CN110479265A - 一种稀土掺杂纳米压电催化剂的制备方法 - Google Patents

一种稀土掺杂纳米压电催化剂的制备方法 Download PDF

Info

Publication number
CN110479265A
CN110479265A CN201910664962.XA CN201910664962A CN110479265A CN 110479265 A CN110479265 A CN 110479265A CN 201910664962 A CN201910664962 A CN 201910664962A CN 110479265 A CN110479265 A CN 110479265A
Authority
CN
China
Prior art keywords
piezoelectricity
rare earth
preparation
catalyst
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910664962.XA
Other languages
English (en)
Inventor
白功勋
黄友强
徐时清
华有杰
杨清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910664962.XA priority Critical patent/CN110479265A/zh
Publication of CN110479265A publication Critical patent/CN110479265A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/681Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种稀土掺杂纳米压电催化剂的制备方法。称取预定量的钛酸铋钾原料以及稀土离子氧化物以及添加剂,置于强碱溶液中进行磁力搅拌,而后转移到水热反应釜中进行水热反应,本发明通过水热法制备出的Ag2O修饰稀土掺杂的钛酸铋钾压电催化剂,制备工艺简便,本发明方法是通过水热法一步合成,只需控制相关反应条件,操作方法简单且成熟;结晶度好杂质少,通过水热法一步合成Ag2O修饰稀土掺杂的钛酸铋钾,所制备出的掺杂后的钙钛矿陶瓷粉末的结晶度十分优异,杂质少;制备得到的钛酸铋钾纳米颗粒具有良好的压电催化性能。

Description

一种稀土掺杂纳米压电催化剂的制备方法
技术领域
本发明属于低维纳米材料制备领域,特别涉及一种稀土掺杂纳米压电催化剂的制备方法。
背景技术
近年科研学者对钙钛矿结构材料的研究日益加深,成为了材料界冉冉升起的一颗明星,具有着无穷的魅力。在钙钛矿结构中由于存在一个宽容系数t,故其可以很好的掺杂入各类离子尺寸不同的元素引起畸变,而不改变典型的钙钛矿结构,在标准宽容系数范围的以外的才会变化晶体结构形成新的相。理想情况下,宽容系数t被定义为:
其中rA、rB、rO分别表示A、B、O位离子的离子半径,t=1时材料晶体结构为紧密堆积,理论上t的区间范围为0.9~1.1。
钛酸铋钾(K0.5Bi0.5TiO3,简称BKT)是在钛酸铋钠之后发展起来的压电材料。在298K下,其晶体结构是四方钙钛矿,具有比钛酸铋钠(简称BNT)高的居里温度(Tc=380℃),因此很有希望成为新一代高温压电器件所用的压电陶瓷材料。
催化剂在生活中的应用是多方面的,比如水分解,原油裂解,污水处理,染料降解等。由于压电材料独特的压电性能在,在力的作用面上会产生正负电荷的积累。正电荷具有氧化的能力,负电荷具有了还原能力,这样压电材料在形变的情况下就具有了氧化还原的能力可以很好的运用于催化有机物的分解。简而言之,压电材料在外界机械振动下本身会发生受迫振动而产生形变进而在表面上形成正负电荷,对有机物进行分解。相比于光催化剂的广泛研究,人们对于掺杂稀土的压电催化剂的研究还需更进一步加强。因此本发明设计了一种新的制备工艺简便、结晶度好杂质少、具有良好的压电催化性能的稀土掺杂纳米压电催化剂的制备方法。
发明内容
为了解决现有技术中存在的上述技术问题,本发明提供了一种稀土掺杂纳米压电催化剂的制备方法,本发明采用如下技术方案:
一种稀土掺杂纳米压电催化剂的制备方法,包括如下步骤:
(a)根据化学计量比称取预定量的钛酸铋钾原料、预定量的稀土离子氧化物以及预定量的添加剂,置于强碱溶液中进行磁力搅拌。
(b)将搅拌混合之后的悬浊液倒入到聚四氟乙烯反应釜内套中,将封闭好的反应釜内套置于不锈钢外套中,螺丝拧紧。
(c)将拧紧的整个水热反应釜置于烘箱中保温。
(d)将保温结束后样品放置于离心管中用离心机进行离心清洗。
(e)将离心清洗得到的样品烘干后得到催化剂。
作为优选,所述步骤(a)所用原料除铋源是硝酸盐外都是氧化物,所述添加剂为AgNO3,其Ag元素质量百分比为:1%~3%,稀土离子氧化物掺杂的摩尔百分比为:0.01%-1%;所述强碱溶液为KOH溶液,其浓度为10mol/L~12mol/L。
作为优选,所述钛酸铋钾原料包括硝酸铋、氧化钛和碳酸钾,所述稀土离子氧化物包括氧化铒、氧化镱中的至少一种。
作为优选,所述步骤(c)中温度制度为:从室温升至保温时间的升温速率为:1℃/min~5℃/min;保温温度为:180℃~220℃;保温时间为:24-48h;炉冷。
作为优选,所述步骤(d)中离心机的转速速率为2000r/min~20000r/min。
作为优选,所述步骤(e)中样品烘干温度为:80℃-120℃。
本发明通过水热法制备出的Ag2O修饰稀土掺杂的钛酸铋钾压电催化剂具有如下优点:
1.制备工艺简便,本发明方法是通过水热法一步合成,只需控制相关反应条件,操作方法简单且成熟;
2.结晶度好杂质少。本方法是通过水热法一步合成Ag2O修饰稀土掺杂的钛酸铋钾,所制备出的掺杂后的钙钛矿陶瓷粉末的结晶度十分优异,杂质少;
3.制备得到的钛酸铋钾纳米颗粒具有良好的压电催化性能。
附图说明
图1是本发明所制备的稀土掺杂钛酸铋钾的XRD图谱;
图2是本发明所制备纳米材料的激光粒度分析图;
图3是本发明所制备纳米材料在催化罗丹明溶液的紫外可见吸收光谱;
具体实施方式
下面结合附图对本发明做进一步的描述,通过下面对实施例的描述,将更加有助于公众理解本发明,但不能也不应当将申请人所给出的具体的实施例视为对本发明技术方案的限制,任何术特征的定义进行改变或对整体结构作形式的而非实质的变换都应视为本发明的技术方案所限定的保护范围。
实施例1
一种稀土掺杂纳米压电催化剂的制备方法,包括如下步骤:
步骤a,称取2.44985g硝酸铋、0.01926g氧化铒、0.01970g氧化镱、0.79667g氧化钛、0.34902g碳酸钾以及0.06491g硝酸银粉末,放入到盛有12mol/L KOH溶液中磁力搅拌20min。
步骤b,将搅拌混合之后的悬浊液倒入到聚四氟乙烯反应釜内套中,将封闭好的反应釜内套置于不锈钢外套中,螺丝拧紧。
步骤c,将整个水热反应釜放于高温烘箱中,设置温度制度为:从室温以3℃/min的升温速率升至200℃并保温24小时,而后随炉冷却至室温后取出。
步骤d,打开反应釜将上层清液倒入废液桶中,将沉淀物取出放到离心管中。依次加入乙醇和水,进行一次离心乙醇洗,两次离心水洗。离心机的设置为:以8000r/min的离心速率洗涤样品5min。
步骤e,在100℃烘箱中进行干燥。
步骤f,取出干燥后的样品进行研磨,得到细粉样催化剂。
本是实例中:如图1是稀土掺杂钛酸铋钾的XRD图谱,对照K0.5Bi0.5TiO3的X射线标准衍射图谱,可以得出,本方法制备的产物主要成分为K0.5Bi0.5TiO3,以及部分的铒离子化合物、镱离子化合物,表明本方法通过水热法一步合成Ag2O修饰稀土掺杂的钛酸铋钾,所制的结晶度好杂质少。
如图2是本发明所制备纳米材料的激光粒度分析图,由图可得,本产物的粒子粒径约为62~256nm;
如图3是本发明所制备纳米材料在催化罗丹明溶液的紫外可见吸收光谱;
实施例2
一种稀土掺杂纳米压电催化剂的制备方法,包括如下步骤:
步骤a,称取2.44985g硝酸铋、0.01926g氧化铒、0.01970g氧化镱、0.79667g氧化钛、0.34902g碳酸钾以及0.06491g硝酸银粉末,放入到盛有10mol/L KOH溶液中磁力搅拌20min。
步骤b,将搅拌混合之后的悬浊液倒入到聚四氟乙烯反应釜内套中,将封闭好的反应釜内套置于不锈钢外套中,螺丝拧紧。
步骤c,将整个水热反应釜放于高温烘箱中,设置温度制度为:从室温以2℃/min的升温速率升至190℃并保温36小时,而后随炉冷却至室温后取出。
步骤d,打开反应釜将上层清液倒入废液桶中,将沉淀物取出放到离心管中。依次加入乙醇和水,进行一次离心乙醇洗,两次离心水洗。离心机的设置为:以10000r/min的离心速率洗涤样品5min。
步骤e,在90℃烘箱中进行干燥。
步骤f,取出干燥后的样品进行研磨,得到细粉样催化剂。
实施例3
一种稀土掺杂纳米压电催化剂的制备方法,包括如下步骤:
步骤a,称取2.44985g硝酸铋、0.01926g氧化铒、0.01970g氧化镱、0.79667g氧化钛、0.34902g碳酸钾以及0.06491g硝酸银粉末,放入到盛有11mol/L KOH溶液中磁力搅拌20min。
步骤b,将搅拌混合之后的悬浊液倒入到聚四氟乙烯反应釜内套中,将封闭好的反应釜内套置于不锈钢外套中,螺丝拧紧。
步骤c,将整个水热反应釜放于高温烘箱中,设置温度制度为:从室温以1℃/min的升温速率升至220℃并保温18小时,而后随炉冷却至室温后取出。
步骤d,打开反应釜将上层清液倒入废液桶中,将沉淀物取出放到离心管中。依次加入乙醇和水,进行一次离心乙醇洗,两次离心水洗。离心机的设置为:以12000r/min的离心速率洗涤样品5min。
步骤e,在120℃烘箱中进行干燥。
步骤f,取出干燥后的样品进行研磨,得到细粉样催化剂。
以上所述方案,仅仅是本发明的几种水热法合成Ag2O表面修饰的稀土掺杂压电材料的较佳实施例而已,并非对本发明的保护范围产生任何限制。
本发明通过水热法制备出的Ag2O修饰稀土掺杂的钛酸铋钾压电催化剂,制备工艺简便,本发明方法是通过水热法一步合成,只需控制相关反应条件,操作方法简单且成熟;结晶度好杂质少,通过水热法一步合成Ag2O修饰稀土掺杂的钛酸铋钾,所制备出的掺杂后的钙钛矿陶瓷粉末的结晶度十分优异,杂质少;制备得到的钛酸铋钾纳米颗粒具有良好的压电催化性能。
当然,本发明还可以有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可以根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (6)

1.一种稀土掺杂纳米压电催化剂的制备方法,其特征在于,包括如下步骤:
(a)根据化学计量比称取预定量的钛酸铋钾原料、预定量的稀土离子氧化物以及预定量的添加剂,置于强碱溶液中进行磁力搅拌;
(b)将搅拌混合之后的悬浊液倒入到聚四氟乙烯反应釜内套中,将封闭好的反应釜内套置于不锈钢外套中,螺丝拧紧;
(c)将拧紧的整个水热反应釜置于烘箱中保温;
(d)将保温结束后样品放置于离心管中用离心机进行离心清洗;
(e)将离心清洗得到的样品烘干后得到催化剂。
2.根据权利要求1所述的一种稀土掺杂纳米压电催化剂的制备方法,其特征在于:所述步骤(a)所用原料除铋源是硝酸盐外都是氧化物,所述添加剂为AgNO3,其Ag元素质量百分比为:1%~3%,稀土离子氧化物掺杂的摩尔百分比为:0.01%-1%;所述强碱溶液为KOH溶液,其浓度为10mol/L~12mol/L。
3.根据权利要求1所述一种稀土掺杂压电催化纳米材料的制备方法,其特征在于:所述钛酸铋钾原料包括硝酸铋、氧化钛和碳酸钾,所述稀土离子氧化物包括氧化铒、氧化镱中的至少一种。
4.根据权利要求1所述的一种稀土掺杂纳米压电催化剂的制备方法,其特征在于:所述步骤(c)中温度制度为:从室温升至保温时间的升温速率为:1℃/min~5℃/min;保温温度为:180℃~220℃;保温时间为:24-48h。
5.根据权利要求1所述的一种稀土掺杂纳米压电催化剂的制备方法,其特征在于:所述步骤(d)中离心机的转速速率为2000r/min~20000r/min。
6.根据权利要求1所述一种稀土掺杂压电催化纳米材料的制备方法,其特征在于:所述步骤(e)中样品烘干温度为:80℃-120℃。
CN201910664962.XA 2019-07-23 2019-07-23 一种稀土掺杂纳米压电催化剂的制备方法 Pending CN110479265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910664962.XA CN110479265A (zh) 2019-07-23 2019-07-23 一种稀土掺杂纳米压电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910664962.XA CN110479265A (zh) 2019-07-23 2019-07-23 一种稀土掺杂纳米压电催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110479265A true CN110479265A (zh) 2019-11-22

Family

ID=68548077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910664962.XA Pending CN110479265A (zh) 2019-07-23 2019-07-23 一种稀土掺杂纳米压电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110479265A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121795A (zh) * 2020-09-07 2020-12-25 南京智汇环境气象产业研究院有限公司 一种银掺杂改性四氧化二铋压电催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814570A (zh) * 2005-02-01 2006-08-09 四川大学 钛酸铋钠钾锂银系无铅压电陶瓷
CN1814569A (zh) * 2005-02-01 2006-08-09 四川大学 钛酸铋钠银钡系无铅压电陶瓷
CN101767818A (zh) * 2010-01-21 2010-07-07 上海大学 一种离子掺杂钛酸铋钾纳米粉体及其制备方法
CN107814568A (zh) * 2017-10-30 2018-03-20 西安工业大学 一种稀土掺杂钛酸铋钠钙钛矿材料及其制备方法
CN108772063A (zh) * 2018-07-05 2018-11-09 天津城建大学 一种Ag2O/Bi4Ti3O12压电光催化剂及其合成方法、光催化降解率检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814570A (zh) * 2005-02-01 2006-08-09 四川大学 钛酸铋钠钾锂银系无铅压电陶瓷
CN1814569A (zh) * 2005-02-01 2006-08-09 四川大学 钛酸铋钠银钡系无铅压电陶瓷
CN101767818A (zh) * 2010-01-21 2010-07-07 上海大学 一种离子掺杂钛酸铋钾纳米粉体及其制备方法
CN107814568A (zh) * 2017-10-30 2018-03-20 西安工业大学 一种稀土掺杂钛酸铋钠钙钛矿材料及其制备方法
CN108772063A (zh) * 2018-07-05 2018-11-09 天津城建大学 一种Ag2O/Bi4Ti3O12压电光催化剂及其合成方法、光催化降解率检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAIDONG LI ET AL: "Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect", 《NANO LETT.》 *
JIANJIAN SUN ET AL: "Upconversion and downconversion luminescence properties of Er3+ doped NBT ceramics synthesized via hydrothermal method", 《OPTICAL MATERIALS》 *
SHANSHAN WANG ET AL: "Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121795A (zh) * 2020-09-07 2020-12-25 南京智汇环境气象产业研究院有限公司 一种银掺杂改性四氧化二铋压电催化剂的制备方法
CN112121795B (zh) * 2020-09-07 2023-01-17 南京智汇环境气象产业研究院有限公司 一种银掺杂改性四氧化二铋压电催化剂的制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrasonic vibration driven piezocatalytic activity of lead-free K0. 5Na0. 5NbO3 materials
Yuan et al. Enhanced piezocatalytic performance of (Ba, Sr) TiO3 nanowires to degrade organic pollutants
Guan et al. From hollow olive-shaped BiVO4 to n− p core− shell BiVO4@ Bi2O3 microspheres: Controlled synthesis and enhanced visible-light-responsive photocatalytic properties
Testino et al. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach
Qiu et al. Visible-Light-Driven Cu (II)−(Sr1− y Na y)(Ti1− x Mo x) O3 Photocatalysts Based on Conduction Band Control and Surface Ion Modification
Pillai et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst
Li et al. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis
Ruan et al. Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation
Shimizu et al. Photocatalytic water splitting on Ni-intercalated Ruddlesden− Popper tantalate H2La2/3Ta2O7
Xu et al. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions
Feng et al. Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process
Farooq et al. Development of cuboidal KNbO3@ α-Fe2O3 hybrid nanostructures for improved photocatalytic and photoelectrocatalytic applications
Kawasaki et al. Electronic structure and photoelectrochemical properties of an Ir-doped SrTiO3 photocatalyst
Dai et al. Enhanced piezocatalytic activity of Sr0. 5Ba0. 5Nb2O6 nanostructures by engineering surface oxygen vacancies and self-generated heterojunctions
Shibata et al. Enhancement of photoinduced highly hydrophilic conversion on TiO2 thin films by introducing tensile stress
Zhang et al. Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts
An et al. Photoexcited electrons driven by doping concentration gradient: Flux-prepared NaTaO3 photocatalysts doped with strontium cations
CN106563485A (zh) 一种氮化碳/铌酸钙钾复合材料及其制备方法与用途
Tsunoda et al. Preparation and HREM characterization of a protonated form of a layered perovskite tantalate from an aurivillius Phase Bi2SrTa2O9 via acid treatment
Kang et al. Efficient hydrogen peroxide (H2O2) synthesis by CaSnO3 via two-electron water oxidation reaction
CN101214932A (zh) 一种纳米硒化锡的制备方法
CN101602524A (zh) 一种钽酸钾粉体的水热合成方法
Manique et al. Titanate nanotubes produced from microwave-assisted hydrothermal synthesis: characterization, adsorption and photocatalytic activity
CN110479265A (zh) 一种稀土掺杂纳米压电催化剂的制备方法
CN107175097B (zh) 一种二硫化锡包裹二氧化钛复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122

RJ01 Rejection of invention patent application after publication