CN110474073B - 检测固态氧化物燃料电池系统内部积碳的方法及装置 - Google Patents

检测固态氧化物燃料电池系统内部积碳的方法及装置 Download PDF

Info

Publication number
CN110474073B
CN110474073B CN201910822332.0A CN201910822332A CN110474073B CN 110474073 B CN110474073 B CN 110474073B CN 201910822332 A CN201910822332 A CN 201910822332A CN 110474073 B CN110474073 B CN 110474073B
Authority
CN
China
Prior art keywords
fuel cell
solid oxide
oxide fuel
cell system
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910822332.0A
Other languages
English (en)
Other versions
CN110474073A (zh
Inventor
陈松涛
陈文淼
于超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN201910822332.0A priority Critical patent/CN110474073B/zh
Publication of CN110474073A publication Critical patent/CN110474073A/zh
Priority to PCT/IB2020/059857 priority patent/WO2021044400A1/en
Priority to US17/639,524 priority patent/US20220328853A1/en
Priority to GB2202993.8A priority patent/GB2601693A/en
Application granted granted Critical
Publication of CN110474073B publication Critical patent/CN110474073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • C01B2203/067Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1628Controlling the pressure
    • C01B2203/1633Measuring the pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本申请公开了一种检测固态氧化物燃料电池系统内部积碳的方法及装置,该方法包括:调节固态氧化物燃料电池系统的重整器中的温度,使重整器中排出的混合气体处于检测温度;对从混合气体进行采样;对气体样品进行检测,得出各气体的摩尔分数,并根据得到的摩尔分数计算出Boudouard反应的平衡常数K1;根据热力学计算出Boudouard反应的平衡常数K2;对比K1和K2,如果K1<K2,则固态氧化物燃料电池系统的内部不会形成积碳;如果K1>K2,则固态氧化物燃料电池系统的内部会形成积碳。上述方法能够对固态氧化物燃料电池系统内部的积碳情况进行检测,以实现对固态氧化物燃料电池系统的提前示警,防患于未然。

Description

检测固态氧化物燃料电池系统内部积碳的方法及装置
技术领域
本发明涉及燃料电池技术领域,特别涉及一种检测固态氧化物燃料电池系统内部积碳的方法,本发明还涉及适用于该方法的一种检测固态氧化物燃料电池系统内部积碳的装置。
背景技术
在固态氧化物燃料电池系统中,电池电堆发电所需要的氢气,是通过天然气中的甲烷与水蒸气经过在重整器中反应而得到,该反应包括甲烷与水蒸气发生的反应以及生成的一氧化碳和水蒸气发生的反应,即CH4+H2O=3H2+CO(蒸汽转化反应)和CO+H2O=H2+CO2(WGS反应),但是与此同时,重整器中还会发生副反应,即2CO=C+CO2(Boudouard反应)和CO+H2=C+H2O(一氧化碳还原反应),而此副反应会造成碳颗粒物的产生,导致固态氧化物燃料电池系统内部部件或其管路内产生积碳,如果积碳情况严重,则会使进入重整器的水蒸汽进料忽然中断,令催化剂发生中毒且堵塞重整器进而导致固态氧化物燃料电池系统永久崩溃。
因此,如何检测固态氧化物燃料电池系统内部的积碳情况,已经成为本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明提供了一种检测固态氧化物燃料电池系统内部积碳的方法,其能够对固态氧化物燃料电池系统内部的积碳情况进行检测,以实现对固态氧化物燃料电池系统的提前示警,防患于未然。本发明还提供了适用于上述方法的一种检测固态氧化物燃料电池系统内部积碳的装置。
为了达到上述目的,本发明提供如下技术方案:
一种检测固态氧化物燃料电池系统内部积碳的方法,该方法包括以下步骤:
S1、调节所述固态氧化物燃料电池系统的重整器中的温度,使得所述重整器中排出的混合气体处于检测温度;
S2、对从所述混合气体进行采样,以获得气体样品;
S3、对所述气体样品进行检测,得出各气体的摩尔分数,并根据得到的摩尔分数计算出Boudouard反应的平衡常数K1;
S4、根据热力学计算出所述Boudouard反应的平衡常数K2;
S5、对比K1和K2,如果K1<K2,则所述固态氧化物燃料电池系统的内部不会形成积碳;如果K1>K2,则所述固态氧化物燃料电池系统的内部会形成积碳。
优选的,上述检测固态氧化物燃料电池系统内部积碳的方法中,还包括以下步骤:
在所述混合气体处于所述检测温度后,对所述混合气体的压力值进行检测。
优选的,上述检测固态氧化物燃料电池系统内部积碳的方法中,对所述重整器中的温度进行多次调节,以得到多个不同的检测温度,并在所述混合气体处于每个所述检测温度时都进行步骤S2至步骤S5的操作。
一种检测固态氧化物燃料电池系统内部积碳的装置,该装置适用于上述任意一项中的检测固态氧化物燃料电池系统内部积碳的方法。
优选的,上述检测固态氧化物燃料电池系统内部积碳的装置中,所述装置包括:
气体导出管,所述气体导出管的一端与所述重整器和所述固态氧化物燃料电池系统的电池电堆之间的输气管路连通,另一端伸出至所述固态氧化物燃料电池系统的箱体之外,以将所述重整器中排出的混合气体导出至所述箱体之外;
用于检测所述输气管路中所述混合气体温度的温度传感器;
与所述气体导出管的位于所述箱体之外的端部连通的采样管;
与所述气体导出管的位于所述箱体之外的端部连通的压力传感器;
能够与所述采样管配合工作,以对导出的所述混合气体进行检测的四合一检测仪;
能够对所述重整器中的温度进行调节的控制器,并且所述控制器与所述温度传感器以及所述压力传感器通信连接。
优选的,上述检测固态氧化物燃料电池系统内部积碳的装置中,所述压力传感器、所述采样管和所述气体导出管的位于所述箱体之外的端部通过三通管连接,并且所述压力传感器的设置高度大于所述采样管的设置高度和所述气体导出管的位于所述箱体之外的端部的设置高度。
优选的,上述检测固态氧化物燃料电池系统内部积碳的装置中,所述采样管上设置有手动球阀。
本发明提供的检测固态氧化物燃料电池系统内部积碳的方法,通过对固态氧化物燃料电池系统的重整器中排出的混合气体进行检测,就能够实现对固态氧化物燃料电池系统内部的积碳情况的检测,以对固态氧化物燃料电池系统起到提前示警、防患于未然的作用,避免固态氧化物燃料电池系统因积碳发生损坏,更好的保证了固态氧化物燃料电池系统的正常、安全工作。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的检测固态氧化物燃料电池系统内部积碳的方法的流程图;
图2为本发明实施例提供的检测固态氧化物燃料电池系统内部积碳的装置与固态氧化物燃料电池系统配合的结构示意图。
在图2中:
1-气体导出管,2-重整器,3-电池电堆,4-输气管道,5-箱体,6-温度传感器,7-采样管,8-压力传感器,9-四合一检测仪,10-控制器,11-三通管,12-手动球阀。
具体实施方式
本发明提供了一种检测固态氧化物燃料电池系统内部积碳的方法,其能够对固态氧化物燃料电池系统内部的积碳情况进行检测,以实现对固态氧化物燃料电池系统的提前示警,防患于未然。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种检测固态氧化物燃料电池系统内部积碳的方法,在对该方法进行说明之前,本实施例先对固态氧化物燃料电池的工作原理和工作情况进行介绍:
在固态氧化物燃料电池系统中,电池电堆化学反应所需气体为氢气,而氢气主要由天然气中的甲烷与水蒸气经过重整器的催化而得到,在甲烷的重整过程中,以下四种反应是需要注意的关键:
CH4+H2O=3H2+CO△H298≈206kJ/mol(蒸汽转化反应)
CO+H2O=H2+CO2△H298≈-41kJ/mol(水煤气变换反应)
2CO=C+CO2ΔH298≈-172kJ/mol(Boudouard反应)
CO+H2=C+H2OΔH298≈-131kJ/mol(一氧化碳还原反应)
在此四个反应中,前两个为用于生成氢气的主要反应,有时结合在一起称为Sabatier反应,且每一种反应的平衡位置的变化都是独立的反应条件,而后两个为则副反应。
从上述天然气重整反应的过程来看,天然气的重整过程是一个吸热过程,因此对于固态氧化物燃料电池的连续重整,需设置一个具有足够热量的热源来供应反应所需的热量,而其重整过程中的副反应则会导致碳颗粒物的产生。
根据Le Chatelier’s原理(即勒夏特列原理),在上述反应中,甲烷的大部分“反应物”会消耗殆尽,因此H2的产量随着反应温度的升高而最大化,当温度达到700℃时,H2的产量达到最大值。然而,随着反应温度的升高,平衡位置发生微弱变化而放热的水煤气变换反应(该反应为可逆反应)自然会被推到化学式的“左边”(即反应物更多,生成物更少),因此,高重整温度会导致甲烷化反应平衡产生更多的H2,但通过二次水煤气变换反应转化的CO较少,导致在较高温度下对CO馏分较高的气体会再次进行重整。
从上述的Boudouard反应可以看出,相对浓度气体中CO与CO2的比值将影响固态碳形成的可能性“沉淀”,固态氧化物燃料电池系统中最关键的问题之一就是燃料气体可能分解而形成积碳,在系统中有高温燃料气体出现的几个地方,都有可能产生碳。
在甲烷化反应中,当高温重整时,会产生一个高效的CH4转化为H2的过程,如果CO:CO2的比值增加,则需要注意,因为它会导致重整副反应中产生的碳颗粒物的沉淀,随着时间的推移,可能会导致重整器内或管道内或其他地方沉积物的生成,这些沉淀颗粒物的堆积会影响电堆所使用气体的流量及富氢重整效率。
为了确保重整过程是一个合理的富氢重整过程,CO:CO2的比值不应该导致碳颗粒物的沉积。在正常的操作条件下,剩余的CH4在电池电堆内部单元格的内部进行重整,通过电池电堆内部单元格的重整,会给电池电堆带来有益的冷却效果,因此重整过程的吸热性质是有利于电堆的。
基于上述介绍,本实施例提供的检测固态氧化物燃料电池系统内部积碳的方法包括以下步骤:
S1、通过固态氧化物燃料电池的控制器(即FCU)调节固态氧化物燃料电池系统的重整器中的温度,使得重整器中排出的混合气体处于检测温度,例如,通过FCU将重整器内温度控制在450℃,当位于重整气端的温度传感器(后续内容中说明)检测到混合气体为该温度值时,便可以进行后续操作;
S2、对从混合气体进行采样,以获得气体样品;
S3、对气体样品进行检测,得出各气体的摩尔分数,例如下表所示,其为一次实际检测得出的各气体的摩尔分数;在得到各气体的摩尔分数后,根据摩尔分数计算出Boudouard反应的平衡常数K1,该平衡常数K1可以依据现有技术中公知的计算公式计算得出,由于该平衡常数K1依据的是混合气体中各气体的实际摩尔分数计算得出,所以该平衡常数K1为实际反应的实际平衡常数,同时,该平衡常数K1即为CO:CO2的实际比值;
Figure GDA0002225269390000061
备注:%表示摩尔分数
S4、根据热力学计算出Boudouard反应的平衡常数K2,计算此平衡常数K2所依据的热力学方法也是现有技术中公知的,由于该计算依据的是各气体的理论数据,所以该平衡常数K2为理论平衡常数,同样的,该平衡常数K2即为CO:CO2的理论比值;
S5、对比K1和K2,即将实际平衡常数与理论平衡常数进行对比,如果K1<K2,则固态氧化物燃料电池系统的内部不会形成积碳;如果K1>K2,则固态氧化物燃料电池系统的内部会形成积碳,且积碳情况会越来越严重。
该检测固态氧化物燃料电池系统内部积碳的方法设计简单,成本低,其不仅能够判断积碳情况,而且还可以通过对重整气体成分的检测加上对系统内部压力的检测判断电池电堆的运行状况,也可以判断重整过程的温度是否在FCU控制的范围之内,还可以判断重整过程是否高效,以及重整器内部涂覆是否有效。
优选的,上述方法还包括以下步骤:在混合气体处于检测温度后,对混合气体的压力值进行检测。由于气体的压力也与平衡常数的变化有关,所以为了进一步提高检测精度,本实施例优选在对温度进行选择的同时,还对压力进行检测。
进一步的,为了更加精确的判断出积碳情况,本实施例优选进行多次检测操作,且令每次检测的检测温度都不相同,即对重整器中的温度进行多次调节,以得到多个不同的检测温度,并在混合气体处于每个检测温度时都进行步骤S2至步骤S5的操作。
如图2所示,本发明实施例还提供了一种检测固态氧化物燃料电池系统内部积碳的装置,该装置适用于上述的检测固态氧化物燃料电池系统内部积碳的方法。
具体的,如图2所示,上述装置包括:气体导出管1,该气体导出管1的一端与重整器2和固态氧化物燃料电池系统的电池电堆3之间的输气管道4连通,另一端伸出至固态氧化物燃料电池系统的箱体5之外,以通过气体导出管1将重整器2中排出的混合气体导出至箱体5之外;温度传感器6,该温度传感器6优选为热电偶并可以设置在箱体5之外,其用于检测输气管道4内混合气体的温度,该温度也为重整器2内的重整温度;与气体导出管1的位于箱体5之外的端部连通的采样管7;与气体导出管1的位于箱体5之外的端部连通的压力传感器8,该压力传感器8用于检测混合气体的压力;能够与采样管7配合工作,以对导出的混合气体进行检测的四合一检测仪9,此四合一检测仪9能够检测的气体包括氢气、甲烷、CO和CO2;能够对重整器2中的温度进行调节的控制器10,并且控制器10与温度传感器6以及压力传感器8通信连接。
固态氧化物燃料电池系统反应时的温度达最高可达800多摄氏度,且各管路也是通过部件及特殊管道连同的,直接对位于箱体5中的重整器2内的混合气体进行采集和检测是不现实的,所以为了顺利实现检测,在重整器2和电池电堆3之间用于输送反应后混合气体的输气管道4上连接一个气体导出管1,并将气体导出管1的一端引出至箱体5外部,并使用控制器10(该控制器10优选为FCU,即通过改变原有FCU的控制程序,使FCU在具有原有功能的基础上增加有关于检测的功能)控制重整器2内的气体温度,温度数值可以依据温度传感器6发送温度信号给控制器10而得到,例如要比较450℃时重整器2内气体成分与理论计算结果是否一致,可以通过FCU将重整器2温度控制在450℃,当依据温度传感器6的检测使控制器10上显示为该温度值时,便可以通过采样管7收集混合气体。具体的收集过程是:令混合气体流经气体导出管1后进入到采样管7中,混合气体在采样管7中经过冷却后,最终进入到四合一检测仪9的采样瓶中;与此同时,压力传感器8对气体导出管1导出的混合气体进行压力检测,并将检测得到的压力信号发送给控制器10。
在上述结构中,气体导出管1位于箱体5外部的长度,可以根据电池电堆3工作的实际最高温度以及热力学公式计算得到。
具体的,压力传感器8、采样管7和气体导出管1的位于箱体5之外的端部,此三者通过三通管11连接,并且优选压力传感器8的设置高度大于采样管7的设置高度和气体导出管1的位于箱体5之外的端部的设置高度,如图2所示。采用三通管11,使其第一个端口向上伸出并连通压力传感器8,第二个端口水平伸出并连通气体导出管1的位于箱体5之外的端部,第三个端口水平或向下伸出并连通采样管7。之所以优选压力传感器8的设置高度大于其他两者,是为了更加精确的测量混合气体的压力,如果压力传感器8的设置高度低于采样管7所处的高度,则混合气体中的蒸汽会由于冷凝作用变成水,水柱高度会影响压力传感器8的测量精度,所以为了避免该问题,优选令压力传感器8的设置高度大于其他两者。
如图2所示,本实施例还优选采样管7上设置有手动球阀12。该手动阀的设置,可以使操作人员更加方便的控制采气过程。
本说明书中对各部分结构采用递进的方式描述,每个部分的结构重点说明的都是与现有结构的不同之处,检测固态氧化物燃料电池系统内部积碳的装置的整体及部分结构可通过组合上述多个部分的结构而得到。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种检测固态氧化物燃料电池系统内部积碳的方法,其特征在于,该方法包括以下步骤:
S1、调节所述固态氧化物燃料电池系统的重整器中的温度,使得所述重整器中排出的混合气体处于检测温度;
S2、对从所述混合气体进行采样,以获得气体样品;
S3、对所述气体样品进行检测,得出各气体的摩尔分数,并根据得到的摩尔分数计算出Boudouard 反应的平衡常数K1;
S4、根据热力学计算出所述Boudouard 反应的平衡常数K2;
S5、对比K1和K2,如果K1<K2,则所述固态氧化物燃料电池系统的内部不会形成积碳;如果K1>K2,则所述固态氧化物燃料电池系统的内部会形成积碳。
2.根据权利要求1所述的检测固态氧化物燃料电池系统内部积碳的方法,其特征在于,还包括以下步骤:
在所述混合气体处于所述检测温度后,对所述混合气体的压力值进行检测。
3.根据权利要求1或2所述的检测固态氧化物燃料电池系统内部积碳的方法,其特征在于,对所述重整器中的温度进行多次调节,以得到多个不同的检测温度,并在所述混合气体处于每个所述检测温度时都进行步骤S2至步骤S5的操作。
4.一种检测固态氧化物燃料电池系统内部积碳的装置,其特征在于,该装置适用于权利要求1-3中任意一项所述的检测固态氧化物燃料电池系统内部积碳的方法。
5.根据权利要求4所述的检测固态氧化物燃料电池系统内部积碳的装置,其特征在于,所述装置包括:
气体导出管,所述气体导出管的一端与所述重整器和所述固态氧化物燃料电池系统的电池电堆之间的输气管道连通,另一端伸出至所述固态氧化物燃料电池系统的箱体之外,以将所述重整器中排出的混合气体导出至所述箱体之外;
用于检测所述输气管道中所述混合气体温度的温度传感器;
与所述气体导出管的位于所述箱体之外的端部连通的采样管;
与所述气体导出管的位于所述箱体之外的端部连通的压力传感器;
能够与所述采样管配合工作,以对导出的所述混合气体进行检测的四合一检测仪;
能够对所述重整器中的温度进行调节的控制器,并且所述控制器与所述温度传感器以及所述压力传感器通信连接。
6.根据权利要求5所述的检测固态氧化物燃料电池系统内部积碳的装置,其特征在于,所述压力传感器、所述采样管和所述气体导出管的位于所述箱体之外的端部通过三通管连接,并且所述压力传感器的设置高度大于所述采样管的设置高度和所述气体导出管的位于所述箱体之外的端部的设置高度。
7.根据权利要求5所述的检测固态氧化物燃料电池系统内部积碳的装置,其特征在于,所述采样管上设置有手动球阀。
CN201910822332.0A 2019-09-02 2019-09-02 检测固态氧化物燃料电池系统内部积碳的方法及装置 Active CN110474073B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910822332.0A CN110474073B (zh) 2019-09-02 2019-09-02 检测固态氧化物燃料电池系统内部积碳的方法及装置
PCT/IB2020/059857 WO2021044400A1 (en) 2019-09-02 2020-10-20 Method and device for detecting internal carbon deposition of a solid oxide fuel cell system
US17/639,524 US20220328853A1 (en) 2019-09-02 2020-10-20 Method and device for detecting internal carbon deposition of a solid oxide fuel cell system
GB2202993.8A GB2601693A (en) 2019-09-02 2020-10-20 Method and device for detecting internal carbon deposition of a solid oxide fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910822332.0A CN110474073B (zh) 2019-09-02 2019-09-02 检测固态氧化物燃料电池系统内部积碳的方法及装置

Publications (2)

Publication Number Publication Date
CN110474073A CN110474073A (zh) 2019-11-19
CN110474073B true CN110474073B (zh) 2021-01-19

Family

ID=68514676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910822332.0A Active CN110474073B (zh) 2019-09-02 2019-09-02 检测固态氧化物燃料电池系统内部积碳的方法及装置

Country Status (4)

Country Link
US (1) US20220328853A1 (zh)
CN (1) CN110474073B (zh)
GB (1) GB2601693A (zh)
WO (1) WO2021044400A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213406B (zh) * 2019-11-21 2023-06-16 蜂巢能源科技有限公司 用于测量电芯内气体量的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416404A (en) * 1977-06-20 1979-02-07 Conoco Methanation Co Method of controlling formation of hydrocarbon on methanizing catalyst
CA1108971A (en) * 1978-06-23 1981-09-15 Joseph A. Kleinpeter Method for minimizing carbon formation on methanation catalysts
JPH1126001A (ja) * 1997-07-04 1999-01-29 Fuji Electric Co Ltd 燃料電池発電システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172638B2 (en) * 2002-04-29 2007-02-06 General Motors Corporation Staged air autothermal reformer for improved startup and operation
US20110094226A1 (en) * 2009-10-28 2011-04-28 Mchugh Lawrence F Process and apparatus for high energy efficiency chemical looping combustion
EP2792009A1 (en) * 2011-12-15 2014-10-22 Topsøe Fuel Cell A/S Process for producing an adjustable gas composition for fuel cells
CN107464944B (zh) * 2016-05-27 2021-02-02 通用电气公司 燃料电池系统及其操作方法
US20180106740A1 (en) * 2016-10-14 2018-04-19 Air Products And Chemicals, Inc. Monitoring the Activity of Reforming Catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416404A (en) * 1977-06-20 1979-02-07 Conoco Methanation Co Method of controlling formation of hydrocarbon on methanizing catalyst
CA1108971A (en) * 1978-06-23 1981-09-15 Joseph A. Kleinpeter Method for minimizing carbon formation on methanation catalysts
JPH1126001A (ja) * 1997-07-04 1999-01-29 Fuji Electric Co Ltd 燃料電池発電システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth;J. –W. Snoeck;《Journal of Catalysis》;19970701;第169卷(第1期);Fig.1 *
J. -M. Klein.Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition.《Journal of Fuel Cell Science and Technology》.2007,第4卷425-434. *
Method for in situ carbon deposition measurement for solid oxide fuel cells;J. Kuhn;《Journal of Power Sources》;20140115;第246卷;全文 *
Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition;J. -M. Klein;《Journal of Fuel Cell Science and Technology》;20071130;第4卷;第426页右栏第1-2段、Fig.1、第430页第1行至第431页第1段、Fig.6、9 *

Also Published As

Publication number Publication date
CN110474073A (zh) 2019-11-19
US20220328853A1 (en) 2022-10-13
WO2021044400A1 (en) 2021-03-11
GB2601693A (en) 2022-06-08
GB202202993D0 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US9914641B2 (en) Hydrogen generation assemblies
CN101379646B (zh) 燃料电池系统
US20180264398A1 (en) Hydrogen generation assemblies
DK2906666T3 (en) METHOD AND APPARATUS FOR MANUFACTURING A METHANEOUS COMPENSATION FOR NATURAL GAS
WO2001048851A1 (fr) Dispositif de production d'energie et procede de fonctionnement
US6884533B2 (en) Utilization based power plant control system
CN102232256A (zh) 用于燃料电池电源设备的阳极利用率控制系统
US20060046114A1 (en) Fuel cell system
CN110474073B (zh) 检测固态氧化物燃料电池系统内部积碳的方法及装置
JP4664808B2 (ja) 水素製造装置及び燃料電池発電装置
US8057560B2 (en) Fuel processor having movable burner, method of operating the same, and fuel cell system having the same
US20070111053A1 (en) Split-stage recuperation fuel processor
JP2005536850A (ja) 低温燃料電池発電装置における燃料処理器での蒸気発生のための燃料制御
JP2005200260A (ja) 水素製造装置及び燃料電池発電システム
JP6601734B2 (ja) 水素生成装置の運転方法、水素生成装置および燃料電池システム
CN103619753A (zh) 操作催化蒸汽-烃重整器的方法
JP5461834B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
KR20120129874A (ko) 간접 내부 개질형 고체 산화물형 연료 전지의 정지 방법
KR20190042397A (ko) 수중 운동체의 연료공급시스템 및 연료공급방법
JP5325641B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
Neto et al. Analysis of carbon monoxide production in methanol steam reforming reactor for generating hydrogen
JP2005231987A (ja) 水素製造装置及び燃料電池発電装置
JPH07483B2 (ja) 熱媒加熱式改質装置
JP2004059354A (ja) 水素製造プラント制御装置および水素製造装置ならびに水素製造方法
JP2010287424A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant