CN110470585B - 一种页岩动态渗吸能力的实验测试装置及方法 - Google Patents

一种页岩动态渗吸能力的实验测试装置及方法 Download PDF

Info

Publication number
CN110470585B
CN110470585B CN201910833172.XA CN201910833172A CN110470585B CN 110470585 B CN110470585 B CN 110470585B CN 201910833172 A CN201910833172 A CN 201910833172A CN 110470585 B CN110470585 B CN 110470585B
Authority
CN
China
Prior art keywords
shale
pressure
constant
mpa
experimental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910833172.XA
Other languages
English (en)
Other versions
CN110470585A (zh
Inventor
郭建春
陶亮
陈迟
赵志红
李鸣
唐鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910833172.XA priority Critical patent/CN110470585B/zh
Publication of CN110470585A publication Critical patent/CN110470585A/zh
Application granted granted Critical
Publication of CN110470585B publication Critical patent/CN110470585B/zh
Priority to US16/937,608 priority patent/US11009443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0866Sorption
    • G01N2015/0873Dynamic sorption, e.g. with flow control means

Abstract

本发明公开了一种页岩动态渗吸能力的实验测试装置及方法,实验测试装置包括地层温度模拟系统、地层围压模拟系统、注入压力模拟系统、液体流动模拟系统;地层温度模拟为加热器;地层围压系统为围压泵;注入压力模拟系统包括恒速恒压泵、恒速恒压泵出口阀、中间容器、中间容器出口阀,恒速恒压泵向反应釜内注入带压流体;液体流动模拟系统包括电动机、转子、转子叶片,其中转子叶片在高度方向与岩心轴线对齐,电动机驱动所述转子叶片旋转运动,使得反应釜中液体产生流动。本发明能够考虑压裂液流动、流体压力、地层围压、地层温度多种影响因素对页岩动态渗吸能力的影响,采用本发明的方法可以实现页岩动态渗吸能力的定量化表征。

Description

一种页岩动态渗吸能力的实验测试装置及方法
技术领域
本发明涉及石油天然气工程领域,尤其是页岩水力压裂过程中的页岩动态渗吸能力的实验测试装置及方法。
背景技术
页岩气作为非常油气资源在北美获得商业开采,水平井多级压裂技术是实现页岩气革命的关键技术。近年来,国内各大油气田借鉴国外水平井多级压裂改造成功经验,开展了对页岩气的探索与现场试验,取得良好的增产效果。
国内外页岩气储层压裂改造的施工表明,压裂液返排率极低,普遍低于50%,美国Eagle Ford盆地低于20%,Barnett盆地低于50%,中国涪陵页岩气储层压裂后返排率甚至低于3%(张涛,李相方,杨立峰.关井时机对页岩气井返排率和产能的影响[J].天然气工业,2017,37(8):48-58)。大量压裂液滞留于储层中,但关井一段时间后,产能增加,出现了“低返排、高产量”的等现象,引起了业界人士的广泛关注。
页岩组分复杂、微观结构特殊,尤其是高粘土含量、高矿化度、超低含水饱和度,水相渗吸作用对微观结构会产生特殊的影响从而影响页岩气井产能。要解释页岩气井特殊的返排现象,首先需要研究的是页岩渗吸机制,其中页岩压裂过程中动态渗吸即为液体在水力裂缝中流动状态下,向页岩基质中发生的渗吸现象。大量矿场统计页岩气井采用大规模体积压裂技术开发,上万方水基压裂液注入地层,在整个压裂施工过程中,压裂液处于长时间流动状态下向页岩储层发生渗吸,此阶段对页岩总的渗吸量有重要影响,进而影响压裂液返排率大小,因此利用室内实验方法准确测定并量化液体在地层条件流动状态下的渗吸能力对认识压裂液在页岩储层流动机制和明确页岩渗吸量主要贡献阶段以及优化返排制度等有重要指导作用。
页岩在压裂过程中流体注入排量、地层围压、地层温度、流体注入压力等都对渗吸量有影响,但目前的实验研究并未考虑这些因素的影响。目前大多数聚焦于页岩自发渗吸,通过天平计量页岩自吸后质量随时间的变化的方法来测试页岩渗吸能力(Yang L,Ge H,Shi X,et al.Experimental and numerical study on the relationship betweenwater imbibition and salt ion diffusion in fractured shale reservoirs[J].Journal of Natural Gas Science and Engineering,2017,38:283-297),以及利用数值模拟方法,通过建立考虑流体压力、渗透压、毛管压力的页岩基质自吸模型,计算不同时间下页岩自吸量(Li X,TekluT,Abass H,etal The Impact ofWater Salinity/Surfactanton Spontaneous Imbibition through Capillarity and Osmosis for UnconventionalIOR[C].SPE Unconventional Resources Technology Conference,1-3August,SanAntonio,Texas,USA,2016.URTEC-2461736-MS.)。
但这些方法都没有考虑实际地层条件下页岩压裂过程中液体在水力裂缝中的流动、地层围压、地层温度、流体注入压力等因素对页岩渗吸能力的影响,因此对于动态渗吸能力缺乏定量化表征,因此有必要研究页岩在液体流动状态下动态渗吸能力的测试方法,为认识压裂液在页岩储层流动规律和闷井时间优化等提高重要支撑。
发明内容
本发明的目的在于提供一种页岩动态渗吸能力的实验测试装置,以及使用该装置测试和分析页岩动态渗吸能力的方法。
一种页岩动态渗吸能力的实验测试装置,包括地层温度模拟系统、地层围压模拟系统、注入压力模拟系统、液体流动模拟系统;
所述地层温度模拟系统为加热器,所述加热器用于调节反应釜温度;
所述地层围压模拟系统为围压泵,所述围压泵用于模拟地层围压;
所述注入压力模拟系统包括恒速恒压泵、恒速恒压泵出口阀、中间容器、中间容器出口阀,恒速恒压泵、恒速恒压泵出口阀、中间容器、中间容器出口阀依次连接至反应釜,所述恒速恒压泵向反应釜内注入带压流体,;
所述液体流动模拟系统包括电动机、转子、转子叶片,所述转子叶片高度与岩心轴线对齐,所述电动机驱动所述转子叶片旋转运动,使得反应釜中液体产生流动。
进一步地,所述实验测试装置还包括真空泵、真空泵入口阀,真空泵、真空泵入口阀依次连接至反应釜。
进一步地,所述实验测试装置还包括圆柱形垫块,圆柱形垫块中心处设置有供流体流动的孔眼,岩心一个端面与流体接触,岩心另一端面接触圆柱形垫块。
进一步地,所述圆柱形垫块与岩心接触面设置有导流槽。
进一步地,所述反应釜内腔为圆柱形,反应釜内腔直径为7.6cm。
进一步地,所述转子叶片半长为3.6cm,厚度为0.2cm,宽度为3cm。
进一步地,所述恒速恒压泵的计量精度不低于0.001mL/min,可连续计量时间不低于24h。
一种页岩动态渗吸能力的实验测试方法,依次包括以下步骤:
(1)岩心制备:将页岩储层段的井下岩柱或同层位露头岩石制成岩心,根据岩心端面尺寸计算岩心的渗吸面积为A,岩心长度为实验测量长度L,将标准岩心放置在烘箱内干燥至恒重;
(2)页岩物性参数测试:利用孔隙度测定仪以氦气作为工作介质测试步骤(1)中所述岩心干燥后的孔隙度为
Figure BDA0002191384590000031
(3)根据地层应力、地层温度、水力压裂施工参数确定实验加载条件,其具体确定方法为:由表达式(1)~(4)确定实验加载围压,储层温度即为实验温度,流体注入压力由表达式(5)确定;
σ'z=σz-αPp (1)
σ'H=σH-αPp (2)
σ'h=σh-αPp (3)
σ=(σ'z+σ'H+σ'h)/3 (4)
Pinj=PISI-Pp (5)
式中:σ'z为垂向有效应力,MPa;σ'H为最大水平有效主应力,MPa;σ'h为最小水平有效主应力,MPa;σz为垂向应力,MPa;σH为最大水平主应力,MPa;σh为最小水平主应力,MPa;α为有效应力系数,小数;σ为实验围压,MPa;Pinj为流体注入压力,MPa;PISI为水力压裂瞬时停泵井底压力,MPa;PP为地层孔隙压力,MPa;
(4)根据施工现场的压裂液配方配置压裂液,并将压裂液倒入恒速恒压泵的中间容器中;
(5)将步骤(2)中孔隙度测试后的岩心装入岩心夹持器中,利用围压泵给岩心加载初始围压;
(6)利用加热器将反应釜、岩心及岩心夹持器加热至步骤(3)中确定的实验温度;
(7)用真空泵排空管线及反应釜中的空气,排空完成后关闭真空泵入口阀,并利用恒速恒压泵将步骤(4)中间容器中的压裂液泵入反应釜中;
(8)根据现场页岩气井施工排量、页岩储层厚度、水力裂缝宽度求取压裂液在裂缝壁面的线速度,线速度由表达式(6)计算,进一步由线速度和转速的关系,计算加载转速,加载转速由表达式(7)计算,开启电动机并将转子加载到计算的设加载转速;
Figure BDA0002191384590000032
Figure BDA0002191384590000033
式中:v为流体线速度,m/s;Q为页岩气井压裂施工排量,m3/min;h为页岩气井所在储层厚度,m;w为水力裂缝宽度,m;n为加载转速,rad/min;r为转子半径,m;
(9)根据步骤(3)中确定的围压设置围压泵的加载压力和确定的注入压力设置恒速恒压泵的泵注压力,同时通过恒速恒压泵的控制电脑记录不同时间所对应的注入液量,每隔三分钟记录一次,每个时间节点对应的累积流量即为页岩在该时间点的动态渗吸量,测试时间为页岩气井平均单段压裂施工时间;
(10)根据步骤(9)实验测试的动态渗吸量,定义动态渗吸饱和度I来表征动态渗吸能力,即动态渗吸量占岩心孔隙体积的百分比I,表达式如下:
Figure BDA0002191384590000041
式中:I为动态渗吸饱和度,%;V为动态渗吸量,cm3;A为渗吸面积,cm2;L为岩心长度,cm;
Figure BDA0002191384590000042
为孔隙度,%。
与现有技术相比,本发明具有的有益效果:
(1)本发明创新的设计了一种考虑压裂液流动、地层围压、地层温度、流体压力多种影响因素的页岩动态渗吸能力实验装置及测试方法。
