CN110498400B - 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用 - Google Patents

一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用 Download PDF

Info

Publication number
CN110498400B
CN110498400B CN201910920656.8A CN201910920656A CN110498400B CN 110498400 B CN110498400 B CN 110498400B CN 201910920656 A CN201910920656 A CN 201910920656A CN 110498400 B CN110498400 B CN 110498400B
Authority
CN
China
Prior art keywords
bcn
use according
roasting
source
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910920656.8A
Other languages
English (en)
Other versions
CN110498400A (zh
Inventor
曹彦宁
齐思慧
江莉龙
沈丽娟
雷淦昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910920656.8A priority Critical patent/CN110498400B/zh
Publication of CN110498400A publication Critical patent/CN110498400A/zh
Application granted granted Critical
Publication of CN110498400B publication Critical patent/CN110498400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有二维层状多孔六方相硼碳氮(BCN)的制备方法,属于催化剂制备技术领域。由如下原料制备得到:碳源、硼源和氮源,所述原料按照不同质量比制备,在管式炉中在氮气或氩气的气氛进行处理,得到一系列的层状BCN。所述层状BCN具有二维结构和多孔结构,制备过程简单。BCN中的碳元素有利于H2S的吸附、解离和提高活化氧的能力,因而有效地促进了反应的进行,使催化剂在选择性催化氧化H2S方面首次应用中表现出高的催化活性和硫单质的选择性。

Description

一种二维层状多孔BCN的制备方法及其H2S选择性氧化应用
技术领域
本发明涉及一种环境催化剂的制备技术及其应用领域,具体涉及一种二维层状多孔BCN的制备方法及其在氧化H2S方面的应用。
背景技术
随着工业化的不断发展进步,许多与石油相关的煤化学、原油加工和加氢脱硫等工艺会产生大量有毒的H2S,不仅对人体有害,且对生态环境造成不可逆转的破坏。当空气中H2S的含量>560 ppm时,人们便会感觉到呼吸困难,严重时,可能会导致死亡。因此有必要对其进行高效脱除和资源化管理。目前Claus工艺是处理H2S最常用的技术,该工艺可以将H2S气体转化为可回收的硫单质(2H2S+SO2 ⇆3S+2H2O)。但是,由于Claus平衡反应的热力学限制,在排放的尾气中仍然存在约4%的H2S。为了更高效地处理H2S,人们进一步发展了H2S选择性氧化成单质硫的技术。反应式如下所示:
Figure DEST_PATH_IMAGE001
H2S选择性氧化成S为不可逆反应,不受热力学平衡限制。并且该反应过程简单,工艺先进,具有良好的发展前景,应用该工艺的关键在于研发具备优良性能的催化剂。
Fe2O3、TiO2、Cr2O3、Al2O3等金属氧化物作为常用的催化剂或催化剂载体被广泛应用于H2S选择性氧化的反应中。但由于硫的p轨道和金属的d轨道有很大的重叠,诱导金属-S键的形成,导致催化剂中毒失活。此外,金属氧化物的其他缺陷限制了此类催化剂的进一步发展。例如,TiO2对水的存在较敏感;Fe2O3需要过量氧气存在;Cr2O3具有较大的毒性;Al2O3 易失活。
BCN具有类似石墨烯的六方点阵结构。根据BCN中B、C和N元素的含量及分布位置可以将BCN分为:通过化学键连接的氮化硼 (BN)和石墨烯、B掺杂和N掺杂的石墨烯、C掺杂的BN等几类。层状多孔BCN具有高比表面积和高稳定性等优点,在燃料氧化脱硫、光催化等领域有很好的应用前景。BCN与石墨在原子结构上具有很大的相似性,其电子结构与石墨类似,由于多孔碳材料在H2S选择性氧化领域得到广泛应用,可以推测该材料在H2S选择性氧化方面具有重大意义。
二维层状多孔BCN材料与六方氮化硼相比,具备高比表面积和多孔结构。层状结构提高高比表面积,而高比表面积有利于充分暴露样品表面的活性位点,从而提高催化活性,同时多孔结构有益于反应过程中传质传热,进而提高BCN的催化性能。因此,通过调控制备具有二维层状多孔BCN材料有望暴露更多活性位点和增加碱性位数目,从而实现其高效高选择性地氧化H2S为单质硫。
发明内容
本发明的目的在于针对现有技术的不足,专利CN201710481725公开了利用冷冻干燥及球磨处理的方法制备多孔碳氮硼纳米片,解决此专利制备过程的繁琐性,进而提供一种二维层状多孔BCN材料的简单制备方法及其应用,研发了一种应用于H2S选择性氧化为硫单质的新型催化剂。二维层状多孔BCN材料通过剥片的方式暴露出更多的活性位点,采用掺杂碳以增加碱性位点的数目,从而利于H2S的吸附、解离和提高氧活化能力,在选择性催化氧化H2S方面具有高的催化活性和选择性。
为实现上述目的,本发明提供了以及技术方案:
一种二维层状多孔BCN的制备方法,至少由如下原料制备得到:
(1)称取不同比例的碳源、硼源和氮源,溶于一定量的蒸馏水中;
(2)在一定温度下超声处理1 h;
(3)然后将装有溶液的烧杯转移到油浴锅中,在一定温度下将溶剂蒸干;进行干燥;
(4)将得到的固体置于研钵中研磨直至粉末状;
(5)经一定温度焙烧后得到具有二维层状多孔BCN。
进一步地,所述碳源、硼源和氮源的原料质量比计为10~90%:10~90%:10~90%;
进一步地,所述碳源为葡萄糖、α-D型葡萄糖、蔗糖、淀粉中的一种或者多种;所述硼源为硼酸、氧化硼中的一种或者多种;所述氮源为双氰胺、尿素、三聚氰胺中的一种或多种。
进一步地,步骤(1)中所述蒸馏水的用量为50~200 mL。
进一步地,步骤(3)所述的蒸干溶剂是在油浴锅中以50~100 ℃下进行。
进一步地,步骤(3)所述的干燥温度为60-100 ℃,干燥时间为0.5-12 h。
进一步地,步骤(5)所述的焙烧是在管式炉中在氮气或氩气的气氛下,于600~1000℃焙烧2~8 h,焙烧升温速率为1~10 ℃/min。
本发明所制备的二维层状多孔BCN用于选择性催化氧化H2S。
本发明具有如下的优点和有益效果:
1、本发明所制得的二维层状多孔BCN二维层状厚度小,同时存在微孔和介孔结构;丰富的孔结构更有利于活性组分的分散,不易出现孔坍塌、孔堵塞等现象,且原材料价格低廉、制备过程简单、易实现工业化生产,具有广阔的应用前景;
2、本发明合成的二维层状多孔BCN,所合成的样品比表面积为100~300 m2/g,在选择性催化氧化H2S方面具有良好的活性和选择性;
3、本发明所制得的二维层状多孔BCN材料无需负载,其本身含有的碱性位可以作为催化反应的活性位。
附图说明
图1为本发明实施例1~3制备的BCN和对比实施例1制备的h-BN的X射线粉末衍射谱图;
图2为本发明实施例1~3制备的BCN和对比实施例1制备的h-BN的N2物理吸脱附曲线和孔径分布图;
图3为本发明实施例1~3制备的BCN和对比例1制备的h-BN的扫描电镜图;
图4为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S选择性催化氧化反应中H2S 转化率曲线图;
图5为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S选择性催化氧化反应中产物单质硫的选择性曲线图;
图6为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S 选择性催化氧化反应中硫产率曲线图。
具体实施方式
实施例1
本实施例中所述的BCN催化剂,由如下原料制备得到:
葡萄糖,6 g;
硼酸,2 g;
尿素,2 g;
本实施例中所述BCN催化剂的制备方法为:
(1)将上述葡萄糖、硼酸和尿素溶解于100 mL蒸馏水中;在45 ℃下超声1 h;
(2)将上述溶液转移至油浴锅中,100 ℃蒸干溶剂;
(3)对步骤(2)中得到的固体进行干燥;干燥温度为80 ℃,干燥时间为6 h;
(4)对步骤(3)中得到的固体置于研钵中研磨直至粉末状;
(5)对步骤(4)中得到的产品进行焙烧,所述焙烧温度为900 ℃,焙烧时间为6 h,升温速率为5 ℃/min,室温下冷却即得到催化剂A。
实施例2
本实施例中所述的BCN催化剂,由如下原料制备得到:
葡萄糖,4 g;
硼酸,3 g;
尿素,3 g;
本实施例中所述BCN催化剂的制备方法为:
(1)将上述葡萄糖、硼酸和尿素溶解于100 mL蒸馏水中;在45 ℃下超声1 h;
(2)将上述溶液转移至油浴锅中,100 ℃蒸干溶剂;
(3)对步骤(2)中得到的固体进行干燥;干燥温度为80 ℃,干燥时间为6 h;
(4)对步骤(3)中得到的固体置于研钵中研磨直至粉末状;
(5)对步骤(4)中得到的产品进行焙烧,所述焙烧温度为900 ℃,焙烧时间为6 h,升温速率为5 ℃/min,室温下冷却后即得到催化剂B。
实施例3
本实施例中所述的BCN催化剂,由如下原料制备得到:
葡萄糖,2 g;
硼酸,4 g;
尿素,4 g;
本实施例中所述BCN催化剂的制备方法为:
(1)将上述葡萄糖、硼酸和尿素溶解于100 mL蒸馏水中;在45 ℃下超声1 h;
(2)将上述溶液转移至油浴锅中,100 ℃蒸干溶剂;
(3)对步骤(2)中得到的固体进行干燥;干燥温度为80 ℃,干燥时间为6 h;
(4)对步骤(3)中得到的固体置于研钵中研磨直至粉末状;
(5)对步骤(4)中得到的产品进行焙烧,所述焙烧温度为900 ℃,焙烧时间为6 h,升温速率为5 ℃/min,室温下冷却后即得到催化剂C。
对比例1
本实施例中所述的BCN催化剂,由如下原料制备得到:
硼酸,2 g;
尿素,2 g;
本实施例中所述BCN催化剂的制备方法为:
(1)将上述硼酸和尿素溶解于100 mL蒸馏水中;在45 ℃下超声1 h;
(2)将上述溶液转移至油浴锅中,100 ℃蒸干溶剂;
(3)对步骤(2)中得到的固体进行干燥;干燥温度为80 ℃,干燥时间为6 h;
(4)对步骤(3)中得到的固体置于研钵中研磨直至粉末状;
(5)对步骤(4)中得到的产品进行焙烧,所述焙烧温度为900 ℃,焙烧时间为6 h,升温速率为5 ℃/min,室温冷却后即得到催化剂D。
表征分析:
X射线粉末衍射(XRD):样品的物相表征采用Panalytical公司的 X’ pert pro粉末衍射仪进行测定,探测器为X’celerator,铜靶(Cu Kα,λ = 0.154 nm)为激发射线源,工作电压为45 KV,工作电流为40 mA。
N2物理吸附:采用美国Micrometric公司的ASAP2020分析仪在液氮温度(77 K)下进行测定样品比表面积和孔尺寸,样品先在623 K下进行真空预处理,然后在压力小于10-5torr下脱气6 h,用BET (Brunauer-Emmett-Teller)法计算样品的比表面积,孔径分布曲线依据BJH(Barrett-Joyner-Halenda)法求出。
场发射扫描电镜(SEM):样品的SEM图像采用的是日本日立公司生产的S-4800场发射扫描电子显微镜(FESEM)进行观察,加速电压为10 KV,工作电流为7 μA。
如图1所示,为本发明实施例1~3和对比实施例1制备的六方氮化硼的X射线粉末衍射谱图。从图中可以看出,四个样品均在25.8 °和42.9 °左右的位置出现了两个衍射峰,其分别归属于BN的 (002) 和 (100) 两个晶面。从XRD图谱可以看出,所制备的三种BCN样品表现出不同的峰强且出峰位置想低角度偏移,这说明样品的层间距离随碳含量的增多而变大。
如图2所示,为本发明实施例1~3和对比实施例1制备的BCN的N2物理吸脱附曲线和孔径分布图。从图中可以看出,实施例1和3制备的BCN和对比实施例1制备的h-BN的样品均存在微孔和介孔。实例2制备的BCN为介孔分布结构。
如表1所示,为本发明实施例1~3制备的BCN和对比例1制备的h-BN的织构性质。从表1可知,各个样品的比表面积和孔容积的大小顺序为h-BN > BCN 4-4-2 > BCN 2-2-6 >BCN 3-3-4。说明碳含量不同的BCN表现出不同的比表面积和孔容积。实施例1制备的BCN 2-2-6的比表面积能达到158.76 m2/g,孔体积能达到0.15 cm3/g。
表1 本发明实施例1~3制备的BCN和对比例1制备的h-BN的理化性质
Figure 722027DEST_PATH_IMAGE002
图3为本发明实施例1~3制备的BCN和对比例1制备的h-BN的SEM图谱。从图3中的A-D图中可以看出,四个样品均为层状结构。
选择性催化氧化H2S性能测试:上述实施例和对比例制备的BCN为粉末状用于H2S的选择性氧化活性的评价。测试条件如下:催化剂装填量为0.2 g,原料气由5000 ppm H2S、2500 ppm O2和平衡气N2组成,原料气流速为20 mL·min-1,原料气空速(WHSV)为6000 mL·g-1·h-1,反应温度为100 ~ 280 ℃,原料气为三组分气体(5000 ppm,2500 ppm,N2平衡气)。
各实施例和对比例制备的催化剂应用于H2S选择性催化氧化反应上,其H2S转化率、硫选择性以及硫的产率计算公式如下:
Figure 576851DEST_PATH_IMAGE003
图4为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S 选择性催化氧化反应中100 ℃到280 ℃温度区间的催化活性曲线图。如图4所示,随着反应温度逐渐升高,H2S的转化率也在逐渐升高。且样品随着焙烧温度的升高,转化率也相应的升高。本发明所制备的实例1制备的BCN在190 ℃的转化率已经达到100%,而实例2的BCN在250℃时转化率才达到100%。另外,实例1制备的BCN在190~280 ℃温度区间的转化率均最佳。
图5为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S 选择性催化氧化反应中100 ℃到280 ℃温度区间硫单质选择性的曲线图。从图中可以看出,实施例1所制备BCN的硫单质选择性在100~190 ℃保持为100%,随着温度升高,选择性逐渐下降至85%。而其余样品的硫单质选择性在较高温度下均有一定程度的降低。
图6为本发明实施例1~3制备的BCN和对比例1制备的h-BN在H2S 选择性催化氧化反应中硫单质收率的曲线图。从图中可知,随着温度逐渐升高,硫单质的收率逐渐增大。其中,实例1制备的BCN在反应温度190 ℃时,硫单质的收率达到100%.
综上可知,由本发明制备的二维层状多孔BCN在H2S的选择性氧化反应中具有不同的催化性能,其中BCN 2-2-6催化性能最为优异。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种二维层状多孔BCN在选择性催化氧化H2S上的应用,其特征在于:所述二维层状多孔BCN的具体制备方法包括以下步骤:
(1)称取不同质量比例的碳源、硼源和氮源,溶于一定量的蒸馏水中;
(2)在一定温度下超声处理1 h;
(3)然后将装有溶液的烧杯转移到油浴锅中,在一定温度下将溶剂蒸干;进行干燥;
(4)将得到的固体置于研钵中研磨直至粉末状;
(5)经一定温度焙烧后得到具有二维层状多孔BCN。
2.根据权利要求1所述的应用,其特征在于:所述碳源、硼源和氮源的原料质量比计为10~90%:10~90%:10~90%。
3.根据权利要求1所述的应用,其特征在于:所述碳源为葡萄糖、α-D型葡萄糖、蔗糖、淀粉中的一种或者多种;所述硼源为硼酸、氧化硼中的一种或者多种;所述氮源为双氰胺、尿素、三聚氰胺中的一种或多种。
4.根据权利要求1所述的应用,其特征在于:步骤(1)中所述蒸馏水的用量为50~200mL。
5.根据权利要求1所述的应用,其特征在于:步骤(3)所述的蒸干溶剂是在油浴锅中以50~100 ℃下进行。
6.根据权利要求1所述的应用,其特征在于:步骤(3)所述的干燥温度为60-100 ℃,干燥时间为0.5-12 h。
7.根据权利要求1所述的应用,其特征在于:步骤(5)所述焙烧温度为500-1200 ℃,焙烧时间为3-10 h。
8.根据权利要求7所述的应用,其特征在于:步骤(5)所述的焙烧是在管式炉中在氮气或氩气的气氛下,于600~1000℃焙烧2~8 h,焙烧升温速率为1~10 ℃/min。
CN201910920656.8A 2019-09-27 2019-09-27 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用 Active CN110498400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910920656.8A CN110498400B (zh) 2019-09-27 2019-09-27 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910920656.8A CN110498400B (zh) 2019-09-27 2019-09-27 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用

Publications (2)

Publication Number Publication Date
CN110498400A CN110498400A (zh) 2019-11-26
CN110498400B true CN110498400B (zh) 2022-09-23

Family

ID=68592804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910920656.8A Active CN110498400B (zh) 2019-09-27 2019-09-27 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用

Country Status (1)

Country Link
CN (1) CN110498400B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167503A (zh) * 2020-03-05 2020-05-19 上海纳米技术及应用国家工程研究中心有限公司 无金属组份的异质结催化剂的制备方法及其产品和应用
CN111470515B (zh) * 2020-05-12 2021-09-10 江苏冠军科技集团股份有限公司 一种石墨烯-硼碳纳米片及其应用、掺杂石墨烯-硼碳纳米片防腐涂料及其制备方法
CN112717977A (zh) * 2021-02-03 2021-04-30 福建技术师范学院 一种不含氨气气流合成硼碳氮材料的制备方法及其应用
CN113812420A (zh) * 2021-10-12 2021-12-21 上海腾灵冷暖设备工程有限公司 一种氮化硼/氮化碳/银单原子抗菌剂的快速制备方法
CN114054068A (zh) * 2021-12-13 2022-02-18 中国矿业大学 一种h-BN基光解水制氢催化剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE396353C (de) * 1922-03-16 1924-05-30 Theodorus Petrus Ludovicus Pet Entferung von Schwefelwasserstoff und Zyanwasserstoff aus Gasen
JP3497685B2 (ja) * 1996-02-16 2004-02-16 株式会社東芝 半導体bcn化合物を用いた半導体デバイス
CN105293453B (zh) * 2015-11-20 2018-05-11 汕头大学 一种掺杂六方氮化硼纳米片及其制备方法和以其为载体的催化剂及应用
CN109775673B (zh) * 2017-11-15 2021-06-15 中国科学院大连化学物理研究所 多孔硼碳氮纳米片层和多孔氮化硼纳米片层及其制备方法和作为吸附材料的应用
CN108371953B (zh) * 2018-02-07 2018-12-11 青岛大学 一种用于Knoevenagel缩合反应的BCN催化剂及其制备和应用

Also Published As

Publication number Publication date
CN110498400A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110498400B (zh) 一种二维层状多孔bcn的制备方法及其h2s选择性氧化应用
CN102115069B (zh) 具有多孔结构的石墨烯及其制备方法
Feng et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene
Li et al. Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co 3 S 4 and gC 3 N 4 for asymmetric supercapacitors with superior cycling stability
Li et al. Preparation of reduced graphite oxide with high volumetric capacitance in supercapacitors
CN106902856A (zh) 石墨相氮化碳催化剂的制备方法及其在氧化h2s方面的应用
Xiao et al. MOF-derived porous ZnO/Co 3 O 4 nanocomposites for high performance acetone gas sensing
Jothi et al. Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications
Liu et al. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation
Li et al. Two-dimensional transition metal MXene-based gas sensors: A review
Lin et al. Nitrogen-doped carbon cobalt grafted on graphitic carbon nitride catalysts with enhanced catalytic performance for ethylbenzene oxidation
CN107934931B (zh) 一种改性石墨相氮化碳及其制备方法和应用
Zhang et al. Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis
Liu et al. Synthesis of highly efficient Co 3 O 4 catalysts by heat treatment ZIF-67 for CO oxidation
Wei et al. A functionalized graphene oxide and nano-zeolitic imidazolate framework composite as a highly active and reusable catalyst for [3+ 3] formal cycloaddition reactions
Liu et al. Preparation of birnessite-supported Pt nanoparticles and their application in catalytic oxidation of formaldehyde
CN110813303B (zh) 一种具有多孔结构的花状铁掺杂二氧化铈的制备及其脱硫应用
Li et al. Copper-cobalt bimetallic oxides-doped alumina hollow spheres: A highly efficient catalyst for epoxidation of styrene
CN108786800B (zh) 负载型催化剂及其制备方法和应用和丙烷脱氢制丙烯的方法
Abd El-Lateef et al. Synthesis of crystalline and amorphous iron phosphate nanoparticles by simple low-temperature method
Haneef et al. Recent progress in two dimensional Mxenes for photocatalysis: a critical review
Zhu et al. Preparation and characterization of copper catalysts supported on mesoporous Al 2 O 3 nanofibers for N 2 O reduction to N 2
Gao et al. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction
Tariq et al. Ti3C2-MXene/bismuth ferrite nanohybrids for efficient degradation of organic dye and colorless pollutant
Yang et al. Porous ZnO and ZnO–NiO composite nano/microspheres: synthesis, catalytic and biosensor properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant