CN110479843B - Forming die and multi-pass forming method of hemispherical component - Google Patents
Forming die and multi-pass forming method of hemispherical component Download PDFInfo
- Publication number
- CN110479843B CN110479843B CN201910902706.XA CN201910902706A CN110479843B CN 110479843 B CN110479843 B CN 110479843B CN 201910902706 A CN201910902706 A CN 201910902706A CN 110479843 B CN110479843 B CN 110479843B
- Authority
- CN
- China
- Prior art keywords
- blank
- die
- forming
- punch
- hemispherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000008569 process Effects 0.000 claims abstract description 22
- 230000033228 biological regulation Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 15
- 229910000838 Al alloy Inorganic materials 0.000 claims description 12
- 239000010687 lubricating oil Substances 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 230000003064 anti-oxidating effect Effects 0.000 claims description 8
- 239000003973 paint Substances 0.000 claims description 8
- 238000004088 simulation Methods 0.000 claims description 8
- 238000005336 cracking Methods 0.000 abstract description 4
- 238000009740 moulding (composite fabrication) Methods 0.000 description 103
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009123 feedback regulation Effects 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/22—Deep-drawing with devices for holding the edge of the blanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/10—Die sets; Pillar guides
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
本发明公开了一种半球形构件的成形模具及多道次成形方法,属于半球体成形技术领域,解决了现有技术中大高径比半球形构件拉深成形起皱、开裂,拉深成形工艺参数控制困难,壁厚均匀性较差的问题。本发明成形模具包括凹模、凸模、压边圈和定位板;凹模和凸模用于成形半球形构件;压边圈设置在凹模和凸模之间,压边圈与凹模配合压紧坯料,防止坯料在成形过程中出现褶皱;压边圈设置有定位板,定位板用于对上模和下模进行定位。本发明成形模具及成形方法适用于大高径比半球形构件的成形。
The invention discloses a forming die for a hemispherical component and a multi-pass forming method, belongs to the technical field of hemispherical body forming, and solves the problems of wrinkling, cracking and deep drawing forming of hemispherical components with a large aspect ratio in the prior art. It is difficult to control the process parameters and the uniformity of the wall thickness is poor. The forming die of the invention includes a concave die, a convex die, a blank holder and a positioning plate; the concave die and the convex die are used for forming hemispherical components; the blank holder is arranged between the concave die and the convex die, and the blank holder is matched with the concave die The blank is pressed to prevent the blank from wrinkling during the forming process; the blank holder is provided with a positioning plate, which is used to position the upper die and the lower die. The forming die and the forming method of the present invention are suitable for forming hemispherical components with a large aspect ratio.
Description
技术领域technical field
本发明属于半球体成形技术领域,特别涉及一种半球形构件的成形模具及多道次成形方法。The invention belongs to the technical field of hemispherical body forming, and particularly relates to a forming die for a hemispherical component and a multi-pass forming method.
背景技术Background technique
半球形构件在航天运载火箭推进系统、卫星罩体、压力容器封头等产品中应用广泛,根据半球体所处工作环境的不同,其材质主要分为钛合金、铝合金、合金钢和不锈钢,由于其多应用于极端环境,对抗压能力、可靠性、安全性和使用寿命等有较高要求,因此其质量控制尤为重要。Hemispherical components are widely used in aerospace launch vehicle propulsion systems, satellite covers, pressure vessel heads and other products. According to the different working environments of the hemispherical body, its materials are mainly divided into titanium alloy, aluminum alloy, alloy steel and stainless steel. It is mostly used in extreme environments and has high requirements for pressure resistance, reliability, safety and service life, so its quality control is particularly important.
半球体成形工艺主要为旋压成形及冷/热拉深成形。旋压成形工艺参数控制复杂,制造难度大、装调精度低、生产成本高。旋压后工件残余应力较大,叠加机加应力后,易造成工件变形,影响使用性能。拉深成形中,坯料直径减小,球体逐渐成形,更适用于批量生产。但在实际生产中,常出现起皱和开裂缺陷,严重影响产品质量和生产效率。特别对于大高径比钛合金、铝合金等难变形材料,拉深成形工艺参数控制困难,壁厚均匀性较差,产品表面质量差,形状精度难以保证。因此,开发半球构件高质量高效率拉深成形方法,对满足航空航天大尺寸高性能构件的使用要求,消除起皱破裂缺陷,促进高效生产具有重要意义。The hemisphere forming process is mainly spin forming and cold/hot deep drawing. The control of spinning process parameters is complicated, the manufacturing difficulty is large, the assembly and adjustment accuracy is low, and the production cost is high. After spinning, the residual stress of the workpiece is relatively large. After the stress is applied by the stacking machine, it is easy to cause deformation of the workpiece and affect the performance. In deep drawing, the diameter of the blank is reduced, and the sphere is gradually formed, which is more suitable for mass production. However, in actual production, wrinkling and cracking defects often occur, which seriously affect product quality and production efficiency. Especially for hard-to-deform materials such as titanium alloys and aluminum alloys with large aspect ratios, it is difficult to control the parameters of the deep drawing process, the uniformity of the wall thickness is poor, the surface quality of the product is poor, and the shape accuracy is difficult to guarantee. Therefore, the development of a high-quality and high-efficiency deep drawing method for hemispherical components is of great significance to meet the requirements for the use of large-scale and high-performance components in aerospace, eliminate wrinkles and breakage defects, and promote efficient production.
发明内容SUMMARY OF THE INVENTION
鉴于以上分析,本发明旨在提供一种半球形构件的成形模具及多道次成形方法,用以解决现有技术中大高径比半球形构件拉深成形起皱、开裂,拉深成形工艺参数控制困难,壁厚均匀性较差,产品表面质量差,形状精度难以保证等问题。In view of the above analysis, the present invention aims to provide a forming die and a multi-pass forming method for a hemispherical component, so as to solve the problems of wrinkling and cracking in the deep drawing forming process of the large aspect ratio hemispherical component in the prior art, and the deep drawing forming process The parameters are difficult to control, the wall thickness uniformity is poor, the product surface quality is poor, and the shape accuracy is difficult to guarantee.
本发明的目的主要是通过以下技术方案实现的:The object of the present invention is mainly achieved through the following technical solutions:
一方面,本发明公开了一种半球形构件的成形模具,包括凹模、凸模、压边圈和定位板;In one aspect, the present invention discloses a forming die for a hemispherical component, comprising a concave die, a convex die, a blank holder and a positioning plate;
凹模和凸模用于成形半球形构件;Dies and punches are used to form hemispherical components;
压边圈设置在凹模和凸模之间,压边圈与凹模配合压紧坯料,防止坯料在成形过程中出现褶皱;The blank holder is arranged between the die and the punch, and the blank holder cooperates with the die to compress the blank to prevent the blank from wrinkling during the forming process;
压边圈设置有定位板,定位板用于对上模和下模进行定位。The blank holder is provided with a positioning plate, which is used for positioning the upper die and the lower die.
进一步的,还包括用于增加顶出半径的转接板;Further, it also includes an adapter plate for increasing the ejection radius;
转接板底部与成形机下平台顶缸的第一顶杆连接,转接板上表面设置第二顶杆,第二顶杆用于将压边圈顶出及施加压边力。The bottom of the adapter plate is connected with the first ejector rod of the lower platform top cylinder of the forming machine, and the upper surface of the adapter plate is provided with a second ejector rod, which is used to push out the blank holder ring and apply the blank holder force.
进一步的,凸模包括底板和腔体,转接板设置在腔体内,底板上设置有用于第二顶杆穿过的底板通孔。Further, the punch includes a bottom plate and a cavity, the adapter plate is arranged in the cavity, and the bottom plate is provided with a bottom plate through hole through which the second ejector rod passes.
另一方面,本发明还公开了一种半球形构件的多道次成形方法,采用上述半球形构件成形模具,包括以下步骤:On the other hand, the present invention also discloses a multi-pass forming method for a hemispherical component, using the above-mentioned hemispherical component forming die, comprising the following steps:
S1.确定坯料尺寸;S1. Determine the size of the blank;
S2.分别将凹模、凸模固定于成形机上平台和下平台上;S2. Fix the die and the punch on the upper platform and the lower platform of the forming machine respectively;
S3.放置坯料,进行冷成形第一道次得到预成形件;S3. Place the blank and perform the first pass of cold forming to obtain a preform;
S4.对预成形件进行强脉冲电流辅助组织调控;S4. Performing strong pulse current to assist tissue regulation on the preform;
S5.确定冷成形道次数,重复步骤S3、S4完成冷成形道次数,脱模取出预成形件;S5. Determine the number of cold forming passes, repeat steps S3 and S4 to complete the number of cold forming passes, and demold to take out the preform;
S6.对预成形件进行热校形,得到半球形构件。S6. Perform thermal correction on the preform to obtain a hemispherical component.
进一步的,步骤S1具体包括:Further, step S1 specifically includes:
根据半球形构件尺寸和形状,选择坯料;According to the size and shape of the hemispherical component, select the blank;
进行冷成形数值模拟,确定坯料净尺寸,增加成形余量确定最终坯料尺寸。Numerical simulation of cold forming is performed to determine the net size of the blank, and the forming allowance is added to determine the final blank size.
进一步的,步骤S2包括:Further, step S2 includes:
将凸模放置在成形机下平台上,将压边圈吊设于底板上,定位板下部与凸模侧面接触,定位板上部与凹模侧面接触,完成凹模、凸模的定位后,分别将凹模、凸模固定于成形机上平台和下平台上。Place the punch on the lower platform of the forming machine, hang the blank holder on the bottom plate, the lower part of the positioning plate is in contact with the side of the punch, and the upper part of the positioning plate is in contact with the side of the punch. Fix the die and punch on the upper and lower platforms of the forming machine.
进一步的,步骤S3包括:Further, step S3 includes:
第二顶杆上行,使压边圈上平面超过凸模最高点;The second mandrel goes up so that the upper plane of the blank holder exceeds the highest point of the punch;
坯料上下表面涂抹润滑油,将坯料放置于压边圈与凹模之间,确保坯料中心与模具中心重合;Apply lubricating oil on the upper and lower surfaces of the blank, and place the blank between the blank holder and the die to ensure that the center of the blank and the center of the die coincide;
凹模下行,压紧坯料,随后凹模、坯料与压边圈同时下行50-200mm,完成第一道次成形;The die goes down to compress the blank, and then the die, the blank and the blank holder go down 50-200mm at the same time to complete the first pass forming;
凹模下行的速度为1~2mm/s。The downward speed of the die is 1 to 2 mm/s.
进一步的,步骤S4中,坯料为铝合金时,强脉冲电流辅助组织调控温度为300~400℃;坯料为商业纯钛时,强脉冲电流辅助组织调控温度为550~650℃。Further, in step S4, when the billet is an aluminum alloy, the high-pulse current-assisted microstructure regulation temperature is 300-400°C; when the billet is commercial pure titanium, the high-pulse-current-assisted microstructure regulation temperature is 550-650°C.
进一步的,步骤S6包括:Further, step S6 includes:
预成形件表面喷涂防氧化涂料,进行热校形;The surface of the preform is sprayed with anti-oxidation paint for thermal correction;
热校形时,凸模下行直至合模,保温20~60min,取出半球形构件。During hot calibration, the punch goes down until the mold is closed, keep the temperature for 20-60 minutes, and then take out the hemispherical component.
进一步的,步骤S6中,凸模下行的速度为0.5~1mm/s;Further, in step S6, the downward speed of the punch is 0.5-1 mm/s;
坯料为铝合金时,半球体热校形温度为380~480℃;When the billet is aluminum alloy, the thermal correction temperature of the hemisphere is 380~480℃;
坯料为商业纯钛时,半球体热校形温度为550~650℃。When the billet is commercial pure titanium, the hemisphere thermal correction temperature is 550-650°C.
与现有技术相比,本发明至少能实现以下技术效果之一:Compared with the prior art, the present invention can achieve at least one of the following technical effects:
1)本发明成形方法包括冷成形与热校形两道工序,其中冷成形按成形高度不同可分为2~4道次,道次间采用电流辅助调控技术优化组织结构,使其具备继续变形能力,实现大高径比半球形构件的精密成形,从而突破现有半球形构件成形技术瓶颈,有效提高产品质量与合格率。1) The forming method of the present invention includes two processes of cold forming and hot forming, wherein the cold forming can be divided into 2 to 4 times according to the different forming heights, and the current-assisted regulation technology is used between the passes to optimize the organizational structure, so that it has the ability to continue to deform. It can realize the precise forming of hemispherical components with large height-diameter ratio, thus breaking through the bottleneck of the existing forming technology of hemispherical components and effectively improving the product quality and qualification rate.
大高径比半球形构件为直径500~700mm,高与半径的比在1.2以上的半球形构件。本发明解决了大高径比半球形壳体拉深成形时的起皱、开裂缺陷,可显著提高壁厚均匀性。The hemispherical member with a large aspect ratio is a hemispherical member with a diameter of 500-700 mm and a ratio of height to radius above 1.2. The invention solves the wrinkling and cracking defects of the hemispherical shell with a large aspect ratio during deep drawing, and can significantly improve the uniformity of the wall thickness.
2)通过在道次间采用电流辅助调控技术优化组织结构,利用脉冲电流实现快速加热与短时保温,调控变形组织,并利用脉冲电流对微裂纹的弥合作用,使其拥有继续变形能力,消除成形后板材内部微裂纹,将变形组织等轴化,提高其再次变形能力,防止成形时局部发生破裂。且本发明利用脉冲强电流的快速加热技术,可显著缩短中间热处理时间,提高生产效率。2) The microstructure is optimized by using the current-assisted regulation technology between passes, the pulse current is used to achieve rapid heating and short-term heat preservation, the deformed structure is regulated, and the pulse current is used to bridge the micro-cracks, so that it has the ability to continue deformation and eliminate the After forming, the internal micro-cracks of the plate will equiax the deformed structure, improve its re-deformation ability, and prevent local rupture during forming. In addition, the present invention utilizes the rapid heating technology of pulsed strong current, which can significantly shorten the intermediate heat treatment time and improve the production efficiency.
3)本发明采用一套模具实现冷成形和热成形工序,大幅节省加工成本。3) The present invention adopts a set of molds to realize the cold forming and hot forming processes, which greatly saves the processing cost.
4)经过多道次冷变形过程及短时强脉冲电流辅助处理,成形后微观组织晶粒度细化,产品性能提高。4) After multi-pass cold deformation process and short-time strong pulse current auxiliary treatment, the microstructure and grain size after forming are refined, and the product performance is improved.
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书以及权利要求书中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be set forth in the description which follows, and in part may become apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims.
附图说明Description of drawings
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的附图标记表示相同的部件。The drawings are for the purpose of illustrating specific embodiments only and are not to be considered limiting of the invention, and like reference numerals refer to like parts throughout.
图1为半球形构件冷成形模具图;Figure 1 is a diagram of a cold forming die for a hemispherical component;
图2为半球形构件冷成形模具剖视图;Figure 2 is a cross-sectional view of a cold forming die for a hemispherical component;
图3为强脉冲电流辅助组织调控系统结构图;Fig. 3 is the structure diagram of strong pulse current auxiliary tissue regulation system;
图4为半球形构件热校形模具图。Figure 4 is a diagram of a hot-correction mold for a hemispherical component.
附图标记:Reference number:
1-凹模;2-坯料;3-定位板;4-压边圈;5-凸模;6-第二顶杆;7-转接板;8-脉冲电源;9-温度反馈调节系统;10-夹持机构;101-电极;102-压板;103-U型铜体;104-导线束;11-电极支架;12-预成形件。1-concave die; 2-blank; 3-positioning plate; 4-blank holder; 5-punch; 6-second ejector; 7-transfer plate; 8-pulse power supply; 9-temperature feedback adjustment system; 10-clamping mechanism; 101-electrode; 102-pressing plate; 103-U-shaped copper body; 104-wire bundle; 11-electrode support; 12-preform.
具体实施方式Detailed ways
以下结合具体实施例对一种半球形构件的成形模具及多道次成形方法作进一步的详细描述,这些实施例只用于比较和解释的目的,本发明不限定于这些实施例中。The following describes a hemispherical component forming mold and multi-pass forming method in further detail with reference to specific embodiments. These embodiments are only used for comparison and explanation purposes, and the present invention is not limited to these embodiments.
实施例1Example 1
本实施例提供了一种半球形构件的成形模具,如图1-图2所示,包括凹模1、凸模5、压边圈4和定位板3;凹模1和凸模5用于成形半球形构件;压边圈4设置在凹模1和凸模5之间,所述压边圈4与凹模1配合压紧坯料2,用于防止坯料2成形过程中失稳起皱;压边圈4相邻的两个侧面各设置有一块定位板3,定位板3用于对上模和下模进行定位。定位板3螺接于压边圈4侧面且定位板3垂直分布。This embodiment provides a forming die for a hemispherical component, as shown in Figures 1-2, including a
还包括用于增加顶出半径的转接板7;成形机下平台包括下顶缸和第一顶杆,但第一顶杆形成的顶出半径较小,且顶出半径固定,为了满足大直径半球体成形需求,采用转接板7增大顶出半径。转接板7底部与成形机下平台顶缸的第一顶杆连接,转接板7上表面设置有第二顶杆6,第二顶杆6用于将压边圈4顶出,第二顶杆6绕转接板7中心均匀布置的第二顶杆6形成的顶出半径较大,且可根据成形半球形构件尺寸改变。It also includes an
凸模5包括底板和腔体,转接板7设置在腔体内,转接板7与凸模5侧壁单边间隙1~3mm,使转接板7在腔体内升降流畅;底板上设置有用于第二顶杆6穿过的底板通孔,转接板7上表面对称分布四个第二顶杆6,转接板7位于腔体底部时,第二顶杆6置于凸模5底板通孔内且不超过底板上表面,第二顶杆6与底板上表面距离3~5mm,使第二顶杆6不会妨碍压边圈4在凸模5上的放置,底板通孔与第二顶杆6单边间隙2~4mm,使第二顶杆6升降时在底板通孔中运行流畅。The
一种半球形构件多道次成形方法,包括冷成形与热校形两道工序,两次成形共用一套模具,其中冷成形按成形高度不同可分为2~4道次,道次间采用电流辅助调控技术优化组织结构,使其具备继续变形能力。采用上述半球形构件多道次成形模具,包括以下步骤:A multi-pass forming method for a hemispherical component, comprising two processes of cold forming and hot forming, two formings share a set of molds, wherein the cold forming can be divided into 2 to 4 passes according to the different forming heights, and the The current-assisted regulation technology optimizes the organizational structure and enables it to continue to deform. Using the above-mentioned hemispherical component multi-pass forming mold, including the following steps:
S1.确定坯料2尺寸;S1. Determine the size of blank 2;
S2.分别将凹模1、凸模5固定于成形机上平台和下平台上;S2. respectively fix the
S3.放置坯料2,进行冷成形第一道次得到预成形件12;S3. Place the blank 2, and perform the first pass of cold forming to obtain the
S4.对预成形件12进行强脉冲电流辅助组织调控;S4. Performing strong pulse current to assist tissue regulation on the
S5.选取最佳冷成形道次数,并按步骤S3、S4重复进行直至合模,脱模取出预成形件12;S5. Select the optimal number of cold forming passes, and repeat steps S3 and S4 until the mold is closed, demould and take out the
S6.对预成形件12进行热校形,得到半球形构件。S6. Perform thermal correction on the
步骤S1具体包括:Step S1 specifically includes:
根据半球形构件尺寸和形状,选择板材;划分网格,设置材料属性和边界条件,进行冷成形数值模拟,确定坯料2净尺寸,为板材在径向上增加成形余量,确定最终坯料2尺寸。According to the size and shape of the hemispherical component, the plate is selected; mesh is divided, material properties and boundary conditions are set, and numerical simulation of cold forming is performed to determine the net size of the blank 2, increase the forming allowance for the sheet in the radial direction, and determine the final blank 2 size.
步骤S2具体为:Step S2 is specifically:
将凸模5放置在成形机下平台上,将压边圈4吊设于底板上,压边圈4中心孔与凸模5凸起立边部分单边间隙2mm,定位板3下部与凸模5侧面接触,定位板3上部与凹模1侧面接触,完成凹模1、凸模5的定位后,分别将凹模1、凸模5固定于成形机上平台和下平台上。Place the
步骤S3具体包括:Step S3 specifically includes:
第二顶杆6上行,使压边圈4上平面超过凸模5最高点;坯料2上下表面涂抹润滑油,将坯料2放置于压边圈4与凹模1之间,确保坯料2中心与模具中心重合;凹模1下行,压紧坯料2,随后凹模1、坯料2与压边圈4同时下行一定距离,如50~200mm,完成第一道次成形;为确保坯料2变形均匀,控制加工硬化效应,凹模1下行的速度设为1~2mm/s。The
步骤S4具体包括:Step S4 specifically includes:
将预成形件12去除润滑油,喷涂防氧化涂料,通过电流辅助调控系统对坯料2进行强脉冲电流辅助组织调控;消除成形后板材内部微裂纹,将变形组织等轴化,提高其再次变形能力,防止成形时局部发生破裂。Remove the lubricating oil from the
如图3所示,电流辅助调控系统包括电极支架11、脉冲电源8、导线束104、夹持机构10和温度反馈调节系统9;As shown in FIG. 3 , the current-assisted regulation system includes an
夹持机构10对称分布于预成形件12两侧,夹持机构10包括电极101、U型铜体103和压板102,电极101与U型铜体103通过导线束104连接,螺栓旋入螺纹通孔并与压板102接触,在螺栓预紧力的作用下压板102与U型铜体103将步骤S3的预成形件12夹持固定,开启外部水冷循环泵、脉冲电源8开关和温度反馈调节系统9,输入初始电流值及目标温度,开始加热,达到目标温度后,保温20-30min,关闭脉冲电源8开关;当预成形件12降至室温后取出。The clamping mechanism 10 is symmetrically distributed on both sides of the
坯料2为铝合金时,强脉冲电流辅助组织调控温度为300~400℃;坯料2为商业纯钛时强脉冲电流辅助组织调控温度为550~650℃。When the
步骤S5具体包括:Step S5 specifically includes:
进行工艺试验确定每道次的下行距离,压边力根据坯料2厚度、材料强度、毛坯直径确定,一般地,随着成形的进行,起皱倾向愈加明显,压边力也应逐步增加。在保证不起皱或起皱倾向较小的条件下,应取压边力下限值,使坯料2既能在成形过程中在凸模的作用下向模具中心移动,又可防止坯料2起皱,以实现壁厚均匀性控制。Carry out a process test to determine the descending distance of each pass, and the blank holder force is determined according to the thickness of the blank 2, material strength, and blank diameter. Generally, as the forming progresses, the wrinkling tendency becomes more obvious, and the blank holder force should also gradually increase. Under the condition that no wrinkling or wrinkling tendency is guaranteed, the lower limit of the blank holder force should be taken, so that the blank 2 can not only move to the center of the mold under the action of the punch during the forming process, but also prevent the blank 2 from playing wrinkle for wall thickness uniformity control.
优选的,可通过步骤S1所述冷成形数值模拟过程,确定安全区和危险区分布范围,将冷成形分为2-4道次,并确定大致的下行距离,以缩小试验范围,减少试验次数。冷成形模拟时,厚度在原始厚度的基础上减薄30%以下为安全区,减薄30%以上为危险区。Preferably, the cold forming numerical simulation process described in step S1 can be used to determine the distribution range of the safe area and the dangerous area, divide the cold forming into 2-4 passes, and determine the approximate descending distance, so as to narrow the test range and reduce the number of tests . During the cold forming simulation, the thickness is reduced by less than 30% on the basis of the original thickness to be the safe area, and the thickness reduced by more than 30% is the dangerous area.
步骤S6具体包括:Step S6 specifically includes:
预成形件12表面喷涂防氧化涂料,进行热校形;热校形与冷成形共用一套模具,如图4所示,热成形模具由凸模5、压边圈4、凹模1、定位板3组成;热校形时,凸模5为上模,凹模1为下模,凸模5下行直至合模,保温20-60min取出半球形构件。The surface of the
热校形与冷成形共用一套模具,但初始状态不同,如图4所示。冷成形时需要使用顶杆,顶缸和顶杆设置在下平台上,此时凸模5为下模,凹模1为上模。热校形时凸模5为上模,凹模1为下模,易于脱模。Hot calibration and cold forming share a set of molds, but the initial state is different, as shown in Figure 4. During cold forming, an ejector rod is required, and the ejector cylinder and ejector rod are arranged on the lower platform. At this time, the
凸模5下行的速度为0.5~1mm/s;坯料2为铝合金时,半球体热校形温度为380~480℃;坯料2为商业纯钛时,半球体热校形温度为550~650℃。The downward speed of
由于材料高温膨胀,但不同材料的膨胀系数不同,为了使最后构件与模具的尺寸一致,设计模具时对成形模具按照半球形构件尺寸进行适当缩放加工。Since the material expands at high temperature, but the expansion coefficients of different materials are different, in order to make the size of the final component and the mold consistent, the forming mold is appropriately scaled and processed according to the size of the hemispherical component when designing the mold.
实施例2Example 2
以5083铝合金半球形构件为例,其外形尺寸见图1,构件厚度4mm,高径比为1.2:1,总高度为260mm。Taking the 5083 aluminum alloy hemispherical component as an example, its external dimensions are shown in Figure 1, the component thickness is 4mm, the height-diameter ratio is 1.2:1, and the total height is 260mm.
具体成形过程按如下步骤进行:The specific forming process is carried out as follows:
步骤(1)确定坯料2尺寸:选择成形所需4mm厚5083铝合金原料板材,根据构件特点,补充余量及工艺法兰边,如图2所示。采用FormingSuite软件进行数值模拟,划分网格数量为6900个,材料应变硬化指数为0.25,杨氏模量70GPa,泊松比0.33,压边力5t,拉深力200t,进行板料拉深过程数值模拟,展开确定下料尺寸为4×Φ850mm。下料时在坯料2相对位置各增加两个凸耳,便于强脉冲电流辅助组织调控时进行坯料2夹持。Step (1) Determine the size of the blank 2: select the 4mm thick 5083 aluminum alloy raw material sheet required for forming, and supplement the allowance and process flange edge according to the characteristics of the component, as shown in Figure 2. Using FormingSuite software to carry out numerical simulation, the number of meshes is 6900, the material strain hardening index is 0.25, the Young's modulus is 70GPa, the Poisson's ratio is 0.33, the blank holder force is 5t, the drawing force is 200t, and the numerical value of the sheet metal drawing process is carried out. Simulation, unfolding to determine the size of the blanking material is 4 × Φ850mm. When blanking, two lugs are added at the relative positions of the blank 2, so that the blank 2 can be clamped when the strong pulse current assists the tissue regulation.
步骤(2)设计成形模具并进行安装定位:设计制作冷成形和热校形所需模具,然后对成形模具的型腔按照铝合金半球形构件尺寸进行适当放大加工,放大系数为5‰;将成形模具通过压边圈侧面定位板3安装定位。Step (2) Design the forming mold and carry out installation and positioning: design and manufacture the mold required for cold forming and hot forming, and then appropriately enlarge the cavity of the forming mold according to the size of the aluminum alloy hemispherical component, and the amplification factor is 5‰; The forming die is installed and positioned by the
步骤(3)板材冷成形第一道次:第二顶杆6上行,使压边圈4上平面超过凸模5最高点。坯料2上下表面涂抹润滑油,放置坯料2,确保坯料2中心与模具中心重合。凹模1下行,压紧坯料2,随后凹模1、坯料2与压边圈4同时下行170mm,完成第一道次成形,得到预成形件12。所述压边力为5t,上模下行速度为2mm/s。Step (3) The first pass of cold forming of the plate: the
步骤(4)预成形件强脉冲电流辅助组织调控:将预成形件12去除润滑油,喷涂防氧化涂料,进行强脉冲电流辅助组织调控,消除成形后板材内部微裂纹,将变形组织等轴化,提高其再次变形能力,防止成形时局部发生破裂。所述电流辅助调控系统主要由电极支架11、脉冲电源8、夹持机构10和温度反馈调节系统9组成。所述夹持机构10将步骤(3)得到的预成形件12夹持固定,开启外部水冷循环泵、脉冲电源8开关和温度反馈调节系统9,输入初始电流值4000A及目标温度350℃,开始加热,达到目标温度后,保温20min,关闭脉冲电源8开关;当降至室温后,取出构件。Step (4) Auxiliary structure control of preformed part by strong pulse current: remove lubricating oil from
步骤(5)板材冷成形第二道次:第二顶杆6上行,使压边圈4上平面超过凸模最高点。将步骤(4)预成形件12上下表面涂抹润滑油,放置预成形件12,确保预成形件12中心与模具中心重合。凹模1下行,压紧预成形件12,随后凹模1、预成形件12与压边圈4同时下行90mm,完成第二道次成形。所述压边力为8t,上模下行速度为2mm/s。Step (5) The second pass of cold forming of the plate: the
步骤(6)热校形:将步骤(5)得到的预成形件12表面喷涂防氧化涂料,进行热校形。所述热成形与冷成形共用一套模具,所述热成形模具主要由凸模5、压边圈2、凹模1、定位板3组成。热校形时,凸模5下行直至合模,下行速度0.5mm/s,保温20min后,即预成形件12热压成形完毕,取出半球形构件。Step (6) hot shape correction: the surface of the
采用该实施例制备的铝合金半球形构件尺寸精度小于±0.4mm,型面精度在±0.2mm以内,表面粗糙度Ra3.2,壁厚均匀性较好,最大减薄率为5%,无起皱破裂倾向。The dimensional accuracy of the aluminum alloy hemispherical component prepared by this example is less than ±0.4mm, the profile accuracy is within ±0.2mm, the surface roughness is Ra3.2, the wall thickness uniformity is good, the maximum thinning rate is 5%, and there is no Tendency to wrinkle and break.
实施例3Example 3
以TA2纯钛半球形构件为例,其外形尺寸见图1,构件厚度6mm,高径比为1.3:1,总高度为310mm。Taking the TA2 pure titanium hemispherical component as an example, its external dimensions are shown in Figure 1, the thickness of the component is 6mm, the height-diameter ratio is 1.3:1, and the total height is 310mm.
具体成形过程按如下步骤进行:The specific forming process is carried out as follows:
步骤(1)确定坯料2尺寸:选择成形所需6mm厚TA2纯钛原料板材,根据构件特点,补充余量及工艺法兰边(如图2所示)。采用FormingSuite软件进行数值模拟,划分网格数量为7800个,材料应变硬化指数为0.13,杨氏模量103GPa,泊松比0.35,压边力20t,拉深力400t,进行板料拉深过程数值模拟,展开确定下料尺寸为6×Φ940mm。下料时在坯料2相对位置各增加两个凸耳,便于强脉冲电流辅助组织调控时进行坯料2夹持。Step (1) Determine the size of the blank 2: select the 6mm thick TA2 pure titanium raw material sheet required for forming, and supplement the allowance and process flange edge according to the characteristics of the component (as shown in Figure 2). Using FormingSuite software to carry out numerical simulation, the number of meshes is 7800, the material strain hardening index is 0.13, the Young's modulus is 103GPa, the Poisson's ratio is 0.35, the blank holder force is 20t, and the drawing force is 400t, and the numerical value of the sheet metal drawing process is carried out. Simulate, expand and determine the blanking size to be 6×Φ940mm. When blanking, two lugs are added at the relative positions of the blank 2, so that the blank 2 can be clamped when the strong pulse current assists the tissue regulation.
步骤(2)设计成形模具并进行安装定位:设计制作冷成形和热校形所需模具,因为模具热膨胀系数比钛合金热膨胀系数大,所以需要缩小加工,对成形模具的型腔按照钛合金半球形构件尺寸进行适当缩小加工,缩小系数选取为6‰;将成形模具通过压边圈侧面定位板3安装定位。Step (2) Design the forming mold and carry out the installation and positioning: Design and manufacture the mold required for cold forming and hot forming, because the thermal expansion coefficient of the mold is larger than that of the titanium alloy, so it needs to be reduced and processed, and the cavity of the forming mold is based on the titanium alloy hemisphere. The size of the shaped member is appropriately reduced, and the reduction factor is selected as 6‰; the forming die is installed and positioned through the
步骤(3)板材冷成形第一道次:第二顶杆6上行,使压边圈4上平面超过凸模5最高点。坯料2上下表面涂抹润滑油,放置坯料2,确保坯料2中心与模具中心重合。凹模1下行,压紧坯料2,随后凹模1、坯料2与压边圈4同时下行200mm,完成第一道次成形,得到预成形件12。所述压边力为10t,上模下行速度为2mm/s。Step (3) The first pass of cold forming of the plate: the
步骤(4)预成形件强脉冲电流辅助组织调控:将预成形件12去除润滑油,喷涂防氧化涂料,进行强脉冲电流辅助组织调控,消除成形后板材内部微裂纹,将变形组织等轴化,提高其再次变形能力,防止成形时局部发生破裂。所述电流辅助调控系统主要由电极支架11、脉冲电源8、夹持机构10和温度反馈调节系统9组成。所述夹持机构10将步骤(3)得到的预成形件12夹持固定,开启外部水冷循环泵、脉冲电源8开关和温度反馈调节系统9,输入初始电流值4000A及目标温度630℃,开始加热,达到目标温度后,保温30min,关闭脉冲电源8开关;当降至室温后,取出构件。Step (4) Auxiliary structure control of preformed part by strong pulse current: remove lubricating oil from
步骤(5)板材冷成形第二道次:第二顶杆6上行,使压边圈4上平面超过凸模5最高点。将步骤(4)预成形件12上下表面涂抹润滑油,放置坯料2,确保坯料2中心与模具中心重合。上模1下行,压紧坯料2,随后上模1、坯料2与压边圈4同时下行110mm,完成第二道次成形。所述压边力为15t,上模下行速度为2mm/s。Step (5) The second pass of cold forming of the plate: the
步骤(6)热校形:预成形件表面喷涂防氧化涂料,进行热校形。所述热成形与冷成形共用一套模具,所述热成形模具主要由凸模5、压边圈4、凹模1、定位板3组成。热校形时,凸模5下行直至合模,下行速度0.5mm/s,保温30min后,即板材热压成形完毕,取出半球形构件。Step (6) Thermal shape correction: the surface of the preform is sprayed with anti-oxidation paint to perform thermal shape correction. The hot forming and the cold forming share a set of molds, and the hot forming mold is mainly composed of a
采用该实施例制备的纯钛半球形构件尺寸精度小于±0.3mm,型面精度在±0.2mm以内,表面粗糙度Ra3.2,壁厚均匀性较好,最大减薄率为7%,无起皱破裂倾向。The dimensional accuracy of the pure titanium hemispherical component prepared by this example is less than ±0.3mm, the profile accuracy is within ±0.2mm, the surface roughness is Ra3.2, the wall thickness uniformity is good, the maximum thinning rate is 7%, and there is no Tendency to wrinkle and break.
表1半球形构件精度Table 1 Accuracy of hemispherical components
本申请多道次成形方法制备的半球形构件尺寸精度小于±0.5mm,型面精度在±0.3mm以内,壁厚均匀性较好,最大减薄率在20%以内,无起皱破裂倾向。现有技术制备的半球形构件尺寸精度在±0.8~1mm,型面精度在±0.6~0.7mm,表面粗糙度Ra3.2左右,壁厚均匀性较差,极易开裂,最大减薄率为50~70%,有起皱破裂倾向。本申请制备方法相对于现有技术壁厚均匀性,产品表面质量,形状精度等性能均有大幅度提高。The dimensional accuracy of the hemispherical components prepared by the multi-pass forming method of the present application is less than ±0.5mm, the profile accuracy is within ±0.3mm, the wall thickness uniformity is good, the maximum thinning rate is within 20%, and there is no tendency to wrinkle and rupture. The dimensional accuracy of the hemispherical components prepared by the prior art is ±0.8-1mm, the profile accuracy is ±0.6-0.7mm, the surface roughness is about Ra3.2, the uniformity of the wall thickness is poor, it is easy to crack, and the maximum thinning rate is 50 to 70%, there is a tendency to wrinkle and rupture. Compared with the prior art, the preparation method of the present application has greatly improved the wall thickness uniformity, product surface quality, shape accuracy and other properties.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910902706.XA CN110479843B (en) | 2019-09-23 | 2019-09-23 | Forming die and multi-pass forming method of hemispherical component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910902706.XA CN110479843B (en) | 2019-09-23 | 2019-09-23 | Forming die and multi-pass forming method of hemispherical component |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110479843A CN110479843A (en) | 2019-11-22 |
CN110479843B true CN110479843B (en) | 2020-10-02 |
Family
ID=68559056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910902706.XA Active CN110479843B (en) | 2019-09-23 | 2019-09-23 | Forming die and multi-pass forming method of hemispherical component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110479843B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111687593B (en) * | 2020-05-25 | 2022-07-22 | 航天海鹰(哈尔滨)钛业有限公司 | Titanium alloy variable-curvature revolution solid structure sheet metal part forming process |
CN111842637B (en) * | 2020-07-03 | 2023-07-14 | 北京航星机器制造有限公司 | Composite forming die and forming method for titanium alloy deep cavity component |
CN112222271B (en) * | 2020-09-24 | 2023-03-24 | 中国航发贵州黎阳航空动力有限公司 | Hot stretch forming method of shunt shell |
CN112475165A (en) * | 2020-11-11 | 2021-03-12 | 西南铝业(集团)有限责任公司 | Hot-pressing and cold-pressing process for aluminum alloy die forging |
CN112474985B (en) * | 2020-12-16 | 2023-05-05 | 北京航星机器制造有限公司 | Forming die and forming method for ribbed skin |
CN112872187B (en) * | 2020-12-28 | 2023-02-03 | 西安西材三川智能制造有限公司 | Composite forming method for thin-wall special-shaped part |
CN112958681A (en) * | 2021-03-09 | 2021-06-15 | 宜兴华威封头有限公司 | Manufacturing method of horseshoe-shaped end socket |
CN113102868B (en) * | 2021-04-20 | 2023-02-28 | 中国直升机设计研究所 | Helicopter main nozzle lobe machining method |
CN113426869B (en) * | 2021-06-08 | 2023-10-20 | 武汉理工大学 | Thermoforming method of satellite communication antenna mask |
CN113560363A (en) * | 2021-07-13 | 2021-10-29 | 太原理工大学 | Apparatus and method for improving circular local mechanical properties in large-sized magnesium alloy sheets |
CN113894217A (en) * | 2021-09-24 | 2022-01-07 | 泰兴市金冠包装制品有限公司 | Full-automatic high-speed manufacturing method and equipment for metal packaging tin body |
CN115382972B (en) * | 2022-09-26 | 2025-03-07 | 沈阳飞机工业(集团)有限公司 | Concave curve titanium alloy angle material forming method |
CN115430755A (en) * | 2022-11-07 | 2022-12-06 | 中国航发沈阳黎明航空发动机有限责任公司 | Built-in electrode hot forming device and method based on optimized blank shape |
CN116921674B (en) * | 2023-09-15 | 2023-12-08 | 河南神州精工制造股份有限公司 | Titanium alloy hemisphere head hot mould molding die |
CN118321426B (en) * | 2024-06-13 | 2024-08-23 | 合肥工业大学 | Partitioned time-by-time type electric auxiliary forming device and process for hemispherical shell |
CN118788819B (en) * | 2024-09-13 | 2024-11-29 | 合肥工业大学 | A titanium alloy spherical tank electric-assisted forming device |
CN119057003B (en) * | 2024-11-01 | 2025-02-14 | 浙江三维大通精锻股份有限公司 | Forging process of air suspension assembly |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB997811A (en) * | 1961-04-19 | 1965-07-07 | Budd Co | Method for forming articles from thin sheet material |
CN201098710Y (en) * | 2007-08-28 | 2008-08-13 | 汉达精密电子(昆山)有限公司 | Sheet metal punching device |
CN102275067A (en) * | 2011-08-02 | 2011-12-14 | 西安西工大超晶科技发展有限责任公司 | Method for processing and preparing semi-spherical metal storage tank used for astrovehicle fuel |
CN104624790A (en) * | 2013-11-13 | 2015-05-20 | 哈尔滨建成集团有限公司 | Air rectification cap deep drawing die with deep drawing beads |
CN105149408A (en) * | 2015-09-28 | 2015-12-16 | 中材科技(成都)有限公司 | Titanium steel cylinder deep drawing technology |
WO2017029773A1 (en) * | 2015-08-19 | 2017-02-23 | Jfeスチール株式会社 | Method for manufacturing hot press part and hot press part |
CN109940080A (en) * | 2019-04-04 | 2019-06-28 | 南京航空航天大学 | Self-resistance electric heating plate deep drawing device and method |
-
2019
- 2019-09-23 CN CN201910902706.XA patent/CN110479843B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB997811A (en) * | 1961-04-19 | 1965-07-07 | Budd Co | Method for forming articles from thin sheet material |
CN201098710Y (en) * | 2007-08-28 | 2008-08-13 | 汉达精密电子(昆山)有限公司 | Sheet metal punching device |
CN102275067A (en) * | 2011-08-02 | 2011-12-14 | 西安西工大超晶科技发展有限责任公司 | Method for processing and preparing semi-spherical metal storage tank used for astrovehicle fuel |
CN104624790A (en) * | 2013-11-13 | 2015-05-20 | 哈尔滨建成集团有限公司 | Air rectification cap deep drawing die with deep drawing beads |
WO2017029773A1 (en) * | 2015-08-19 | 2017-02-23 | Jfeスチール株式会社 | Method for manufacturing hot press part and hot press part |
CN105149408A (en) * | 2015-09-28 | 2015-12-16 | 中材科技(成都)有限公司 | Titanium steel cylinder deep drawing technology |
CN109940080A (en) * | 2019-04-04 | 2019-06-28 | 南京航空航天大学 | Self-resistance electric heating plate deep drawing device and method |
Also Published As
Publication number | Publication date |
---|---|
CN110479843A (en) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110479843B (en) | Forming die and multi-pass forming method of hemispherical component | |
CN111842637B (en) | Composite forming die and forming method for titanium alloy deep cavity component | |
CN108787904B (en) | A stamping and riveting integrated process and die for a patch reinforcement structure | |
CN105483588B (en) | A kind of preparation method of High-strength pure titanium sheet material | |
CN104889186A (en) | Electrical field assisted forward and backward combined extrusion forming method for ZrTiAlV alloy | |
CN106676437A (en) | Aluminum-alloy tank melon petal punching device and punching method | |
CN110468360B (en) | Method for reducing quenching residual stress of large-size high-strength aluminum alloy frame die forging | |
CN111206193A (en) | A kind of forming method of aluminum alloy components by slow hot forming and quenching | |
CN105414233B (en) | A kind of processing technology with back pressure indirect-extrusion mould and using the mould | |
CN107052075A (en) | Multimode is cold to swage and cold drawn processing AgSnO2The method of wire rod | |
CN114589284B (en) | One-fire and one-time billeting die and method for alloy bar material and method for upsetting, extrusion and large deformation | |
CN115889592A (en) | Thermoforming mold and manufacturing process for a partially closed cylindrical part | |
CN205042902U (en) | Energy storage ware jar body forging forming mould | |
WO2008111723A1 (en) | Ball joint integrated aluminum control arm for automobile and method of fabricating the same | |
CN211915251U (en) | Superplastic forming die for large titanium alloy double-curvature angle part | |
CN117463857A (en) | Aluminum alloy sheet metal parts hot forming production line and control method based on multi-sensor | |
CN114799001B (en) | Thermal processing method for forming hemispherical blank of large-size storage tank by adopting single-action hydraulic press | |
CN108856368A (en) | A kind of electronic product middle frame shaping device and shaping methods | |
CN108580574A (en) | A kind of method of the nearly solid state pressure forming of threeway part blank three-dimensional | |
CN115608897A (en) | A kind of precision forming method and mold of aluminum alloy special-shaped cross-section ring forging | |
CN114082873A (en) | Superplastic isothermal forging forming method | |
CN114309403A (en) | Low-cost forging forming method of titanium alloy blade | |
CN102357646A (en) | Method for forging nuclear-grade swing check valve body with high Cv value | |
RU2325966C2 (en) | Method of manufacturing parts from plate stocks with bulges in form of solids of revolution | |
CN114273575B (en) | Large-deformation short-flow forging method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |