CN110498680A - 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用 - Google Patents

双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用 Download PDF

Info

Publication number
CN110498680A
CN110498680A CN201910872565.1A CN201910872565A CN110498680A CN 110498680 A CN110498680 A CN 110498680A CN 201910872565 A CN201910872565 A CN 201910872565A CN 110498680 A CN110498680 A CN 110498680A
Authority
CN
China
Prior art keywords
ferroelectric
particle diameter
ferroelectric ceramics
grain
diameter distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910872565.1A
Other languages
English (en)
Inventor
张红芳
高炬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201910872565.1A priority Critical patent/CN110498680A/zh
Publication of CN110498680A publication Critical patent/CN110498680A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Abstract

本发明属于铁电陶瓷技术领域,具体涉及双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用。所述钙钛矿铁电陶瓷是指晶粒粒径包括细晶和粗晶,所述细晶的粒径为0.2~2μm,所述粗晶粒径为2~300μm。所述制备方法包括采用固相反应法制备微米级铁电粉体作为掺入相;采用湿化学方法制备纳米级铁电粉体作为基相和将掺入相和基相混合后,压片烧结获得目标物。通过制备双晶粒粒径分布结构来提高钙钛矿铁电陶瓷电卡效应。与现有技术相比,通过细晶和粗晶的结合,提高了铁电材料在宽温度范围内的电卡效应。

Description

双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用
技术领域
本发明属于铁电陶瓷技术领域,具体涉及双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用。
背景技术
近年来,人类社会的可持续发展对传统蒸汽-压缩式制冷技术在环保、能效等方面提出了更高要求,发展环境友好、节能高效的真正实现零碳排放的新型制冷技术成为当前制冷业的迫切要求。
铁电致冷原理(Electrocaloric Effect,ECE)是在绝热条件下对铁电体施加或去除电场会导致铁电体温度发生变化。即:绝热条件下施加电场使铁电材料发生极化,有序度增加,偶极熵减少,材料温度升高;而绝热条件下去除电场使铁电材料去极化,有序度减小,偶极熵增加,材料温度降低。通过一定的结构设计,使电卡效应形成致冷循环,可用于新型致冷器的开发。
而发展铁电致冷器的关键是研制能在室温附近工作且在较宽的温度区间具有巨大的电卡效应的铁电材料。这里所谓的巨大“ECE”其实则是指在一定的温度范围内,铁电致冷材料在合适的电场下能够有较大的绝热温变(ΔT)和等温熵变(ΔS)。目前已经报导的具有大的电卡效应有A.S.Mischenko等在Science,311:1270-1271,2006中报道的PbZr0.95Ti0.05薄膜、B.C.Neese等在Science,321:821-823,2008报道的铁电聚合物P(VDF-TrFE)等。
对于铁电薄膜来说,存在着基片和由于漏电流过大产生过大的焦耳热问题,而高聚物存在着由于玻璃转化温度在零度以下,因此对于多层结构的高聚物,不易施加高电场,这对电卡效应影响较大。而陶瓷与单晶的铁电材料,相对于高聚物材料来说,导热快、传热效率高,其制冷容量能满足大中型制冷设备的需求,这是其他任何材料都无法做到的优势条件。目前已经有的对铁电单晶的研究也是集中在有铅的如PMM-PT,无铅的BaTiO3单晶。这些铁电单晶的居里点都远高于室温,并且单晶的制备设备昂贵、操作复杂、合成成本高等不利于产业化的因素。
对陶瓷块体电卡效应的研究主要集中在含铅和无铅的铁电材料上,这些块体材料的制备所采用的原材料是用煅烧过的微米或纳米粉体,再经一定的温度烧结后形成具有均匀晶粒尺寸分布的微观结构,即晶粒尺寸分布为正态分布结构(Unimodal-grain sizedstructure)。通常来说,晶粒尺寸分布为正态分布形成的微观结构可根据晶粒尺寸的大小分为细晶或粗晶结构。对于细晶的微观结构的块体材料来说,其晶粒大小不大于2μm的晶粒尺寸分布;而对于粗晶来说,其的晶粒大小由至少大于2μm以上的大晶粒尺寸分布组成。这种单峰晶粒尺寸分布的结构的陶瓷如含铅的Tuttle和Payne在Pb0.98Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3陶瓷中161℃得到2.5℃的绝热温变,所加电场为3MV/m;无铅的如B.Yang等在Journal of Applied Physics,110:094103,2011中报道的(Ba,Sr)TiO3和X.S.Qian等在Functional Materials,24:1300-1305,2014中报道Ba(ZrxTi1–x)O3的无铅类铁电陶瓷,其中Ba(ZrxTi1–x)O3在室温附近,在2.1MV/m条件下得到1.1K的绝热温变,对制备可实用化的致冷器仍有较大的距离。
发明内容
本发明提供了具有双峰晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用,用以解决目前钙钛矿铁电陶瓷在室温附近较宽温度范围内的电卡效应低的问题。
为了解决上述技术问题,本发明的技术方案是:所述双晶粒粒径分布结构的钙钛矿铁电陶瓷,其为双晶晶粒结构(Bimodal-grain sized structure),是指晶粒粒径分布由细晶和粗晶组成,所述细晶的粒径为0.2~2μm,所述粗晶粒径为2~300μm。
可选地,所述钙钛矿铁电陶瓷为ABO3结构类。
所述ABO3钙钛矿结构类铁电陶瓷比较常见的有Pb(Zr,Ti)O3(PZT)系、PbTiO3(PT)系、PbZrO3(PZ)系、(Pb,Ba)(Zr,Ti)O3系、Pb(Zr,Sn,Ti)O3(PZST)系、Pb(Mg,Nb)O3(PMN)系、(Ba,Sr)TiO3(BST)系、BaTiO3(BT)系、(Ba,Zr)TiO3(BZT)、KNbO3(KN)或K(Nb,Na)O3(KNN)系化合物。
可选地,所述钙钛矿铁电陶瓷选自KN、BT、BST中的一种或一种以上的混合物,优选,KN-BT(KN和BT的混合物)或BST。
本发明还提供了上述双晶粒粒径分布结构的钙钛矿铁电陶瓷的制备方法,其包括如下步骤:
1)采用固相反应法制备微米级铁电粉体作为掺入相;
2)采用湿化学方法制备纳米级铁电粉体作为基相;
3)将掺入相和基相混合后,压片烧结获得目标物。
可选地,所述微米级铁电粉体的粒径在0.1~0.5μm,所述纳米级铁电粉体的粒径不大于0.1μm。
可选地,所述掺入相与基相的比例为(0.1~0.75)/1。
可选地,所述湿化学方法为溶胶-凝胶工艺或水热法,溶胶-凝胶工艺优选Pechini法。
本发明还提供了一种提升钙钛矿铁电陶瓷电卡效应的方法,其是指使得钙钛矿铁电陶瓷的结构中具有双晶粒粒径分布结构,具体包括粒径为0.2~2μm的细晶,和粒径为2~300μm的粗晶。
本发明提供的技术方案与现有技术相比具有如下特点:
1)现有技术中铁电陶瓷的晶粒大小都是呈正态分布的单峰粒径分布方式,即单一的晶粒尺寸不大于2μm的晶粒尺寸分布,或者是指单一的晶粒尺寸大于2μm大晶粒尺寸分布组成,本发明提供的这种双峰晶粒粒径分布结构的铁电陶瓷,细晶晶粒一方面可以提高陶瓷块体材料的致密度和机械性能;另一方面,可以加强铁电材料在居里点的相变弥散;而粗晶晶粒起着类似单晶的作用,可以提高铁电材料的介电性和铁电性。总的来说,这种新的结构可以满足铁电材料在宽温度范围内的具有大电卡效应;
2)在制备过程中,掺入相与基相的组元可以相同或者不同,这样,可以制备同组份或不同组份的复合材料,从而拓展了特殊性能开发的可能性,工艺简单,重复性好,成本低。
附图说明
图1是实施例1制备样品的X-射线的衍射图(A)、样品自然表面的SEM图(B)、样品断面的SEM图(C);
图2是实施例1样品在室温用直接法外加电场为1MV/m时的致冷度(ΔT);
图3是实施例1样品的相对介电常数在1kHz、10kHz和100kHz下与温度的关系;
图4是实施例2制备样品的X-射线衍射图(A)和自然表面的SEM图(B);
图5是实施例2样品的相对介电常数在1kHz、10kHz和100kHz下与温度的关系;
图6是实施例2制备样品在室温用直接法不同外加电场的致冷度(ΔT)和等温熵变。
具体实施方式
为了便于理解,下面结合实施例阐述所述具有双峰粒径分布的钙钛矿铁电陶瓷,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
本实施例中所用试剂与原材料如非特别指明,均为市售普通商品。本实施例中所采用的工艺过程,如无特别指明,均是常用技术。
实施例1 0.9KNbO3-0.1BaTiO3(KN/BT(9/1))
所述双粒径分布的钙钛矿铁电陶瓷,其化学成分为:0.9KNbO3-0.1BaTiO3(KN/BT(9/1)),具体制备过程如下:
1)以Nb2O5、K2CO3为原料,按照化学式:KNbO3进行配料,以无水乙醇为介质湿磨2小时,烘干后压大块Φ15*15mm2,放入马弗炉中在640℃保温2小时煅烧;煅烧的块体压碎过40目筛再球磨24小时,烘干后过200目筛备用;将制备的KNbO3粉体与纳米BaTiO3按0.9KNbO3-0.1BaTiO进行配制,经球磨混合后干燥,烘干后压大块Φ15*15mm2,放入马弗炉中在900℃煅烧保温2小时,将块体材料在研钵中砸碎,过40目筛的筛子,用无水乙醇为介质湿磨24小时,取出烘干,过200目筛,制备微米级铁电粉体,粒径约为0.1~0.5μm;
2)把Nb2O5溶解在高浓度的氢氟酸(含量不小于40%),经NH3·H2O滴定后制备Nb2O5水合物(Nb2O5·nH2O),再把Nb2O5·nH2O水合物溶解在柠檬酸溶液中;并对Nb5+的柠檬酸溶液中Nb5+的摩尔浓度进行标定,其他金属离子K+、Ba2+、Ti4+的来源分别是把高纯度的K2CO3、BaCO3碳酸盐和钛酸四正丁酯醇盐溶解在柠檬酸溶液中,并控制柠檬酸/Nb5+的摩尔比为3/1,柠檬酸/K+的摩尔比为3/1,柠檬酸/Ba2+的摩尔比为3/1,柠檬酸/Ti4+的摩尔比为30/1;
4)把溶解在柠檬酸溶液的金属离子Nb5+、K+、Ba2+、Ti4+,按0.9KNbO3-0.1BaTiO计算进行配比混合,用乙二醇进行聚酯化反应,控制乙二醇/柠檬酸的摩尔比4/1之间,整个制备溶胶体的过程中,pH值在8-10之间,聚酯反应温度在室温至80℃存放24小时,溶胶体的浓度为0.4mol/L,制备好的溶胶体用棕色瓶存放在干燥室温的环境中,溶胶体在干燥箱中烘干,烘干温度280℃并保温2小时,获得干凝胶粉,所述干凝胶粉经马弗炉中煅烧,煅烧温度900℃,煅烧时间2小时,获得纳米级铁电粉体,粒径在0.1μm以下;
3)微米级铁电粉体作为掺入相,纳米级铁电粉体作为基相,按掺入相与基相的质量比为0.25:1的比例,称取掺入相放进基相中,用无水乙醇为介质球磨湿磨形成均匀浆料,浆料取出后在干燥箱中烘干,烘干温度为280℃;烘干的浆料粉经在1~10MPa的压力下压制成素坯试样,将素坯试样水平放置于烧结炉中直接加热至1000~1050℃烧结,保温时间2小时,烧结完成后随炉冷却至室温,获得具有双峰粒径分布的钙钛矿铁电陶瓷。
将获得样品进行了X-射线和SEM测试,如图1(A)所示,X-射线图谱显示样品为纯的钙钛矿KN-BT(9/1)的相结构,如图1(B)和(C)所示,样品自然表面和断面的由明显的分布均匀的细晶与粗晶组成,其中细晶的粒径在0.2~0.5μm之间,粗晶在粒径在10~50μm。图2是在室温条件下,用直接法测得的绝热温变即电卡的致冷度(ΔT);图3为样品的相对介电常数在1kHz、10kHz和100kHz下随温度的关系,可以清楚的发现,制备的样品在室温附近出现大电卡效应,并且随着温度升高,电卡效应依然较高,也就是这一大电卡效应在宽温度范围内均存在。
实施例2 0.6BaTiO3-0.4SrTiO3(BST)
所述双粒径分布的钙钛矿铁电陶瓷,其化学成分为:0.6BaTiO3-0.4SrTiO3(BST),具体制备过程如下:
1)固相反应:以BaTiO3、SrTiO3为原料,按照化学式:Ba0.60 Sr0.40TiO3进行配料,以无水乙醇为介质湿磨2小时,烘干后压大块Φ15*15mm2,放入马弗炉中在1175℃保温7小时煅烧;煅烧的块体压碎过40目筛再球磨24小时,烘干后过200目筛,制备微米级的1150℃煅烧的Ba0.60 Sr0.40TiO3粉体,粒径在0.1~0.5μm;
2)按化学计算比称取可溶性钡盐BaCl2和锶盐SrCl2溶解于去离子水中;同时将一定量的TiCl4溶液慢慢加入到冰冷的去离子水中,同时不断的进行搅拌,待TiCl4溶液完全水解;将两者溶液混合后加入到浓度为10mol/L的KOH或NaOH溶液,用超声震荡使其混合均匀。然后将混合均匀的前驱物移入反应釜中,放进预先加热到190℃的烘箱中反应10小时后,在空气中冷却到室温。打开反应釜倒掉上层清液,将样品用醋酸溶液(50%)浸泡2小时后,再经洗涤过滤后,在100℃下烘干即可形成纳米的Ba0.60 Sr0.40TiO3粉体,粒径在0.1μm以下。
3)微米级铁电粉体作为掺入相,纳米级铁电粉体作为基相,按掺入相与基相的质量比为0.1:1的比例,称取掺入相放进基相中,用无水乙醇为介质球磨湿磨形成均匀浆料,浆料取出后在干燥箱中烘干,烘干温度为120℃;烘干的浆料粉经在1~10MPa的压力下压制成素坯试样,将素坯试样水平放置于烧结炉中直接加热至1300℃,保温时间2小时,烧结完成后随炉冷却至室温,获得具有双峰粒径分布的钙钛矿铁电陶瓷。
将获得样品的X-射线的晶相结构图和自然表面的SEM测试,如图4(A)所示,X-射线图谱显示样品为纯的钙钛矿(Ba0.60 Sr0.40)TiO3相结构,如图4(B)所示,自然表面由明显的分布均匀的细晶与粗晶组成,其中细晶的粒径约在0.5~2μm之间,粗晶在粒径约在2~20μm。图5为样品的相对介电常数在1kHz、10kHz和100kHz下随温度的关系;可以发现在室温附件大电卡效应与现在BST陶瓷仅仅是一个尖峰不同,出现了缓升缓降的现象,也就是在室温附近宽温度范围内均出现大电卡效应。图6是在室温下不同的电场作用下的致冷度(ΔT)和等温熵变。
对比例1
采用传统的陶瓷制备工艺烧结温度在1100℃保温2小时制备的单一晶粒粒径的KN/BT(9/1))陶瓷块体,晶粒粒径约为0.2~1μm之间。
对比例2对应于实施例2的采用传统的陶瓷制备工艺烧结温度在1300℃保温2小时制备的单峰晶粒粒径尺寸分布的(Ba0.60 Sr0.40)TiO3陶瓷块体,晶粒粒径分布约在1~5μm之间。
实施例3对比实验
将实施例1-2和对比例1-2获得的样品分别用直接法在室温条件下,施加不同的电场测试电卡效应即绝热温变(ΔT)和等温熵变(ΔS)数值,实验结果列表如下:
表1
通过表1的数据可以发现,通过本发明提供的方法,使得铁电陶瓷形成双峰晶粒粒径分布的结构后,在室温附近电卡效应明显提升,并且结合图3和图5可以发现这一电卡效应弥散效果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种双晶粒粒径分布结构的钙钛矿铁电陶瓷,其特征在于,为双晶晶粒结构,是指晶粒粒径分布由细晶和粗晶组成,所述细晶的粒径为0.2~2μm,所述粗晶粒径为2~300μm。
2.根据权利要求1所述双晶粒粒径分布结构的钙钛矿铁电陶瓷,其特征在于,所述钙钛矿铁电陶瓷为ABO3结构类。
3.根据权利要求2所述双晶粒粒径分布结构的钙钛矿铁电陶瓷,其特征在于,所述钙钛矿铁电陶瓷选自KN、BT、BST中的一种或一种以上的混合物。
4.根据权利要求3所述双晶粒粒径分布结构的钙钛矿铁电陶瓷,其特征在于,所述钙钛矿铁电陶瓷选自KN-BT或BST。
5.权利要求1-4任一所述双晶粒粒径分布结构的钙钛矿铁电陶瓷的制备方法,其特征在于,包括如下步骤:
1)采用固相反应法制备微米级铁电粉体作为掺入相;
2)采用湿化学方法制备纳米级铁电粉体作为基相;
3)将掺入相和基相混合后,压片烧结获得目标物。
6.根据权利要求5所述制备方法,其特征在于,所述微米级铁电粉体的粒径在0.1~0.5μm,所述纳米级铁电粉体的粒径不大于0.1μm。
7.根据权利要求5所述制备方法,其特征在于,所述掺入相与基相的比例为(0.1~0.75)/1。
8.根据权利要求5所述制备方法,其特征在于,所述湿化学方法为溶胶-凝胶工艺或水热法。
9.根据权利要求5所述制备方法,其特征在于,所述溶胶-凝胶工艺优选Pechini法。
10.一种提升钙钛矿铁电陶瓷电卡效应的方法,其特征在于,使得钙钛矿铁电陶瓷的结构中具有双晶粒粒径分布结构,具体包括粒径为0.2~2μm的细晶,和粒径为2~300μm的粗晶。
CN201910872565.1A 2019-09-16 2019-09-16 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用 Pending CN110498680A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910872565.1A CN110498680A (zh) 2019-09-16 2019-09-16 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910872565.1A CN110498680A (zh) 2019-09-16 2019-09-16 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用

Publications (1)

Publication Number Publication Date
CN110498680A true CN110498680A (zh) 2019-11-26

Family

ID=68591956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910872565.1A Pending CN110498680A (zh) 2019-09-16 2019-09-16 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用

Country Status (1)

Country Link
CN (1) CN110498680A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN112062553A (zh) * 2020-09-17 2020-12-11 广西大学 一种超宽温区负电卡效应Pb(ZrxTi1-x)O3基薄膜的制备方法
CN113955796A (zh) * 2021-12-03 2022-01-21 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法
CN114478029A (zh) * 2022-02-15 2022-05-13 吉林大学 一种制备abo3型钙钛矿陶瓷块体的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104152A2 (en) * 2008-03-19 2009-09-23 TDK Corporation Piezoelectric ceramic and piezoelectric element employing it
CN109208066A (zh) * 2018-03-05 2019-01-15 苏州科技大学 铁电陶瓷类化合物的单晶制备方法
CN109321979A (zh) * 2018-03-05 2019-02-12 苏州科技大学 钛酸锶钡单晶及制备方法
CN109402737A (zh) * 2018-03-05 2019-03-01 苏州科技大学 低温制备锆钛酸铅单晶的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104152A2 (en) * 2008-03-19 2009-09-23 TDK Corporation Piezoelectric ceramic and piezoelectric element employing it
CN109208066A (zh) * 2018-03-05 2019-01-15 苏州科技大学 铁电陶瓷类化合物的单晶制备方法
CN109321979A (zh) * 2018-03-05 2019-02-12 苏州科技大学 钛酸锶钡单晶及制备方法
CN109402737A (zh) * 2018-03-05 2019-03-01 苏州科技大学 低温制备锆钛酸铅单晶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IRENA PRIBOˇSIˇC: "Chemical synthesis of KNbO3 and KNbO3–BaTiO3 ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
KENTA YAMASHITA: "Grain Size Dependence of the Microstructure and Dielectric Properties of Potassium Niobate-Barium Titanate Ceramics", 《KEY ENGINEERING MATERIALS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN111039672B (zh) * 2020-01-08 2022-04-12 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN112062553A (zh) * 2020-09-17 2020-12-11 广西大学 一种超宽温区负电卡效应Pb(ZrxTi1-x)O3基薄膜的制备方法
CN112062553B (zh) * 2020-09-17 2022-09-06 广西大学 一种超宽温区负电卡效应Pb(ZrxTi1-x)O3基薄膜的制备方法
CN113955796A (zh) * 2021-12-03 2022-01-21 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法
CN113955796B (zh) * 2021-12-03 2024-01-19 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法
CN114478029A (zh) * 2022-02-15 2022-05-13 吉林大学 一种制备abo3型钙钛矿陶瓷块体的方法
CN114478029B (zh) * 2022-02-15 2023-02-03 吉林大学 一种制备abo3型钙钛矿陶瓷块体的方法

Similar Documents

Publication Publication Date Title
CN110498680A (zh) 双晶粒粒径分布结构的钙钛矿铁电陶瓷及制备方法和应用
Ma et al. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering
Hanani et al. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics
CN101767821B (zh) 一种锆钛酸钡基介质材料的合成方法
Asbani et al. Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0. 8Ca0. 2) 1-xLa2x/3TiO3 ferroelectric ceramics
CN110498681A (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
Zhao et al. Dielectric properties and electrocaloric effect of yttrium-modified BaTiO3 ceramics
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
Jiang et al. The enhanced electrocaloric effect in P (VDF-TrFE) copolymer with barium strontium titanate nano-fillers synthesized via an effective hydrothermal method
CN107840655A (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
Infantiya et al. Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review
CN101128395B (zh) 组合物的制造方法
CN111072065A (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
Chen et al. Low-temperature preparation of nanoplated bismuth titanate microspheres by a sol–gel-hydrothermal method
CN113603134A (zh) 一种单分散四方相钛酸钡空心微球批量生产方法
CN103449520A (zh) 一种棒状五氧化二铌模板晶粒及其制备方法
CN106187163A (zh) 一种稀土钕掺杂的高四方相钛酸钡及其制备方法
CN109650883A (zh) 一种Ba0.95Ca0.05Zr0.3Ti0.7O3储能电介质细晶陶瓷的制备方法
Parkash et al. Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic
Tartaj et al. Sintering of dense ceramics bodies of pure lead titanate obtained by seeding-assisted chemical sol-gel
CN107778004A (zh) 一种锆钛酸锶钡陶瓷及其制备方法和应用
CN112661508B (zh) 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN106431389B (zh) 一种CaCu3Ti4O12的制备方法
JPS61111957A (ja) セラミック誘電体の製造方法
Nandan et al. Enhanced room-temperature electrocaloric and pyroelectric responses around morphotropic phase boundary and energy storage performance of lead-free Ba0. 85Ca0. 15Hf0. 10Ti0. 90O3 ceramics sintered at various temperatures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191126

RJ01 Rejection of invention patent application after publication