(2)本发明能够真实反映并定量测试不同地层条件下的页岩压裂过程中不同施工参数下的动态渗吸量随时间的变化规律,同时定义动态渗吸饱和度来定量的表征页岩动态渗吸能力,对认识地层真实条件下压裂液在页岩储层渗吸规律有重要的指导作用。
附图说明
图1为本发明页岩动态渗吸能力实验装置示意图。
图2为本发明页岩岩心动态渗吸量与时间关系曲线图。
其中,1、恒速恒压泵;2、恒速恒压泵出口阀;3、中间容器;4、中间容器出口阀;5、真空泵;6、真空泵入口阀;7、电动机;8、转子;8-1、转子叶片;9、反应釜;10、加热器;11、岩心;12、岩心夹持器;13、圆柱形垫块;14、岩心夹持器出口阀;15、围压泵。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。
页岩动态渗吸能力的实验测试装置由恒速恒压泵1,恒速恒压泵出口阀2,中间容器3,中间容器出口阀4,真空泵5,真空泵入口阀6,电动机7,转子8,转子叶片8-1,反应釜9,加热器10,岩心11,岩心夹持器12,圆柱形垫块13,岩心夹持器出口阀14,围压泵15组成。
其中加热器10构成实验测试装置的地层温度模拟系统;围压泵15构成试验测试装置的地层围压模拟系统;包括恒速恒压泵1、恒速恒压泵出口阀2、中间容器3、中间容器出口阀4构成实验测试装置的注入压力模拟系统;电动机7,转子8,转子叶片8-1构成实验测试装置的液体流动模拟系统。
实验时,岩心11放置在岩性夹持器12中,一个端面与流体接触,另一端面接触圆柱形垫块13,实验时通过围压泵15向岩心11加载围压。
圆柱形垫块13与岩心接触面设有导流槽,垫块13中心处有供流体流动的孔眼13-1,流体可经该孔眼流到岩心夹持器出口阀14。
反应釜9容积优选为1000mL,反应釜内腔为圆柱形,其内腔直径为7.6cm。
转子叶片8-1半长为3.6cm,厚0.2cm,宽3cm,转子叶片8-1高度方向应与岩心11的轴线对齐,其中转子叶片转动时以带动流体运动,从而模拟地下流体流动对页岩动态渗析的影响。
采用本发明中的实验测试装置进行页岩动态渗吸能力测试时,依次包括以下步骤:
(1)岩心制备:将页岩储层段的井下岩心或同层位露头岩石制成直径为2.5cm,长度为5cm的标准岩心,根据岩心端面尺寸计算岩心的渗吸面积为A,岩心长度为实验测量长度L,将标准岩心放置100℃烘箱内干燥至恒重;
(2)页岩物性参数测试:利用孔隙度测定仪以氦气作为工作介质测试步骤(1)中所述干燥后岩心的孔隙度为
Figure BDA0002191384590000051
(3)根据地层应力、地层温度、水力压裂施工参数确定实验加载条件,其具体确定方法为:由表达式(1)~(4)确定实验加载围压,储层温度即为实验温度,实验流体注入压力由表达式(5)确定;
σ'z=σz-αPp (1)
σ'H=σH-αPp (2)
σ'h=σh-αPp (3)
σ=(σ'z+σ'H+σ'h)/3 (4)
Pinj=PISI-Pp (5)
式中:σ'z为垂向有效应力,MPa;σ'H为最大水平有效主应力,MPa;σ'h为最小水平有效主应力,MPa;σz为垂向应力,MPa;σH为最大水平主应力,MPa;σh为最小水平主应力,MPa;α为有效应力系数,小数;σ为实验围压,MPa;Pinj为实验注入压力,MPa;PISI为水力压裂瞬时停泵井底压力,MPa;PP为地层孔隙压力,MPa;
(4)根据施工现场的压裂液配方配置压裂液,并将压裂液倒入恒速恒压泵的中间容器中;
(5)将步骤(2)中所述孔隙度测试后的岩心装入岩心夹持器中,并利用围压泵给岩心加载初始围压5MPa;
(6)利用加热器将反应釜、岩心及岩心夹持器加热至步骤(3)中确定的实验温度;
(7)用真空泵排空管线及反应釜中的空气,排空完成后关闭真空泵入口阀并利用恒速恒压泵将步骤(4)中间容器中的压裂液泵入反应釜中;
(8)根据现场页岩气井施工排量、页岩储层厚度、水力裂缝宽度求取压裂液在裂缝壁面的线速度,线速度由表达式(6)计算,进一步由线速度和转速的关系,计算实验加载转速,由表达式(7)计算,开启电动机并将转子加载到设定转速;
Figure BDA0002191384590000061
Figure BDA0002191384590000062
式中:v为流体线速度,m/s;Q为页岩气井压裂施工排量,m3/min;h为页岩气井所在储层厚度,m;w为水力裂缝宽度,m;n为转子转速,rad/min;r为转子半径,m。
(9)根据步骤(3)中确定的围压设置围压泵的加载压力和确定的注入压力设置恒速恒压泵的泵注压力,同时通过恒速恒压泵的控制电脑记录不同时间所对应的注入液量,每隔三分钟记录一次,每个时间节点对应的累积流量为页岩在该时间点的动态渗吸量,测试时间为页岩气井平均单段压裂施工时间。
(10)根据步骤(9)实验测试的动态渗吸量,定义动态渗吸饱和度来表征动态渗吸能力,即动态渗吸量占岩心孔隙体积的百分比I,表达式如下:
Figure BDA0002191384590000063
式中:I为动态渗吸饱和度即动态渗吸能力,%;V为动态渗吸量,cm3;A为渗吸面积,cm2;L为岩心长度,cm;
Figure BDA0002191384590000064
为孔隙度,%。
为了便于本领域技术人员对本发明的理解与使用,下面根据附图和四川盆地川南地区一口页岩井为实例详细描述本发明的具体实施方式。具体如下:
(1)岩心制备:取自××井2500~2560m储层段中部实际井下岩心,并制成直径为2.5cm,长度为5cm的标准岩心11,并放置100℃烘箱内干燥至恒重,并根据岩心端面尺寸计算岩心的渗吸面积A为4.9cm2,岩心长度为实验测量长度L为5cm;
(2)页岩物性参数测试:利用孔隙度测定仪以氦气作为工作介质测试步骤①中所述干燥后岩心11的孔隙度
Figure BDA0002191384590000065
为5.12%。
(3)××井页岩地层温度82.5℃、地层孔隙压力49MPa,最大水平井主应力50MPa,最小水平主应力42MPa,垂向应力46MPa,水力压裂瞬时停泵井底压力52MPa,有效应力系数为0.5。由地层温度可确定实验温度为82.5℃,利用公式(1)~(3)可确定实验最大水平井有效主应力25.5MPa,最小水平有效主应力17.5MPa,垂向有效应力为21.5MPa,利用公式
(4)可确定实验加载围压为21.5MPa,利用公式(5)可确定实验注入流体压力为3MPa;
(4)配置施工现场的压裂液,并将压裂液倒入恒速恒压泵的中间容器3中;
(5)将步骤2○中所述孔隙度测试后的岩心11装入岩心夹持器12中,并利用围压泵15给岩心11加载初始围压5MPa;
(6)利用加热器10将反应釜、岩心11及岩心夹持器12加热至步骤3○中确定的实验温度。
(7)用真空泵5排空管线及反应釜9中的空气,排空完成后关闭真空泵入口阀6并利用恒速恒压泵1将中间容器3中的压裂液泵入反应釜9中;
(8)实例井××井的压裂施工排量Q为12m3/min,页岩储层厚度h为30m,水力裂缝宽度w假设为0.008m,实验装置转子8半径r为0.036m,由表达式(6)和(8)计算转子转速为221rad/min,开启实验装置电动机并将转子加载到221rad/min。
(9)根据步骤3○中确定的围压设置围压泵15的加载压力和确定的注入压力设置恒速恒压泵1的泵注压力,同时通过恒速恒压泵的控制电脑记录不同时间所对应的注入液量,每隔三分钟记录一次,每个时间节点对应的累积流量为页岩在该时间点的动态渗吸量,实例井××井平均单段压裂施工时间为5小时,实验测试5小时对应动态渗吸量V为0.42cm3
(10)根据步骤①页岩岩心的渗吸面积和长度和步骤②测试的页岩孔隙度以及步骤⑨测试的动态渗吸量随时间的变化曲线(附图2),结合式(8)计算岩心5小时的动态渗吸饱和度(即动态渗吸能力)为33.48%。
本发明具有的有益效果:
本发明创新的设计了一种考虑压裂液流动、地层围压、地层温度、流体压力多种影响因素的页岩动态渗吸能力实验装置及测试方法。
本发明能够真实反映并定量测试不同地层条件下的页岩压裂过程中不同施工参数下的动态渗吸量随时间的变化规律,同时定义动态渗吸饱和度来定量的表征页岩动态渗吸能力,对认识地层真实条件下压裂液在页岩储层渗吸规律有重要的指导作用。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可做出的各种修改和变形仍属本专利的保护范围。

Claims (1)

1.一种页岩动态渗吸能力的实验测试方法,依次包括以下步骤:
(1)岩心制备:将页岩储层段的井下岩柱或同层位露头岩石制成岩心,根据岩心端面尺寸计算岩心的渗吸面积为A,岩心长度为实验测量长度L,将标准岩心放置在烘箱内干燥至恒重;
(2)页岩物性参数测试:利用孔隙度测定仪以氦气作为工作介质测试步骤(1)中所述岩心干燥后的孔隙度为
Figure FDA0002425287320000011
(3)根据地层应力、地层温度、水力压裂施工参数确定实验加载条件,其具体确定方法为:由表达式(1)~(4)确定实验加载围压,储层温度即为实验温度,流体注入压力由表达式(5)确定;
σ'z=σz-αPp (1)
σ'H=σH-αPp (2)
σ'h=σh-αPp (3)
σ=(σ'z+σ'H+σ'h)/3 (4)
Pinj=PISI-Pp (5)
式中:σ'z为垂向有效应力,MPa;σ'H为最大水平有效主应力,MPa;σ'h为最小水平有效主应力,MPa;σz为垂向应力,MPa;σH为最大水平主应力,MPa;σh为最小水平主应力,MPa;α为有效应力系数,小数;σ为实验围压,MPa;Pinj为流体注入压力,MPa;PISI为水力压裂瞬时停泵井底压力,MPa;PP为地层孔隙压力,MPa;
(4)根据施工现场的压裂液配方配置压裂液,并将压裂液倒入恒速恒压泵的中间容器中;
(5)将步骤(2)中孔隙度测试后的岩心装入岩心夹持器中,利用围压泵给岩心加载初始围压;
(6)利用加热器将反应釜、岩心及岩心夹持器加热至步骤(3)中确定的实验温度;
(7)用真空泵排空管线及反应釜中的空气,排空完成后关闭真空泵入口阀,并利用恒速恒压泵将步骤(4)中间容器中的压裂液泵入反应釜中;
(8)根据现场页岩气井施工排量、页岩储层厚度、水力裂缝宽度求取压裂液在裂缝壁面的线速度,线速度由表达式(6)计算,进一步由线速度和转速的关系,计算加载转速,加载转速由表达式(7)计算,开启电动机并将转子加载到计算的设加载转速;
Figure FDA0002425287320000021
Figure FDA0002425287320000022
式中:v为流体线速度,m/s;Q为页岩气井压裂施工排量,m3/min;h为页岩气井所在储层厚度,m;w为水力裂缝宽度,m;n为加载转速,rad/min;r为转子半径,m;
(9)根据步骤(3)中确定的围压设置围压泵的加载压力和确定的注入压力设置恒速恒压泵的泵注压力,同时通过恒速恒压泵的控制电脑记录不同时间所对应的注入液量,每隔三分钟记录一次,每个时间节点对应的累积流量即为页岩在该时间点的动态渗吸量,测试时间为页岩气井平均单段压裂施工时间;
(10)根据步骤(9)实验测试的动态渗吸量,定义动态渗吸饱和度I来表征动态渗吸能力,即动态渗吸量占岩心孔隙体积的百分比I,表达式如下:
Figure FDA0002425287320000023
式中:I为动态渗吸饱和度,%;V为动态渗吸量,cm3;A为渗吸面积,cm2;L为岩心长度,cm;
Figure FDA0002425287320000024
为孔隙度,%。
CN201910833172.XA 2019-09-04 2019-09-04 一种页岩动态渗吸能力的实验测试装置及方法 Active CN110470585B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910833172.XA CN110470585B (zh) 2019-09-04 2019-09-04 一种页岩动态渗吸能力的实验测试装置及方法
US16/937,608 US11009443B2 (en) 2019-09-04 2020-07-24 Method for dynamic imbibition capacity of shale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910833172.XA CN110470585B (zh) 2019-09-04 2019-09-04 一种页岩动态渗吸能力的实验测试装置及方法

Publications (2)

Publication Number Publication Date
CN110470585A CN110470585A (zh) 2019-11-19
CN110470585B true CN110470585B (zh) 2020-07-10

Family

ID=68514999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910833172.XA Active CN110470585B (zh) 2019-09-04 2019-09-04 一种页岩动态渗吸能力的实验测试装置及方法

Country Status (2)

Country Link
US (1) US11009443B2 (zh)
CN (1) CN110470585B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567315A (zh) * 2020-04-28 2021-10-29 中国石油化工股份有限公司 储气库多轮次注采过程储层岩石压缩系数测定实验系统及实验方法
CN113914851B (zh) * 2020-07-08 2024-02-02 中国石油化工股份有限公司 模拟复杂裂缝系统内压裂液渗吸的实验方法
CN112213238B (zh) * 2020-09-17 2022-07-12 中国石油大学(华东) 高度可变的岩心柱的自吸加载装置及润湿性测量方法
CN112610203A (zh) * 2020-12-17 2021-04-06 中国石油大学(华东) 一种天然裂缝地层呼吸效应的模拟装置和方法
CN112836442B (zh) * 2021-01-08 2023-06-02 中国石油大学(北京) 一种页岩油水平井网老井水力裂缝注液量的确定方法
CN112816394B (zh) * 2021-03-15 2024-03-26 西南石油大学 一种高温高压平板模型油气水三相饱和度测试装置及方法
CN113324886B (zh) * 2021-04-20 2022-06-03 中海油能源发展股份有限公司 一种水泥浆对储层伤害的实验评价装置及方法
CN113109546B (zh) * 2021-04-20 2022-02-08 西南石油大学 一种预测地下储气库储层干化结盐范围的实验装置及方法
CN115248176A (zh) * 2021-04-27 2022-10-28 中国石油天然气股份有限公司 一种页岩气立体开发效果评价实验系统与方法
CN113281191B (zh) * 2021-05-25 2022-11-08 中国科学院武汉岩土力学研究所 一种高低温压裂试验装置及基于其的试验方法
CN113338900B (zh) * 2021-05-26 2022-06-17 四川省贝特石油技术有限公司 一种基于岩石骨架理论科学计算焖井时间的方法
CN113588402B (zh) * 2021-06-21 2023-12-26 中国石油大学(华东) 一种超声波检测水循环作用页岩水化微裂缝扩展实验装置
CN113466089B (zh) * 2021-07-08 2022-01-28 东北石油大学 一种可智能压力控制的页岩岩心渗吸测定装置及方法
CN113903236B (zh) * 2021-10-22 2023-04-25 中铁二院工程集团有限责任公司 智控温压差异性水岩作用对比监测实验装置及其实验方法
CN115047211B (zh) * 2022-05-16 2023-04-07 东营市永昇能源科技有限责任公司 一种原油在页岩中流动速度的测量方法及其应用
CN116448343B (zh) * 2023-04-15 2023-11-10 西南石油大学 一种预测地下储氢泄漏压力的装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247358B1 (en) * 1998-05-27 2001-06-19 Petroleo Brasilleiro S.A. Petrobas Method for the evaluation of shale reactivity
US9377392B2 (en) * 2013-09-05 2016-06-28 Proptester, Inc. Methods and systems for testing fluids on crushed formation materials under conditions of stress
WO2016191265A1 (en) * 2015-05-22 2016-12-01 Aramco Services Company Method for determining unconventional liquid imbibition in low-permeability materials
CN205038132U (zh) * 2015-10-23 2016-02-17 东北石油大学 一种新型渗吸实验装置
KR20170129341A (ko) * 2016-05-16 2017-11-27 동아대학교 산학협력단 광대역 암석 투과도 측정장치
CN106644871B (zh) * 2016-09-12 2019-03-26 中国石油大学(华东) 超临界二氧化碳压裂液对油气储层渗流影响评价装置与方法
CN106370582B (zh) * 2016-10-28 2023-03-17 陕西延长石油(集团)有限责任公司研究院 一种模拟裂缝性特低渗油藏动态渗吸的实验装置及其应用
CN107764718A (zh) * 2017-11-14 2018-03-06 北京科技大学 裂缝性页岩气水两相流动裂缝导流能力评价装置及方法
US10677707B2 (en) * 2018-01-25 2020-06-09 Halliburton Energy Services, Inc. Evaluating stress-dependent permeability in unsteady-state conditions and/or quality of microproppant placement in subterranean formations
CN108801870B (zh) * 2018-03-26 2019-06-14 中国石油大学(北京) 一种可模拟地层条件下储层岩石渗吸的实验装置和方法
CN109374495B (zh) * 2018-10-18 2020-03-31 西南石油大学 一种页岩强制渗吸能力的实验测试装置及方法
CN110161216A (zh) * 2019-06-18 2019-08-23 西南石油大学 一种测定岩心束缚水饱和度的装置及方法
CN110687612B (zh) * 2019-09-17 2020-09-08 中国石油天然气股份有限公司 吸附油和游离油含量连续表征的页岩油分析方法及装置

Also Published As

Publication number Publication date
US11009443B2 (en) 2021-05-18
US20200355598A1 (en) 2020-11-12
CN110470585A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110470585B (zh) 一种页岩动态渗吸能力的实验测试装置及方法
CN109374495B (zh) 一种页岩强制渗吸能力的实验测试装置及方法
CN105067781B (zh) 泡沫驱油评价装置及其评价方法
CN106644871A (zh) 超临界二氧化碳压裂液对油气储层渗流影响评价装置与方法
CN111257202A (zh) 一种含吸附气条件下页岩压裂液强制渗吸及返排实验方法
CN107121370A (zh) 致密油层水相圈闭损害实验评价方法
CN109001438A (zh) 一种封缝堵气实验模拟装置及测试方法
CN106153856B (zh) 一种含裂缝泥页岩稳定性评价装置及方法
CN110595953B (zh) 一种页岩混合润湿性的实验测试装置及方法
CN103674593B (zh) 一种用于模拟低渗储层压裂直井水驱油实验的装置及方法
CN110470575B (zh) 一种页岩盐离子扩散能力实验测试方法
CN112285201A (zh) 一种低渗凝析气储层注气反蒸发凝析油饱和度测试方法
CN106194164A (zh) 边底水油藏开发岩心实验模拟方法及装置
CN207516210U (zh) 一种模拟地层条件下孔隙度和渗透率测试装置
CN105717255B (zh) 复合溶剂浸泡吞吐循环实验装置与模拟开采方法
CN210982154U (zh) 一种页岩动态渗吸能力的实验测试装置
CN109403963B (zh) 一种模拟渗流场变化的水侵后井壁坍塌压力测量装置
CN109959595B (zh) 致密储层水力加砂压裂过程中渗透率的测试方法及装置
CN111323359A (zh) 一种高压天然气-水系统岩心自发渗吸测量装置及方法
CN210982136U (zh) 一种页岩盐离子扩散能力实验测试装置
CN106526079A (zh) 一种研究致密砂岩孔喉结构动态变化的方法
CN115060757A (zh) 一种页岩压裂裂缝与基质内流体饱和度在线监测方法
CN112730129B (zh) 一种超临界二氧化碳动态溶蚀岩石的加速试验方法
CN104729970A (zh) 泡沫驱气液相对渗透率曲线的测量方法
CN115639115A (zh) 一种泥页岩的压裂液渗吸及滞留能力评价实验装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant