CN110488854A - 一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 - Google Patents
一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 Download PDFInfo
- Publication number
- CN110488854A CN110488854A CN201910878624.6A CN201910878624A CN110488854A CN 110488854 A CN110488854 A CN 110488854A CN 201910878624 A CN201910878624 A CN 201910878624A CN 110488854 A CN110488854 A CN 110488854A
- Authority
- CN
- China
- Prior art keywords
- rigid aircraft
- neural network
- rigid
- fixed time
- attitude tracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 12
- 238000009795 derivation Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 2
- 238000013459 approach Methods 0.000 abstract description 2
- 239000012141 concentrate Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- PHTXVQQRWJXYPP-UHFFFAOYSA-N ethyltrifluoromethylaminoindane Chemical compound C1=C(C(F)(F)F)C=C2CC(NCC)CC2=C1 PHTXVQQRWJXYPP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Feedback Control In General (AREA)
Abstract
一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,针对具有集中不确定性的刚性飞行器姿态跟踪问题,设计了固定时间滑模面,保证了状态的固定时间收敛;引入神经网络逼近总不确定的函数,设计了神经网络固定时间控制器。本发明在外界干扰和转动惯量不确定的因素下,实现飞行器系统的姿态跟踪误差和角速度误差固定时间一致最终有界的控制。
Description
技术领域
本发明涉及一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,特别是存在外部干扰和转动惯量矩阵不确定的刚性飞行器姿态跟踪控制方法。
背景技术
刚性飞行器姿态控制系统在刚性飞行器的健康,可靠的运动中扮演着重要的角色。在复杂的航天环境中,刚性飞行器姿态控制系统会受到各种外部干扰以及转动惯量矩阵不确定的影响。为了有效维持系统的性能,需要使其对外部干扰以及转动惯量矩阵不确定具有较强的鲁棒性。滑模变结构控制作为一种典型的非线性控制方法能够有效改善刚性飞行器的稳定性和操纵性,并且具有较强的鲁棒性,从而提高执行任务的能力。因此,研究刚性飞行器姿态控制系统的滑模变结构控制方法具有十分重要的意义。
滑模控制在解决系统不确定性和外部扰动方面被认为是一个有效的鲁棒控制方法。滑模控制方法具有算法简单、响应速度快、对外界噪声干扰和参数摄动鲁棒性强等优点。终端滑模控制是一种可以实现有限时间稳定性的传统滑模控制的改进方案。然而,现存的有限时间技术估计收敛时间需要知道系统的初始信息,这对于设计者是很难知道的。近年来,固定时间技术得到了广泛的应用,固定时间控制方法与现存的有限时间控制方法相比,具有无需知道系统的初始信息,也能保守估计系统的收敛时间的优越性。
神经网络是线性参数化近似方法的中一种,可以被任意的其他近似方法取代,比如RBF神经网络,模糊逻辑系统等等。利用神经网络逼近不确定的性质,有效的结合固定时间滑模控制技术,减少外部干扰及系统参数不确定性对系统控制性能的影响,实现刚性飞行器姿态的固定时间控制。
发明内容
为了克服现有的刚性飞行器姿态控制系统存在的未知非线性问题,本发明提供一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,并且在系统存在外部干扰和转动惯量不确定的情况下,实现系统状态的固定时间一致最终有界的控制方法。
为了解决上述技术问题提出的技术方案如下:
一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足q1,q2,q3分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
其中J∈R3×3是飞行器的转动惯性矩阵;是飞行器的角加速度;u∈R3和d∈R3是控制力矩和外部扰动;Ω×表示为:
1.3刚性飞行器系统期望的运动学方程为:
其中qdv=[qd1,qd2,qd3]T和qd4分别为期望的单位四元数的矢量部分和标量部分且满足Ωd∈R3为期望的角速度;分别为qdv,qd4的导数,为qdv的转置;表示为:
1.4由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd (11)
其中ev=[e1,e2,e3]T和e4分别为姿态跟踪误差的矢量部分和标量部分;Ωe=[Ωe1,Ωe2,Ωe3]T∈R3为角速度误差;为相应的方向余弦矩阵并且满足||C||=1和 为C的导数;
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
其中和分别为ev和e4的导数;为ev的转置;和分别为Ωd和Ωe的导数;(Ωe+CΩd)×与Ω×等价;和分别表示为:
1.5转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6对式(12)进行微分,得到:
其中 为总不确定的集合;为ev的二阶导数;
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面为:
其中, 和sgn(ei)均为符号函数,λ1>0,λ2>0,a2>1, 为ei的导数,i=1,2,3;
步骤3,设计神经网络固定时间控制器,其过程如下:
3.1定义神经网络为:
其中为输入矢量,Φi(Xi)∈R4为神经网络基函数,Wi *∈R4为理想的权值矢量,定义为:
其中Wi∈R4为权值矢量,εi为近似误差,满足|εi|≤εN,i=1,2,3,εN为很小的正常数;arg min{·}为Wi *取其最小值所有的集合;
3.2考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T,L=[L1,L2,L3]T, Γ=diag(Γ1,Γ2,Γ3)∈R3×3为3×3对称对角矩阵0<r1<1,r2>1,i=1,2,3;K1=diag(k11,k12,k13)∈R3×3为3×3对称对角矩阵;K2=diag(k21,k22,k23)∈R3×3为3×3对称对角矩阵;K3=diag(k31,k32,k33)∈R3×3为3×3对称对角矩阵;
3.2设计更新律为:
其中γi>0,pi>0,i=1,2,3,Φ(Xi)选择为以下的sigmoid函数:
其中l1,l2,l3和l4为近似参数,Φ(Xi)满足0<Φ(Xi)<Φ0,并且
步骤4,固定时间稳定性证明,其过程如下:
4.1证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
其中i=1,2,3;ST是S的转置;为的转置;
对式(26)进行求导,得到:
其中i=1,2,3;||·||表示值的二范数;min{·}表示最小值;
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
其中
i=1,2,3;υ2为一个大于零的上界值;
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
本发明在外界干扰和转动惯量不确定的因素下,运用基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,实现系统稳定跟踪,保证系统状态实现固定时间一致最终有界。本发明的技术构思为:针对含外部干扰和转动惯量不确定的刚性飞行器系统,利用滑模控制方法,再结合神经网络,设计了神经网络固定时间控制器。固定时间滑模面的设计保证系统状态的固定时间收敛。本发明在系统存在外界干扰和转动惯量不确定的情况下,实现系统姿态跟踪误差和角速度误差的固定时间一致最终有界的控制方法。
本发明的有益效果为:在系统存在外界干扰和转动惯量不确定的情况下,实现系统姿态跟踪误差和角速度误差的固定时间一致最终有界,并且收敛时间与系统的初始状态无关。
附图说明
图1为本发明的刚性飞行器姿态跟踪误差示意图;
图2为本发明的刚性飞行器角速度误差示意图;
图3为本发明的刚性飞行器滑模面示意图;
图4为本发明的刚性飞行器控制力矩示意图;
图5为本发明的刚性飞行器参数估计示意图;
图6为本发明的控制流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1-图6,一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,所述控制方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足q1,q2,q3分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
其中J∈R3×3是飞行器的转动惯性矩阵;是飞行器的角加速度;u∈R3和d∈R3是控制力矩和外部扰动;Ω×表示为:
1.3刚性飞行器系统期望的运动学方程为:
其中qdv=[qd1,qd2,qd3]T和qd4分别为期望的单位四元数的矢量部分和标量部分且满足Ωd∈R3为期望的角速度;分别为qdv,qd4的导数,为qdv的转置;表示为:
1.4由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd (11)
其中ev=[e1,e2,e3]T和e4分别为姿态跟踪误差的矢量部分和标量部分;Ωe=[Ωe1,Ωe2,Ωe3]T∈R3为角速度误差;为相应的方向余弦矩阵并且满足||C||=1和 为C的导数;
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
其中和分别为ev和e4的导数;为ev的转置;和分别为Ωd和Ωe的导数;(Ωe+CΩd)×与Ω×等价;和分别表示为:
1.5转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6对式(12)进行微分,得到:
其中 为总不确定的集合;为ev的二阶导数;
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面为:
其中, 和sgn(ei)均为符号函数,λ1>0,λ2>0,a2>1, 为ei的导数,i=1,2,3;
步骤3,设计神经网络固定时间控制器,其过程如下:
3.1定义神经网络为:
其中为输入矢量,Φi(Xi)∈R4为神经网络基函数,为理想的权值矢量,定义为:
其中Wi∈R4为权值矢量,εi为近似误差,满足|εi|≤εN,i=1,2,3,εN为很小的正常数;arg min{·}为Wi *取其最小值所有的集合;
3.2考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T,L=[L1,L2,L3]T, Γ=diag(Γ1,Γ2,Γ3)∈R3×3为3×3对称对角矩阵0<r1<1,r2>1,i=1,2,3;K1=diag(k11,k12,k13)∈R3×3为3×3对称对角矩阵;K2=diag(k21,k22,k23)∈R3×3为3×3对称对角矩阵;K3=diag(k31,k32,k33)∈R3×3为3×3对称对角矩阵;
3.2设计更新律为:
其中γi>0,pi>0,i=1,2,3,Φ(Xi)选择为以下的sigmoid函数:
其中l1,l2,l3和l4为近似参数,Φ(Xi)满足0<Φ(Xi)<Φ0,并且
步骤4,固定时间稳定性证明,其过程如下:
4.1证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
其中i=1,2,3;ST是S的转置;为的转置;
对式(26)进行求导,得到:
其中i=1,2,3;||·||表示值的二范数;min{·}表示最小值;
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
其中i=1,2,3;υ2为一个大于零的上界值;
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
为验证所提方法的有效性,本方法针对飞行器系统进行仿真验证。系统初始化参数设置如下:
系统的初始值:q(0)=[0.3,-0.2,-0.3,0.8832]T,Ω(0)=[1,0,-1]T弧度/秒qd(0)=[0,0,0,1]T;期望角速度弧度/秒;转动惯性矩阵的标称部分J0=[40,1.2,0.9;1.2,17,1.4;0.9,1.4,15]千克*平方米,惯性矩阵的不确定部ΔJ=diag[sin(0.1t),2sin(0.2t),3sin(0.3t)];外部扰动d(t)=[0.2sin(0.1t),0.3sin(0.2t),0.5sin(0.2t)]T牛*米;滑模面的参数如下:λ1=1,λ2=1,a1=1.5,a2=1.5;控制器的参数如下:K1=K2=K3=I3;更新律参数如下:ηi=0.5,εi=0.1,i=1,2,3,sigmoid函数的参数选择如下:l1=2,l2=8,l3=10,l4=-0.5。
刚性飞行器的姿态跟踪误差和角速度误差的响应示意图分别如图1和图2所示,可以看出姿态跟踪误差和角速度误差都能在4.5秒左右收敛到平衡点的一个零域内;刚性飞行器的滑模面响应示意图如图3所示,可以看出滑模面能在2.2秒左右收敛到平衡点的一个零域内;刚性飞行器的控制力矩和参数估计响应示意图分别如图4和图5所示。
因此,本发明在系统存在外界干扰和转动惯量不确定的情况下,实现系统的姿态跟踪误差和角速度误差在固定时间一致最终有界,并且收敛时间与系统的初始状态无关。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。
Claims (1)
1.一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法,其特征在于:所述方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1 刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足q1,q2,q3分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;Ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2 刚性飞行器系统的动力学方程为:
其中J∈R3×3是飞行器的转动惯性矩阵;是飞行器的角加速度;u∈R3和d∈R3是控制力矩和外部扰动;Ω×表示为:
1.3 刚性飞行器系统期望的运动学方程为:
其中qdv=[qd1,qd2,qd3]T和qd4分别为期望的单位四元数的矢量部分和标量部分且满足Ωd∈R3为期望的角速度;分别为qdv,qd4的导数,为qdv的转置;表示为:
1.4 由四元数描述的刚性飞行器相对姿态运动:
Ωe=Ω-CΩd (11)
其中ev=[e1,e2,e3]T和e4分别为姿态跟踪误差的矢量部分和标量部分;Ωe=[Ωe1,Ωe2,Ωe3]T∈R3为角速度误差;为相应的方向余弦矩阵并且满足||C||=1和 为C的导数;
根据式(1)-(11),刚性飞行器姿态跟踪误差动力学和运动学方程为:
其中和分别为ev和e4的导数;为ev的转置;和分别为Ωd和Ωe的导数;(Ωe+CΩd)×与Ω×等价;和分别表示为:
1.5 转动惯性矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(14)重新写成:
进一步得到:
1.6 对式(12)进行微分,得到:
其中 为总不确定的集合;为ev的二阶导数;
步骤2,针对外部扰动和转动惯量不确定的刚性飞行器系统,设计所需的滑模面,过程如下:
选择固定时间滑模面为:
其中, 和sgn(ei)均为符号函数,λ1>0,λ2>0,a2>1, 为ei的导数,i=1,2,3;
步骤3,设计神经网络固定时间控制器,其过程如下:
3.1 定义神经网络为:
Gi(Xi)=Wi *TΦ(Xi)+εi (21)
其中为输入矢量,Φi(Xi)∈R4为神经网络基函数,Wi *∈R4为理想的权值矢量,定义为:
其中Wi∈R4为权值矢量,εi为近似误差,满足|εi|≤εN,i=1,2,3,εN为很小的正常数;arg min{·}为Wi *取其最小值所有的集合;
3.2 考虑固定时间控制器被设计为:
其中为3×3对称对角矩阵;为Wi的估计值;
Φ(X)=[Φ(X1),Φ(X2),Φ(X3)]T,L=[L1,L2,L3]T, Γ=diag(Γ1,Γ2,Γ3)∈R3×3为3×3对称对角矩阵0<r1<1,r2>1,i=1,2,3;K1=diag(k11,k12,k13)∈R3×3为3×3对称对角矩阵;K2=diag(k21,k22,k23)∈R3×3为3×3对称对角矩阵;K3=diag(k31,k32,k33)∈R3×3为3×3对称对角矩阵;
3.2 设计更新律为:
其中γi>0,pi>0,i=1,2,3,Φ(Xi)选择为以下的sigmoid函数:
其中l1,l2,l3和l4为近似参数,Φ(Xi)满足0<Φ(Xi)<Φ0,并且
步骤4,固定时间稳定性证明,其过程如下:
4.1 证明刚性飞行器系统所有信号都是一致最终有界,设计李雅普诺夫函数为如下形式:
其中ST是S的转置;为的转置;
对式(26)进行求导,得到:
其中||·||表示值的二范数;min{·}表示最小值;
则判定刚性飞行器系统所有信号都是一致最终有界的;
4.2 证明固定时间收敛,设计李雅普诺夫函数为如下形式:
对式(28)进行求导,得到:
其中
i=1,2,3;υ2为一个大于零的上界值;
基于以上分析,刚性飞行器系统的姿态跟踪误差和角速度误差在固定时间一致最终有界。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811114526.7A CN109062239A (zh) | 2018-09-25 | 2018-09-25 | 一种基于神经网络估计的刚性飞行器非奇异固定时间姿态跟踪控制方法 |
CN2018111145267 | 2018-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110488854A true CN110488854A (zh) | 2019-11-22 |
CN110488854B CN110488854B (zh) | 2022-07-26 |
Family
ID=64763595
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811114526.7A Withdrawn CN109062239A (zh) | 2018-09-25 | 2018-09-25 | 一种基于神经网络估计的刚性飞行器非奇异固定时间姿态跟踪控制方法 |
CN201910878624.6A Active CN110488854B (zh) | 2018-09-25 | 2019-09-18 | 一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811114526.7A Withdrawn CN109062239A (zh) | 2018-09-25 | 2018-09-25 | 一种基于神经网络估计的刚性飞行器非奇异固定时间姿态跟踪控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN109062239A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115857342A (zh) * | 2022-11-28 | 2023-03-28 | 北京理工大学 | 基于自适应神经网络的航天器观测载荷随动机构控制方法 |
CN116563490A (zh) * | 2023-03-27 | 2023-08-08 | 浙江大学 | 一种基于刚性映射的全自动四边形附面层网格生成方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110095985B (zh) * | 2019-04-26 | 2022-07-26 | 北京工商大学 | 一种观测器设计方法和抗干扰控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130092785A1 (en) * | 2008-07-11 | 2013-04-18 | Davidson Technologies, Inc. | System and method for guiding and controlling a missile using high order sliding mode control |
GB201305069D0 (en) * | 2013-03-19 | 2013-05-01 | Massive Analytic Ltd | Apparatus for controlling a spacecraft during docking |
CN104950899A (zh) * | 2015-06-10 | 2015-09-30 | 北京理工大学 | 一种固定时间收敛的飞行器姿态控制方法 |
CN106896722A (zh) * | 2017-03-29 | 2017-06-27 | 郑州轻工业学院 | 采用状态反馈与神经网络的高超飞行器复合控制方法 |
CN108445766A (zh) * | 2018-05-15 | 2018-08-24 | 山东大学 | 基于rpd-smc和rise的无模型四旋翼无人机轨迹跟踪控制器及方法 |
-
2018
- 2018-09-25 CN CN201811114526.7A patent/CN109062239A/zh not_active Withdrawn
-
2019
- 2019-09-18 CN CN201910878624.6A patent/CN110488854B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130092785A1 (en) * | 2008-07-11 | 2013-04-18 | Davidson Technologies, Inc. | System and method for guiding and controlling a missile using high order sliding mode control |
GB201305069D0 (en) * | 2013-03-19 | 2013-05-01 | Massive Analytic Ltd | Apparatus for controlling a spacecraft during docking |
CN104950899A (zh) * | 2015-06-10 | 2015-09-30 | 北京理工大学 | 一种固定时间收敛的飞行器姿态控制方法 |
CN106896722A (zh) * | 2017-03-29 | 2017-06-27 | 郑州轻工业学院 | 采用状态反馈与神经网络的高超飞行器复合控制方法 |
CN108445766A (zh) * | 2018-05-15 | 2018-08-24 | 山东大学 | 基于rpd-smc和rise的无模型四旋翼无人机轨迹跟踪控制器及方法 |
Non-Patent Citations (2)
Title |
---|
TAIREN SUN等: "Neural network-based sliding mode adaptive control for robot manipulators", 《NEUROCOMPUTING》 * |
陈强等: "基于全阶滑模的四旋翼无人机有限时间控制", 《第七届中国航空学会青年科技论坛文集》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115857342A (zh) * | 2022-11-28 | 2023-03-28 | 北京理工大学 | 基于自适应神经网络的航天器观测载荷随动机构控制方法 |
CN115857342B (zh) * | 2022-11-28 | 2024-05-24 | 北京理工大学 | 基于自适应神经网络的航天器观测载荷随动机构控制方法 |
CN116563490A (zh) * | 2023-03-27 | 2023-08-08 | 浙江大学 | 一种基于刚性映射的全自动四边形附面层网格生成方法 |
CN116563490B (zh) * | 2023-03-27 | 2024-01-23 | 浙江大学 | 一种基于刚性映射的全自动四边形附面层网格生成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109062239A (zh) | 2018-12-21 |
CN110488854B (zh) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110543184B (zh) | 一种刚性飞行器的固定时间神经网络控制方法 | |
CN109062240B (zh) | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 | |
Zhang et al. | Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation | |
CN110488603B (zh) | 一种考虑执行器受限问题的刚性飞行器自适应神经网络跟踪控制方法 | |
CN110471438B (zh) | 一种刚性飞行器的固定时间自适应姿态跟踪控制方法 | |
CN110543183B (zh) | 一种考虑执行器受限问题的刚体飞行器固定时间姿态跟踪控制方法 | |
CN109188910B (zh) | 一种刚性飞行器的自适应神经网络容错跟踪控制方法 | |
CN107703952B (zh) | 一种刚性飞行器的非奇异固定时间自适应姿态控制方法 | |
CN110488854B (zh) | 一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 | |
CN107688295A (zh) | 一种基于快速终端滑模的四旋翼飞行器有限时间自适应控制方法 | |
CN110501911A (zh) | 一种考虑执行器受限问题的刚性飞行器自适应固定时间姿态跟踪控制方法 | |
CN112987567B (zh) | 非线性系统的固定时间自适应神经网络滑模控制方法 | |
CN109634291B (zh) | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 | |
CN107479567A (zh) | 动态特性未知的四旋翼无人机姿态控制器及方法 | |
Shahbazi et al. | Robust constrained attitude control of spacecraft formation flying in the presence of disturbances | |
CN108958043B (zh) | 一种刚性飞行器的固定时间自适应姿态容错控制方法 | |
CN110488855B (zh) | 一种基于神经网络估计的刚性飞行器自适应固定时间姿态容错控制方法 | |
CN110515389B (zh) | 一种考虑执行器受限问题的刚性飞行器自适应固定时间姿态镇定方法 | |
CN110471439B (zh) | 一种基于神经网络估计的刚性飞行器固定时间姿态镇定方法 | |
CN108762065A (zh) | 基于增强型指数趋近律和快速终端滑模面的刚性航天飞行器有限时间自适应容错控制方法 | |
CN112596380A (zh) | 一种无需角速度反馈的快速响应小卫星姿态控制方法 | |
CN108549225B (zh) | 基于增强型幂次趋近律和快速终端滑模面的刚性航天飞行器有限时间自适应容错控制方法 | |
CN110471440B (zh) | 一种考虑执行器受限问题的刚体飞行器固定时间姿态镇定方法 | |
Jurado et al. | Stochastic feedback controller for a quadrotor UAV with dual modified extended Kalman filter | |
CN110471292A (zh) | 一种刚性飞行器的自适应固定时间姿态镇定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |