内,该碳点能够定量检测银离子,并且能够定位线粒体,适用于细胞内银离子的双通道荧光检测。
本发明具有的优点是:本发明的黄光碳点具有较高的荧光量子产率(29.5%),良好的光、热稳定性和高盐稳定性,对银离子有较宽的pH应用范围(5~13);并且在0~1 mM的银离子浓度范围内发光强度呈现线性降低,该碳点能够定量检测银离子,检测2.62 µM。pH从6.8至8.8发光表现出比率变化,细胞实验表明该碳点能够定位线粒体,能够双通道检测细胞中的银离子。
附图说明
图1是碳点的投射电子显微镜照片;
图2 是碳点的粒径分布柱状图;
图3是碳点的红外光谱图;
图4 是碳点的XPS全谱扫描;
图5是碳点C1s的分峰拟合图;
图6是碳点O1s的分峰拟合图;
图7是碳点N1s的分峰拟合图;
图8是碳点的紫外谱图,碳点浓度0.1 mg/mL;
图9是碳点随激发波长不同的荧光光谱图,激发波长分别为370 nm,380 nm,390 nm,400 nm,410 nm,420 nm,430 nm,440 nm,450 nm,460 nm,470 nm,480 nm,490 nm,500 nm,510 nm,520 nm,530 nm,碳点浓度0.1 mg/mL;
图10碳点的光稳定性,激发波长420 nm,碳点浓度0.1 mg/mL,(I0表示563 nm处照射前的发光强度,I表示563 nm处照射后的发光强度);
图11碳点的热稳定性,激发波长420 nm,碳点浓度0.1 mg/mL,(I0表示563 nm处照射前的发光强度,I表示563 nm处照射后的发光强度);
图12碳点在氯化钠中的稳定性,激发波长420 nm,碳点浓度0.1 mg/mL,(I0表示563 nm处照射前的发光强度,I表示563 nm处照射后的发光强度);
图13 向碳点中加入不同浓度的银离子后的荧光光谱图,激发波长420 nm,碳点浓度0.1 mg/mL;
图14向碳点溶液中加入不同浓度的银离子后的荧光强度线性图,激发波长420 nm,碳点浓度0.1 mg/mL;
图15在碳点溶液中加入不同浓度的银离子随时间的563 nm处荧光强度变化,激发波长420 nm,碳点浓度0.1 mg/mL;
图16在不同pH水溶液中加入银离子(浓度为1 mM)前后碳点的荧光变化图,激发波长420 nm,碳点浓度0.1 mg/mL;
图17碳点对阳离子的选择性和抗干扰性柱状图,碳点浓度0.1 mg/mL,溶剂为水,阳离子浓度(1 mM),溶剂为水,激发波长420 nm,563 nm处的发光强度;
图18碳点线粒体定位图;(a),(b)为在碳点溶液培养了30分钟后海拉细胞的共聚焦荧光显微镜 (通道 1: 激发波长=420 nm, 发射波长=525 ± 25 nm, (a))和 线粒体定位剂(2.0 mm)培养30分钟 (通道2: 激发波长=640 nm, 发射波长=663–738 nm, (b)). (c)(a)和(b)的合并图像。(d)明场图像。(e)碳点与线粒体定位剂强度相关图(Rr =0.90).
图19碳点对HeLa细胞毒性图;
图20碳点在HeLa细胞中对银离子的荧光成像图。海拉细胞与0.1 mg/mL碳点孵育后和海拉细胞与0.1 mg/mL碳点和1.0×10−3摩尔/升银离子孵育后共聚焦激光扫描荧光显微镜图像。第一列图像采集于绿色通道(525±25nm),激发波长405nm。第二列的图像收集在红色通道(595±25纳米)。第三列显示绿色通道和红色通道的发射强度叠加。
具体实施方式
碳点的制备与表征
(1)按照质量比1:3~3:1将邻苯二胺和聚合度1700-2400的聚乙烯醇称取,并加入到10~50 mL去离子水中,充分混合后将上述液体转移至聚四氟乙烯内衬的不锈钢反应釜中,并在反应釜中加入磷酸溶液,磷酸与去离子水的体积比为1:2~3:2,置于电热恒温鼓风干燥箱,温度设置为215-220℃,反应6-12小时。随后将反应釜冷却至室温后取出,取上清液放入透析袋(MWCO:100D)中透析24小时,每隔8小时换一次水。
(2)向步骤(1)所得溶液中加入聚乙烯醇,步骤2的聚合度为1200的聚乙烯醇与步骤1中聚乙烯醇的质量比为1:2,超声处理,超声时间1-2小时;150℃下水热反应3-6小时,过滤,滤液真空干燥得到固体粉末;
(3)向步骤2中的固体粉末中加入无水乙醇,超声并离心,离心转速为10000-16000r/min,离心时间10-35min,除去上清液后并用截留分子量为1000D的透析袋透析24-48小时后,将沉淀冷冻干燥得到亮黄色碳点。
一种用线粒体定位碳点的制备方法制备的线粒体定位碳点。
一种线粒体定位碳点在银离子检测中的应用,所制备的线粒体定位碳点在银离子的浓度为0至1毫摩尔每升发光强度呈现线性降低,在pH为5~13时均可以检测银离子、在0~1mM的银离子浓度范围内,该碳点能够定量检测银离子,并且能够定位线粒体,适用于细胞内银离子的双通道荧光检测。
如图1所示为碳点的投射电镜照片,从图中可知碳点分散性良好,没有团聚现象;如图2所示为碳点的粒径分布柱状图,从图中可以看出碳点的平均粒径为6.45 nm;如图3所示为碳点的红外光谱图,图4、5、6和7为碳点的XPS图。分析这几张图可知碳点表面含有羟基和氨基等亲水性官能团,这些官能团为我们所制备的碳点具有良好的水溶性提供了保障。
本实施例中制备的碳点的光物理性质及其在检测方面的应用
如图8所示为碳点的紫外可见光谱,说明碳点在420纳米处有较强的吸收;图9 所示为碳点随激发波长不同的荧光光谱图,从图中可以看出随激发波长变化,荧光发射峰的位置没有明显变化,只有荧光强度变化,表明荧光发射峰的位置不随激发波长的改变而改变;图10和图11分别表示碳点的光稳定性和热稳定性图谱,从图中可以看出的碳点有很好的光稳定性和热稳定性;图12 所示为碳点在不同浓度的氯化钠中的荧光光谱,从图中可以看出在0到5毫摩尔每升的氯化钠浓度范围内碳点的光谱性质稳定;图13 所示为向碳点水溶液(0.1 mg/mL)中加入不同浓度的银离子后的荧光光谱图,图14所示为向碳点水溶液(0.1mg/mL)中加入不同浓度的银离子后的563纳米处的荧光强度随银离子浓度变化的线性图,从这两张图可以看出碳点在银离子浓度为0到1毫摩尔每升的范围内可以定量检测银离子,检测限为2.62 µM;图15所示为向碳点水溶液(0.1 mg/mL)中加入不同浓度的银离子随时间的变化图,从图中可以看出碳点对银离子响应速度非常快(1 min); 图16 所示为向碳点的不同pH水溶液(0.1 mg/mL)中加入银离子离子(1 mM)前后的荧光变化图,从图中可以看出碳点在pH为4到13的范围内都可以检测银离子;图17 所示为碳点对阳离子的选择性和抗干扰性柱状图,从图中可以看出Ca2+、Cd2+、Cr2+、Cu2+、K+、Mg2+、Mn2+、Na+、Ni+等金属离子对银离子检测没有影响;图18 所示为碳点对线粒体定位图,从图中可以看出碳点对线粒体有很好的定位效果,与商用的线粒体定位染料相比,重叠系数大于百分之九十;图19 所示为碳点对HeLa细胞毒性图,从图中可以看出当碳点浓度低于0.35 mg/mL时,与HeLa细胞孵育,细胞的存活率在70%以上,细胞半死率的碳点浓度约在0.7 mg/mL。此外,细胞在碳点浓度很大(1mg/mL)时也有少数能存活;图20 所示为碳点对HeLa细胞中银离子的荧光成像图,从图中可以看出碳点可以以双通道检测细胞中的银离子。
综上所述,利用一步合成法,我们得到了银离子的碳点荧光探针。该碳点有很好的光、热、高盐发光稳定性,并能在较宽的pH范围(4至13)检测银离子。细胞实验表明所制备的碳点具有低毒和线粒体定位功能,并能双通道检测细胞中的银离子。

Claims (6)

1.一种线粒体定位碳点的制备方法,其特征在于,包括以下步骤:
(1)将邻苯二胺和聚合度为1700-2400的聚乙烯醇加入到10~50 mL去离子水中,充分混合以后将混合溶液转移至聚四氟乙烯内衬的不锈钢反应釜中,并向反应釜中加入磷酸溶液,然后将反应釜置于215-220℃的电热恒温鼓风干燥箱中反应6-12小时,然后将反应釜冷却至室温后取出,取上清液放入截留分子量为500D的透析袋中透析24小时,并每隔8小时换一次水;
(2)向步骤(1)所得溶液中加入聚合度为1200的聚乙烯醇,于超声条件下处理1-2小时,再于150℃下水热反应3-6小时,过滤,滤液真空干燥得到固体粉末;
(3)向步骤(2)所得的固体粉末中加入无水乙醇后超声并离心处理,除去上清液并用截留分子量为1000D的透析袋透析后,取沉淀进行冷冻干燥后得到亮黄色的线粒体定位碳点。
2.如权利要求1所述的线粒体定位碳点的制备方法,其特征在于:所述步骤(1)中邻苯二胺与聚乙烯醇的质量比为1:3~3:1,磷酸与去离子水的体积比为1:2~3:2。
3.如权利要求2所述的线粒体定位碳点的制备方法,其特征在于:所述步骤(2)中聚乙烯醇的质量为步骤(1)中的一半。
4.如权利要求3所述的线粒体定位碳点的制备方法,其特征在于:所述步骤(3)中离心转速为10000-16000r/min,离心时间10-35min,透析时间24-48小时。
5.权利要求1-4任一所述的线粒体定位碳点的制备方法制备的线粒体定位碳点。
6.如权利要求5所述的线粒体定位碳点在银离子检测中的应用,其特征在于:所制备的线粒体定位碳点在银离子的浓度为0至1毫摩尔每升发光强度呈现线性降低,在pH为5~13时均可以检测银离子、在0~1 mM的银离子浓度范围内,该碳点能够定量检测银离子,并且能够定位线粒体,适用于细胞内银离子的双通道荧光检测。
CN201910969065.XA 2019-07-15 2019-10-12 一种线粒体定位的碳点、制备方法及其在银离子检测中的应用 Expired - Fee Related CN110499153B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910635131 2019-07-15
CN201910635131X 2019-07-15

Publications (2)

Publication Number Publication Date
CN110499153A true CN110499153A (zh) 2019-11-26
CN110499153B CN110499153B (zh) 2022-08-19

Family

ID=68593279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910969065.XA Expired - Fee Related CN110499153B (zh) 2019-07-15 2019-10-12 一种线粒体定位的碳点、制备方法及其在银离子检测中的应用

Country Status (1)

Country Link
CN (1) CN110499153B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157501A (zh) * 2020-01-07 2020-05-15 香港科技大学深圳研究院 一种细胞内纳米银和银离子定量的测定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633726A (zh) * 2012-03-29 2012-08-15 上海师范大学 一种螺二芴类荧光探针及其制备方法与用途
CN104357049A (zh) * 2014-11-07 2015-02-18 山西大学 一种荧光碳量子点及其制备方法和应用
CN105733564A (zh) * 2016-04-12 2016-07-06 郑州大学 一种线粒体靶向的pH敏感的比率型荧光探针及其制备方法和应用
CN106053408A (zh) * 2016-05-17 2016-10-26 无锡市疾病预防控制中心 基于碳点荧光探针的高灵敏高选择性检测水中和/或环境中痕量银纳米粒子的方法
CN106706583A (zh) * 2016-12-16 2017-05-24 盐城工学院 一种水溶性荧光碳点在检测重金属银离子含量中的应用
CN107216873A (zh) * 2017-05-19 2017-09-29 辽宁大学 一种用于检测银离子和巯基丁二酸的碳点的制备方法及其应用
CN108587619A (zh) * 2018-07-06 2018-09-28 郑州大学 一种发光碳量子点及其制备方法与应用
CN108690609A (zh) * 2018-05-10 2018-10-23 中国科学院理化技术研究所 一种水溶或油溶性碳点及荧光碳点的合成方法
CN108728085A (zh) * 2018-05-28 2018-11-02 郑州大学 一种比率发光碳点探针的制备方法及其应用
CN108913132A (zh) * 2018-07-20 2018-11-30 江南大学 一种双发射碳基纳米探针的制备方法及其产物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633726A (zh) * 2012-03-29 2012-08-15 上海师范大学 一种螺二芴类荧光探针及其制备方法与用途
CN104357049A (zh) * 2014-11-07 2015-02-18 山西大学 一种荧光碳量子点及其制备方法和应用
CN105733564A (zh) * 2016-04-12 2016-07-06 郑州大学 一种线粒体靶向的pH敏感的比率型荧光探针及其制备方法和应用
CN106053408A (zh) * 2016-05-17 2016-10-26 无锡市疾病预防控制中心 基于碳点荧光探针的高灵敏高选择性检测水中和/或环境中痕量银纳米粒子的方法
CN106706583A (zh) * 2016-12-16 2017-05-24 盐城工学院 一种水溶性荧光碳点在检测重金属银离子含量中的应用
CN107216873A (zh) * 2017-05-19 2017-09-29 辽宁大学 一种用于检测银离子和巯基丁二酸的碳点的制备方法及其应用
CN108690609A (zh) * 2018-05-10 2018-10-23 中国科学院理化技术研究所 一种水溶或油溶性碳点及荧光碳点的合成方法
CN108728085A (zh) * 2018-05-28 2018-11-02 郑州大学 一种比率发光碳点探针的制备方法及其应用
CN108587619A (zh) * 2018-07-06 2018-09-28 郑州大学 一种发光碳量子点及其制备方法与应用
CN108913132A (zh) * 2018-07-20 2018-11-30 江南大学 一种双发射碳基纳米探针的制备方法及其产物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAIYONG CHAO等: "Solvent-dependent carbon dots and their applications in the detection of water in organic solvents", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
JUANJUAN LIU等: "One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO- probing and cell imaging", 《NANOSCALE》 *
MOHAMMAD AMJADI等: "Study of the interaction of β-carbolines with gold nanoparticles and its application to turn-on fluorescence detection of silver ion", 《JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY》 *
YAN-YUN LI等: "Ratiometric fluorescence detection of silver ions using thioflavin T-based organic/inorganic hybrid supraparticles", 《ANALYST》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157501A (zh) * 2020-01-07 2020-05-15 香港科技大学深圳研究院 一种细胞内纳米银和银离子定量的测定方法

Also Published As

Publication number Publication date
CN110499153B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Iravani et al. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review
Wang et al. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications
CN110511750B (zh) 制备两种波段单光子和双光子荧光碳量子点的方法及应用
Wang et al. Bi-functional fluorescent polymer dots: a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe 3+
Gu et al. Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging
CN108929672B (zh) 一种以虾壳为碳源的碳量子点及其制备方法和在检测抗坏血酸中的应用
CN110117488B (zh) 近红外抗生素荧光探针检测试剂、其制备方法与应用
Kumari et al. Modulating the physicochemical and biological properties of carbon dots synthesised from plastic waste for effective sensing of E. coli
Liu et al. Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water
Yang et al. A Eu3+-inspired fluorescent carbon nanodot probe for the sensitive visualization of anthrax biomarker by integrating EDTA chelation
CN108384539A (zh) 一种绿色荧光碳量子点、制备方法及其应用
CN111690405B (zh) 一种荧光碳点及其制备方法和在检测铜离子中的应用
CN111154485B (zh) 硫氮双掺杂碳量子点的制备及其在四环素检测中的应用
CN108485661A (zh) 一种荧光碳量子点的制备方法及其应用
Liu et al. Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid
CN109628087B (zh) 一种红色荧光碳点及其制备方法和应用
Msto et al. Fluorescence turns on‐off‐on sensing of ferric ion and L‐ascorbic acid by carbon quantum dots
CN110713829A (zh) 橙光碳点的制备及其对Fe3+的检测
Pang et al. Cu (II)-assisted orange/green dual-emissive carbon dots for the detection and imaging of anthrax biomarker
CN110499153A (zh) 一种线粒体定位的碳点、制备方法及其在银离子检测中的应用
Li et al. Recent advances in rare earth ion‐doped upconversion nanomaterials: From design to their applications in food safety analysis
CN109097026B (zh) 一种纳米花状Al-MOF荧光探针材料及其制备方法与应用
CN112980437B (zh) 一种氮硫掺杂高效红光发射的碳点及制备方法和应用
CN112079892B (zh) 碳量子点掺杂稀土比率型荧光探针的制备方法及其应用
Fan et al. A dual-channel “on–off–on” fluorescent probe for the detection and discrimination of Fe 3+ and Hg 2+ in piggery feed and swine wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220819