CN110484509B - 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 - Google Patents
一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 Download PDFInfo
- Publication number
- CN110484509B CN110484509B CN201910749902.8A CN201910749902A CN110484509B CN 110484509 B CN110484509 B CN 110484509B CN 201910749902 A CN201910749902 A CN 201910749902A CN 110484509 B CN110484509 B CN 110484509B
- Authority
- CN
- China
- Prior art keywords
- sasp
- cells
- cell model
- cell
- fluorescent protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43595—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2503/00—Use of cells in diagnostics
- C12N2503/02—Drug screening
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/04—Immortalised cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/60—Vectors containing traps for, e.g. exons, promoters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型,可通过检测荧光直观判断SASP是否产生及其强度,该细胞可无限传代和扩增,在诱导衰老并出现典型SASP后,可表达荧光蛋白。该模型的特征在于,以黑色素瘤细胞为基础,在其基因组序列中插入新的“IL1α启动子‑荧光蛋白”序列。本发明的SASP细胞模型简单方便,省时省力,并可在不破坏细胞的情况下,了解SASP的发生和发展情况,特别适合大规模高通路筛选SASP抑制剂等,具有广阔的应用前景。
Description
技术领域
本发明涉及生物领域,具体涉及一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型及其应用。
背景技术
细胞衰老(senescence)是机体衰老(aging)的重要基础,也与多种老年性疾病密切关联。衰老相关分泌表型(senescence-associated secretory phenotype,SASP)是指衰老细胞经常出现的分泌功能亢进,其能分泌多种细胞因子,包括促炎症细胞因子、生长因子及蛋白酶等,这些统称为SASP因子。SASP因子参与许多病理过程和疾病发生过程,不少药物通过调节 SASP因子的表达而发挥治疗作用。探究SASP的发生机制,并发掘新的SASP抑制剂,是当前衰老研究领域的热点之一。
衰老也是肿瘤进展过程中的障碍,是机体对抗肿瘤的重要手段之一,衰老细胞可以通过 SASP改变细胞微环境,招募中性粒细胞、巨噬细胞和自然杀伤细胞等免疫细胞到肿瘤病灶,从而杀死衰老细胞和肿瘤细胞。在研究衰老的发生机制,衰老与肿瘤细胞的关系,发觉新的 SASP抑制剂等,均需要建立体外细胞衰老模型,然而,目前这方面的研究寥寥无几,已建立的少数细胞衰老模型不能满足现有技术的快速发展的需求,如Kang C等[1]建立了可直接判断细胞衰老的可视模型,该模型用细胞衰老相关基因PmiR-146a的启动子为驱动基因,下游带绿色荧光蛋白GFP(green fluorescent protein),转染人胚肺成纤维细胞IMR-90,但该模型只能用于判断IMR-90细胞是否衰老,不能反映SASP的情况,且该细胞不能无限增殖。王瑜等[2]利用紫杉醇(PTX)处理BGC823细胞构建衰老细胞模型并制备SASP-CM,该细胞模型虽然可以通过酶联免疫吸附实验检测SASP-CM中主要的SASP因子的浓度,但该细胞模型不具备可视化,需要进行酶联免疫吸附实验等手段进行检测,不能随时进行动态监测,更不能直观的反应SASP的发生和发展进程。另外,也有现有技术如WO2017032614、WO2013090645、WO2015116735等发现并能鉴定了选择性抑制SASP的化合物的方法,CN107531768发现威罗非尼引起SASP的激活,在基础状态下,黑色素瘤细胞A375表达细胞核IL1α,其在使用威罗非尼后不久下调。尽管该文献给出了A375是用于测试的候选,但其目的是利用A375来测试FOXO4DRI肽对转移性黑素瘤患者的治疗,并没有教导利用A375 作为研究或建立细胞衰老模型的技术启示。
由上可见,体外细胞衰老模型研究,尤其是SASP的细胞模型研究相对滞后,已然严重阻滞了相关领域药物的开发,以及探究衰老与肿瘤治疗的潜在可能性。因而建立适当的体外细胞衰老模型,尤其是建立可用显微镜观察SASP的细胞模型,是现有技术中亟需解决的技术难题,也是衰老相关领域的当务之急。但目前未见类似报道或产品。
本发明基于现有技术文献报道及我们的前期研究结果[3-6],发现IL1α基因既是SASP因子成员,也是SASP发生过程中的上游调节基因,IL1α表达上调,往往预示着下游SASP因子的表达上调我们前期还发现,具有无限增殖能力的黑色素瘤细胞(A375细胞等),受到DNA 损伤时,可出现典型的衰老和SASP表型[5],表明其适合用于细胞衰老及SASP研究。因此,本发明以黑色素瘤A375细胞为基础,通过慢病毒感染和筛选,建立人IL1α启动子驱动EGFP (enhanced green fluorescent protein)表达的A375-IL1α-EGFP细胞株。该细胞可无限增殖,在受到DNA损伤等刺激时,可进入衰老状态,而当出现SASP时,可表达绿色荧光蛋白,从而可通过显微镜直接观察,也可以通过流式分选。该SASP模型将为高通量筛选SASP抑制剂,为探讨SASP机制等,提供极大便利,在生物医药研究领域,有广阔的应用前景。
参考文献
1.Kang C,Xu Q,Martin TD,Li MZ,Demaria M,Aron L,Lu T,Yankner BA,Campisi J, Elledge SJ.The DNA damage response induces inflammation andsenescence by inhibiting autophagy of GATA4.Science,2015,349(6255):aaa5612.
2.王瑜等.胃癌衰老细胞相关分泌表型条件培养基对人胃癌细胞系BGC823增殖的影响. 第二军医大学学报,2017,38(12):1508-1513.
3.Orjalo AV,Bhaumik D,Gengler BK,Scott GK,Campisi J.Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network.Proceedings of the National Academy of Sciences of theUnited States of America,2009,106(40):17031-17036.
4.Laberge RM,Sun Y,Orjalo AV,Patil CK,Freund A,Zhou L,Curran SC,Davalos AR, Wilson-Edell KA,Liu S,Limbad C,Demaria M,Li P,Hubbard GB,Ikeno Y,Javors M,Desprez PY, Benz CC,Kapahi P,Nelson PS,Campisi J.MTOR regulates thepro-tumorigenic senescence-associated secretory phenotype by promoting IL1αtranslation.Nature cell biology, 2015,17(8):1049-1061.
5.Sun X,Shi B,Zheng H,Min L,Yang J,Li X,Liao X,Huang W,Zhang M,Xu S,Zhu Z. Senescence-associated secretory factors induced by cisplatin inmelanoma cells promote non-senescent melanoma cell growth through activationof the ERK1/2-RSK1 pathway.2018, 9(3):260.
6.张明萌等.细胞衰老相关分泌表型的生物学作用及产生机制.广东医科大学学报, 2017,35(6):569-575.
发明内容
为了解决上述现有技术中存在的问题,本发明的一个目的在于提供一种衰老相关分泌表型细胞模型,其特征在于,所述细胞模型的基因组整合有IL1α启动子及受其调控的下游荧光蛋白,所述细胞模型经诱导后出现细胞衰老和典型的SASP,所述细胞为肿瘤细胞。
优选地,所述的肿瘤细胞为黑色素瘤细胞;所述荧光蛋白为下述任一一种:RFP、GFP、 EGFP、YFP、EYFP、EBFP、BFP及它们的突变体,所述突变体能够用于示踪且在激发光下产生荧光;优选地,所述黑色素瘤细胞为A375细胞。
优选地,所述IL1α启动子的核苷酸序列具有启动子活性,且包括如下任一一种:
(1)SEQ ID NO.1所示的核苷酸序列;
(2)与SEQ ID NO.1所示的核苷酸序列具有90%以上一致性的核苷酸序列;或
(3)与SEQ ID NO.1所示的核苷酸序列具有98%以上一致性的核苷酸序列。
优选地,所述诱导是通过添加诱导剂使所述细胞出现细胞衰老和典型的SASP;所述诱导剂为能够造成细胞DNA损伤或癌基因激活的理化因子或生物学因子;优选地,所述诱导剂为铂类试剂;优选地,所述诱导剂为下述任一一种或多种:顺铂、卡铂、奈达铂、奥沙利铂、洛铂。
本发明的另一目的在于提供一种SASP细胞模型的构建方法,包括以下步骤:
(1)重组慢病毒:构建含IL1α启动子-荧光蛋白的重组慢病毒表达载体;
(2)细胞感染:培养黑色素瘤细胞,将所述重组慢病毒感染所述黑色素瘤细胞;
(3)抗性筛选:使用嘌呤霉素进行抗性筛选,保留贴壁细胞,扩大培养,获得候选细胞模型;
(4)诱导:在所述候选细胞模型中添加诱导剂使诱导细胞出现衰老和典型的SASP;
(5)镜检:在荧光显微镜下观察;筛选可正常培养,无限增殖,衰老后会出现荧光蛋白表达的细胞,即为SASP细胞模型。
优选地,所述方法中步骤(1)具体为:根据查阅基因组序列,所述IL1α启动子的核苷酸序列,选择包括SEQ ID NO.1所示且具有启动子活性的序列;所述启动子下游荧光蛋白选择EGFP,将“IL1α启动子-EGFP”序列构建到慢病毒载体上。
优选地,所述方法中步骤(2)具体为:将步骤(1)构建好的慢病毒载体感染A375细胞12h,按24孔板每孔495μL培养基加5μL慢病毒的比例,再更换新鲜培养液继续培养至72h。
优选地,所述方法中步骤(3)具体为:步骤(2)感染结束后,保留贴壁细胞,加入3.0μM嘌呤霉素进行2天的抗性筛选,筛选结束后保留贴壁细胞,将筛选后的贴壁细胞消化下来,并在10cm培养皿进行单克隆培养,再将单克隆细胞消化,于6孔板扩大培养,获得候选细胞模型。
优选地,所述方法中步骤(4)和(5)具体为:将候选的SASP细胞传代,每次传2个孔,一孔正常培养,另一孔用顺铂处理24h,然后更换新鲜培养基继续培养3-6天,期间每 12h观察一次荧光,细胞出现荧光则为SASP细胞模型。
本发明的另一目的在上述SASP细胞模型或上述方法制备的SASP细胞模型的应用,所述应用为如下任一一种:
(1)在研究衰老机理和/或SASP发生、发展中的应用;
(2)在筛选和/或评价SASP抑制剂和激活剂中的应用;
(3)在筛选和/或评价SASP调节机制(基因、蛋白、表观遗传学等)中的应用;
(4)在检测、鉴定和/或评价细胞衰老或SASP因子表达强度中的应用;或
(5)在检测或测试化合物减少、抑制或阻止处理的衰老细胞的肿瘤侵入刺激能力中的应用。
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供的SASP细胞模型,是一种可通过检测荧光(利用显微镜、共聚焦、流式细胞仪等仪器)判断SASP是否产生及其强度的细胞模型,该细胞可无限传代和扩增,在诱导衰老并出现典型SASP后,可表达荧光蛋白。该模型的特征在于,以黑色素瘤细胞为基础,在其基因组序列中插入新的“IL1α启动子-荧光蛋白”序列。目前,现有技术中未见与本发明构思相同或相似的发明或报道,也未见IL1α启动子驱动荧光蛋白表达的SASP细胞模型。关于其他基因驱动荧光蛋白表达的细胞,虽然报道较多,但其作用均与SASP无关。
(2)目前,现有技术检测SASP的表达水平只能通过RT-PCR、ELISA、液相芯片等实验进行检测和分析,费时费力且不经济。在大规模、高通量筛选SASP抑制剂时,这种常规的检测方法十分笨拙。本发明构建的SASP细胞模型,在细胞出现SASP时,会表达荧光蛋白,并可通过荧光显微镜观测到;而当SASP被抑制时,荧光减弱或消失,也能通过荧光显微镜观测到。因此,该发明为筛选SASP调节因子,探讨SASP发生机制等,提供了便利,特别适合大规模高通路的筛选。此外,该模型细胞(A375-IL1α-EGFP细胞)具有无限增殖能力,可以大量扩增,从而避免了重复建模的过程,大大节省了研究成本。
(3)本发明的SASP细胞模型提出的应用,即在研究衰老机理和/或SASP发生、发展中的应用;在筛选和/或评价SASP抑制剂中的应用;在检测、鉴定和/或评价细胞衰老或SASP因子表达强度中的应用;在检测或测试化合物减少、抑制或阻止处理的衰老细胞的肿瘤侵入刺激能力中的应用,是基于现有技术中研究衰老、SASP,以及衰老与肿瘤关系的报道,如本发明背景技术所提及的内容,旨在解决现有技术对于上述应用缺乏合适的SASP细胞模型的技术问题而提出的全新的解决方案,该SASP细胞模型及上述应用的发明对于我国在衰老相关技术领域的意义极为重大,是我国在全球研究衰老相关技术领域的重要突破点之一,具有广阔的应用前景。
附图说明
图1是构建并初步筛选可视SASP细胞模型流程图。
图2是验证并获得可视SASP细胞模型图,如细胞出现荧光,则该细胞为所需SASP模型;如始终不出现荧光,则非SASP模型,弃之。
图3是可视SASP细胞模型效果图,其中左边图为明视野中的细胞,中间图为荧光视野下的细胞,右边图为两图叠加的效果。
具体实施方式
以下通过具体实施例对本发明作进一步详细说明,以使本领域技术人员能够更好地理解本发明并予以实施,但实施例并不作为本发明的限定。
以下实施例中所使用的实验方法如无特殊说明,均为常规方法。所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1 SASP细胞模型的构建
构建并获得候选SASP细胞模型,构建流程图如附图1所示,具体步骤如下:
1.构建含“IL1α启动子-荧光蛋白”的慢病毒表达载体
根据查阅基因组序列,选择IL1α基因上游1437bp加下游600bp为启动子序列,如SEQ ID NO.1所示,下游荧光蛋白选择EGFP,将该“IL1α启动子-EGFP”序列构建到慢病毒载体上。
2.用慢病毒载体感染黑色素瘤A375细胞
根据前期实验结果,将构建好的慢病毒载体感染(按24孔板每孔495μL培养基加5μL 慢病毒的比例)A375细胞12h,再更换新鲜培养液继续培养至72h。
3.抗性筛选
感染结束后,保留贴壁细胞,加入3.0μM嘌呤霉素进行2天的抗性筛选。筛选结束后保留贴壁细胞。
4.细胞单克隆培养,获得候选细胞模型
将贴壁细胞消化下来,并在10cm培养皿进行单克隆培养。将单克隆细胞消化,于6孔板扩大培养,获得候选细胞模型。
实施例2筛选能监测SASP表达水平的细胞模型
从实施例1中获得的候选SASP模型中,进一步筛选出能监测SASP表达水平的细胞模型,流程如附图2所示,具体步骤如下:
将候选的SASP细胞传代,每次传2个孔,一孔正常培养,另一孔用顺铂处理24h,然后更换新鲜培养基继续培养3-6天,期间每12h观察一次荧光,细胞出现荧光则模型成立,所对应的正常培养孔细胞则为我们所需SASP模型。
经筛选,获得的可视SASP细胞模型的特征如下:用黑色素瘤A375细胞构建,在其基因组序列中整合新的“IL1α启动子-荧光蛋白”序列。该细胞模型可正常培养,无限增殖,正常培养条件下无或仅有微弱荧光表达,但在诱导细胞衰老后,因IL1α表达上调,会出现荧光蛋白表达,并可用荧光显微镜等仪器检测。
经镜检,可视SASP细胞模型的测试效果如附图3所示,发出绿色荧光的即为转染成功的细胞,即可视SASP细胞。附图3左边图为明视野中的细胞,中间图为荧光视野下的细胞,右边图为两图叠加的效果。
由上可见,本发明已成功建立可视SASP细胞模型,细胞模型的细胞基因组已整合有“IL1α启动子-EGFP”片段,并能够实现稳定在诱导后的稳定表达。该细胞模型可正常培养,具有无限增殖能力,本发明还进一步验证了利用该模型成功检测肿瘤细胞出现衰老症状后的SASP 的表达水平,如附图3所示。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 广东医科大学
<120> 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2037
<212> DNA
<213> 人工序列()
<220>
<221> IL1α启动子
<222> (1)..(2037)
<400> 1
ttcctaaatg atttagatga cagtgactca ttaagggttt cctgaggcct cctcagagtc 60
gagaggtggg tgcctgaagc cacccaaagt ccctgtcaca ggatggctcc caacgcacac 120
accacaggcc tgcccagtat gttccactat ctacccagta gagccctgcc cagtacgttc 180
cactgtccct tccctagaag aggtgactgt tgttcacagt cccagaaaag cgggctcccc 240
aaaacaatgc aaggacccac ctctctctga acctcaccca ccctagtttt cctttaaaaa 300
tcaatttaca agaagatcat gtgaaggaaa aggttgggtg atattctaac ccaagttagc 360
tgtttctcaa ccaagttctc tttgaaaaat tcaacaacca cctttgggga attatttaca 420
acagaggagt gaggatggga ccaggatagg tattgcctat gttggtggaa ccagggtttt 480
tttcctggat taccaaagag atggtatgca ttgctcccag aagctaaata tcttcaggct 540
ttcaatggtg gccttcacct gaaaatgtta tccctgttga agctttcaag ccagtatttt 600
cataagaact atattttctt tggtgaactg aggcattata atgatgacta tacaggttct 660
tgagtgactg aagccatcat tagcattgtc attatttttg tttagttgca tctccatagc 720
agctcacatt cacaatgtgc tttgcaattg ttccttagca atagccctca caagattctc 780
aggaggagag ggttaatcag gattaacatt tctgtgttgc ctaaagagga accaaggtaa 840
gcagaaatgt agccagttgg ctggcatcac tgttgcttca ggattcatcc ttagacaccc 900
aagcttctac cctagtctgg tgctacactt acattgctta catccaagtg tggttatttc 960
tgtggctcct gttataacta ttatagcacc aggtctatga ccaggagaat tagactggca 1020
ttaaatcaga ataagagatt ttgcacctgc aatagacctt atgacaccta accaacccca 1080
ttatttacaa ttaaacagga acagagggaa tactttatcc aactcacaca agctgctttc 1140
ctcccagatc catgcttttt tgcgtttatt attttttaga gatgggggct tcactatgtt 1200
gcccacactg gactaaaact ctgggcctca agtgattgtc ctgcctcagc ctcctgaata 1260
gctgggacta caggggcatg ccatcacacc tagttcattt cctctattta aaatatacat 1320
ggcttaaact ccaactggga acccaaaaca ttcatttgct aagagtctgg tgttctacca 1380
cctgaactag gctggccaca ggaattataa aagctgagaa attctttaat aatagtaacc 1440
aggcaacacc attgaaggct catatgtaaa aatccatgcc ttcctttctc ccaatctcca 1500
ttcccaaact tagccactgg cttctggctg aggccttacg catacctccc ggggcttgca 1560
cacaccttct tctacagaag acacaccttg ggcatatcct acagaagacc aggcttctct 1620
ctggtccttg gtagagggct actttactgt aacagggcca gggtggagag ttctctcctg 1680
aagctccatc ccctctatag gaaatgtgtt gacaatattc agaagagtaa gaggatcaag 1740
acttctttgt gctcaaatac cactgttctc ttctctaccc tgccctaacc aggagcttgt 1800
caccccaaac tctgaggtga tttatgcctt aatcaagcaa acttccctct tcagaaaaga 1860
tggctcattt tccctcaaaa gttgccagga gctgccaagt attctgccaa ttcaccctgg 1920
agcacaatca acaaattcag ccagaacaca actacagcta ctattagaac tattattatt 1980
aataaattcc tctccaaatc tagccccttg acttcggatt tcacgatttc tcccttc 2037
Claims (10)
1.一种衰老相关分泌表型(Senescence-associated secretory phenotype,SASP)细胞模型,其特征在于,所述细胞模型的基因组整合有IL1α启动子及受其调控的下游荧光蛋白,所述细胞模型经诱导后出现细胞衰老和典型的SASP,所述细胞为A375细胞;所述IL1α启动子的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的细胞模型,其特征在于,所述荧光蛋白为下述任意一种:RFP、GFP、EGFP、YFP、EYFP、EBFP、BFP,所述荧光蛋白能够用于示踪且在激发光下产生荧光。
3.根据权利要求1所述的细胞模型,其特征在于,所述诱导是通过添加诱导剂使所述细胞出现细胞衰老和典型的SASP;所述诱导剂为能够造成细胞DNA损伤的理化因素或生物学因素。
4.根据权利要求3所述的细胞模型,其特征在于,所述诱导剂为下述任意一种或多种:顺铂、卡铂、奈达铂、奥沙利铂、洛铂。
5.一种SASP细胞模型的构建方法,其特征在于,包括以下步骤:
(1)重组慢病毒载体构建:构建含IL1α启动子-荧光蛋白的重组慢病毒表达载体;所述IL1α启动子的核苷酸序列如SEQ ID NO.1所示;
(2)细胞感染:培养A375细胞,将所述重组慢病毒感染所述A375细胞;
(3)抗性筛选:使用嘌呤霉素进行抗性筛选,保留贴壁细胞,扩大培养,获得候选细胞模型;
(4)诱导:在所述候选细胞模型中添加诱导剂使诱导细胞出现衰老和典型的SASP;
(5)镜检:在荧光显微镜下观察;筛选可正常培养,无限增殖,衰老后会出现荧光蛋白表达的细胞,即为SASP细胞模型。
6.根据权利要求5所述的方法,其特征在于,步骤(1)具体为:根据查阅基因组序列,所述IL1α启动子的核苷酸序列,选择SEQ ID NO.1所示的序列;所述启动子下游荧光蛋白选择EGFP,将“IL1α启动子-EGFP”序列构建到慢病毒载体上。
7.根据权利要求5所述的方法,其特征在于,步骤(2)具体为:将步骤(1)构建好的慢病毒载体感染A375细胞12h,按24孔板每孔495μL培养基加5μL慢病毒的比例,再更换新鲜培养液继续培养至72h。
8.根据权利要求5所述的方法,其特征在于,步骤(3)具体为:步骤(2)感染结束后,保留贴壁细胞,加入3.0μM嘌呤霉素进行3天的抗性筛选,筛选结束后保留贴壁细胞,将筛选后的贴壁细胞消化下来,并在96孔板进行单克隆培养,再将单克隆细胞消化,于6孔板扩大培养,获得候选细胞模型。
9.根据权利要求5所述的方法,其特征在于,步骤(4)和(5)具体为:将候选的SASP细胞传代,每次传2个孔,一孔正常培养,另一孔用顺铂处理24h,然后更换新鲜培养基继续培养3-6天,期间每12h观察一次荧光,细胞出现荧光则为SASP细胞模型。
10.权利要求1-4任一项所述的细胞模型的应用,所述应用为如下任意一种:
在研究衰老机理和/或SASP发生、发展中的应用;或
在筛选和/或评价SASP抑制剂和激活剂中的应用;或
在评价SASP调节机制中的应用;或
在检测、鉴定和/或评价细胞衰老或SASP因子表达强度中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910749902.8A CN110484509B (zh) | 2019-08-14 | 2019-08-14 | 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910749902.8A CN110484509B (zh) | 2019-08-14 | 2019-08-14 | 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110484509A CN110484509A (zh) | 2019-11-22 |
CN110484509B true CN110484509B (zh) | 2021-07-02 |
Family
ID=68551023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910749902.8A Active CN110484509B (zh) | 2019-08-14 | 2019-08-14 | 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110484509B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104125836A (zh) * | 2011-12-13 | 2014-10-29 | 巴克老龄化研究所 | 改善医疗治疗的方法 |
WO2018053643A1 (en) * | 2016-09-22 | 2018-03-29 | Rsem, Limited Partnership | Compositions comprising sasp modulators and senescence attenuators and uses thereof for modulating cellular senescence |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3132809A1 (en) * | 2015-08-21 | 2017-02-22 | Bioskinco GmbH | Composition and products comprising senescent cells for use in tissue regeneration |
CN108949697A (zh) * | 2018-08-29 | 2018-12-07 | 山西医科大学第医院 | 一种稳定表达绿色荧光蛋白的喉癌细胞株的构建方法 |
-
2019
- 2019-08-14 CN CN201910749902.8A patent/CN110484509B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104125836A (zh) * | 2011-12-13 | 2014-10-29 | 巴克老龄化研究所 | 改善医疗治疗的方法 |
WO2018053643A1 (en) * | 2016-09-22 | 2018-03-29 | Rsem, Limited Partnership | Compositions comprising sasp modulators and senescence attenuators and uses thereof for modulating cellular senescence |
CN110023332A (zh) * | 2016-09-22 | 2019-07-16 | Rsem有限合伙公司 | 包含sasp调节剂和衰老衰减剂的组合物及其用于调节细胞衰老的用途 |
Non-Patent Citations (6)
Title |
---|
Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network.;Arturo V Orijalo等;《Proceedings of the National Academy of Sciences of the United States of America》;20090928;第106卷(第40期);第17031-17036页 * |
Characterization of the activities of p21Cip1/Waf1 promoter-driven reporter systems during camptothecin-induced senescence-like state of BHK-21 cells.;Hsueh-Ling Cheng等;《Mol Cell Biochem》;20060504;第291卷;第29页Abstract * |
Homo sapiens interleukin 1,alpha(IL1A) gene,complete cds.;Rieder M J等;《GenBank Database》;20020821;Accession NO.AF536338.1 * |
Senescence-associated secretory factors induced by cisplatin in melanoma cells promote non-senescent melanoma cells promote non-senescent melanoma cell growth through activation of the ERK1/2-RSK1 pathway.;Xuerong Sun等;《Cell Death Dis》;20180215;第9卷(第3期);第3页右栏第3,5段、第4页右栏第2段 * |
细胞衰老相关分泌表型的生物学作用及产生机制;张明萌等;《广东医科大学学报》;20171230;第35卷(第06期);第569-574页 * |
衰老相关分泌表型的研究进展;王婧超等;《医学综述》;20131220;第19卷(第24期);第4426-4429页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110484509A (zh) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uyar et al. | Single-cell analyses of aging, inflammation and senescence | |
Zhu et al. | Peripheral CD4+ T‐cell differentiation regulated by networks of cytokines and transcription factors | |
Elo et al. | Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming | |
Pollen et al. | Molecular identity of human outer radial glia during cortical development | |
Pang et al. | Genome-wide identification of long noncoding RNAs in CD8+ T cells | |
Peng et al. | Fibrocytes: emerging effector cells in chronic inflammation | |
Medina et al. | Ex vivo expansion of human outgrowth endothelial cells leads to IL-8-mediated replicative senescence and impaired vasoreparative function | |
Bending et al. | A temporally dynamic Foxp3 autoregulatory transcriptional circuit controls the effector Treg programme | |
Sharma et al. | IL-2–controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: Implication to multiorgan inflammation and control of skin and lung inflammation | |
De et al. | Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements | |
Zhang et al. | A single-cell transcriptomic landscape of mouse testicular aging | |
Festuccia et al. | Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation | |
Robb et al. | Putative critical quality attribute matrix identifies mesenchymal stromal cells with potent immunomodulatory and angiogenic “fitness” ranges in response to culture process parameters | |
Schauer et al. | Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response | |
CN112111595A (zh) | 一种筛选上调eftud2表达的化合物的方法 | |
Zhao et al. | A genotype-phenotype screening system using conditionally immortalized immature dendritic cells | |
CN110484509B (zh) | 一种IL1α启动子驱动荧光蛋白表达的永生化SASP细胞模型 | |
Cao et al. | The tumor microenvironment reprograms immune cells | |
Shi et al. | Circ_0060531 knockdown ameliorates IL-22-induced keratinocyte damage by binding to miR-330-5p to decrease GAB1 expression | |
Alaoui et al. | Functional specialization of short-lived and long-lived macrophage subsets in human tonsils | |
Liu et al. | Glycosyltransferase Extl1 promotes CCR7-mediated dendritic cell migration to restrain infection and autoimmunity | |
Perepitchka et al. | Down syndrome iPSC model: endothelial perspective on tumor development | |
Nomura et al. | A new liver metastatic and peritoneal dissemination model established from the same human pancreatic cancer cell line: analysis using cDNA macroarray | |
Kuo et al. | Role of periostin and interleukin-4 in recurrence of pterygia | |
Tello-Lafoz et al. | Cytotoxic lymphocytes use mechanosurveillance to target biophysical vulnerabilities in cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |