CN110468148B - 一种用于植物基因定点剪切的tale核酸酶精简骨架构建 - Google Patents

一种用于植物基因定点剪切的tale核酸酶精简骨架构建 Download PDF

Info

Publication number
CN110468148B
CN110468148B CN201910704929.5A CN201910704929A CN110468148B CN 110468148 B CN110468148 B CN 110468148B CN 201910704929 A CN201910704929 A CN 201910704929A CN 110468148 B CN110468148 B CN 110468148B
Authority
CN
China
Prior art keywords
dna
seq
tale
talens
artificial sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910704929.5A
Other languages
English (en)
Other versions
CN110468148A (zh
Inventor
彭日荷
姚泉洪
田永生
高建杰
许晶
付晓燕
李振军
韩红娟
王波
王丽娟
张福建
黄悠楠
张文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN201910704929.5A priority Critical patent/CN110468148B/zh
Publication of CN110468148A publication Critical patent/CN110468148A/zh
Application granted granted Critical
Publication of CN110468148B publication Critical patent/CN110468148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99029Phytoene desaturase (zeta-carotene-forming) (1.3.99.29)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种用于植物基因剪切的TALE核酸酶精简骨架序列。该骨架N端包含136个氨基酸,C端包含63个氨基酸,中间构建识别特异DNA序列的TALE的重复模块,C端融合有Fok1 Ⅱ型核酸内切酶,在N端和C端插入含有两种不同内切酶的小片段,通过上述两个内切酶可以随意插入TALE的重复模块,构建成能够剪切特异DNA序列TALE核酸酶。利用本TALE核酸酶精简构建八氢番茄红素脱氢酶剪切核酸酶,转化植物后获得白化苗。

Description

一种用于植物基因定点剪切的TALE核酸酶精简骨架构建
技术领域
本发明属于植物生物技术领域,具体地说构建适合植物表达的TALENs 的精简骨架,即N端包含136个氨基酸,C端包含63个氨基酸,中间构建识别特异DNA序列的TALE的重复模块,C端融合有FokI Ⅱ型核酸内切酶,构建成TALE核酸酶能够剪切特异DNA序列。
背景技术
近年来兴起的基因组定点编辑技术包括以下几种人工核酸酶:锌指核酸酶(ZFNs), TALE核酸酶(TALENs), 以及CRISPR/Cas系统。这些人工核酸酶都可以在DNA靶位点产生DNA双链断裂, 它们对基因组定点编辑是通过控制DNA的修复途径实现的。目前主要应用技术有CRISPR/Cas系统和TALENs技术。
2009年,美国爱荷华州立大学植物病理、生物信息学和计算生物学计划系的Moscou等(Moscou,Science, 2009,326(5959): 1501)以及德国马丁·路德大学生物研究所遗传系的Boch等同时在国际著名的自然科学综合类学术期刊《Science》上发表文章(Boch,Science, 2009,326(5959): 1509-1512),研究报道在植物病原菌黄单胞菌(Xanthomonas)上发现了转录激活子样效应因子(Transcription activator-likeeffectors,TALES),TALES可特异性地结合到DNA上并激活基因表达,在该病原菌感染过程中对植物基因进行调控。
随后的研究表明,TALES蛋白的DNA结合域由一串连续排列、数目不同(12-30个不等)、序列高度同源的蛋白结构域模块构成,每个模块大小为33-35个氨基酸。模块的第12位和13位的氨基酸对应识别DNA分子四个碱基中的一个。利用TALE序列模块,可组装成特异结合任意DNA序列的模块化蛋白,从而达到靶向操作内源性基因的目的(Boch and Bonas,Annu Rev Phytopathol, 2010,48: 419-436)。随后,研究人员尝试仿照锌指核酸酶(ZFN)的模式,把TALE中的转录激活结构域(AD)替换成核酸内切酶FokI,从而构成TALE核酸酶(TALENs),对基因组特定靶位点进行定向切割, 从而实现基因打靶。 正如巡航导弹击中军事目标一样,TALEN可特异识别DNA序列并进行切割,从而进行基因修饰或敲除,使基因操作变得异常简单、方便(Cermak,Nucleic Acids Res,2011, 39(12): e82)。
TALENs技术可以对基因组靶位点DNA进行结构性缺失、插入、重组、修复等剪辑,实现基因功能性敲除或激活。该技术发明后,立即在物种改造和基因治疗领域受到高度重视。短短几年时间内,TALENs技术已经成功应用到了动物细胞、植物、酵母、斑马鱼及大、小鼠等各类研究对象,日益成为功能强大的实验室基因编辑工具。2012年,美国爱荷华州立大学遗传发育和细胞生物学系的 Yang Bing 博士及其同事利用 TALENs 技术成功地将水稻感病基因 Os11N3 启动子序列定点切割,使水稻白叶枯病原菌 TAL 效应子 AvrXa7 和 PthXo3失去对 Os11N3 基因启动子靶点序列的识别,从而提高了水稻抗白叶枯病的能力。这是世界第一例通过 TALENs 技术对植物基因组真正实施定点剪辑并获得目标性状改良的植物(Yang and White, Mol Plant Microbe Interact, 2004, 17(11):1192-200)。可以预见,TALENs技术在医学和农业基础和应用领域必将发挥越来越有广阔的应用前景, 并且产生无可估量的深远影响。
关于TALENS技术专利国外只有一项报道,2013年1月美国Minnesota大学和Iowa州立大学公开了利用转录激活因子TALE结构域和FokI 内切酶结构区融合构建的转录激活因子核酸酶TALEN专利技术(US20130177960),但是该专利只限定启动子改造。我国上海斯丹赛生物技术有限公司2013年1月公布了一种单模块DNA文库及TALENs识别模块的连接方法(201310452282);2014年1月中国农业科学院作物科学研究所公开了一种构建TAL效应子和TALENs的简化方法及质粒,设计并构建了一个通用质粒pSK-RAR-U(201410032382.6)。由于通用pSK-RAR-U能够接受任何一个通过单元装配法组装的dTALE重复区,进而构建dTALEs表达载体的方法简化为:第一步为dTALE重复区序列组装,第二步为将dTALE重复区序列克隆到pSK-RAR-U中,他们利用该载体对黄单胞杆菌进行了基因组定点激活、敲除。TALENS技术的关键是获得针对靶序列的特异TALE蛋白,如果设计识别20个以上碱基的转录激活因子核酸酶TALEN, 需要至少2 Kb的序列, 并且这些序列有高度的重复性, 因此在设计的时候存在非常大的难度。目前该技术在植物中应用很少,还没有关于该技术在植物上应用。
发明内容
本发明为了简化TALENs技术在植物基因编辑中的应用,构建适合植物表达的TALENs 的精简骨架,即N端包含136个氨基酸,C端包含63个氨基酸, C端融合有FokI Ⅱ型核酸内切酶。
本发明为了便于目的基因的编辑,在TALENs 的精简骨架N端和C端,插入一段BamHI和SacI的短序列,通过上述两个酶切位点,插入特异DNA序列的TALE的重复模块。
本发明利用基因合成方法(xiong 2004,核酸研究),按照植物偏爱密码及基因优化原则合成TALENs 的精简骨架,N端包含136个氨基酸,C端包含63个氨基酸, C端融合有FokI Ⅱ型核酸内切酶。 N端和C端插入的核苷酸序列为GGATCCCTGGAACACTCCTTGTTTGTTGTGTCAAGCGAGCTC。
本发明TALENs 的精简骨架由CaMV35S启动子控制,终止子为NOS。插入特异DNA序列TALE的重复模块与 N端包含136个氨基酸,C端包含63个氨基酸, 及FokI Ⅱ型核酸内切酶构成一个融合基因。
本发明构建的TALENs 的精简骨架成功用于水稻和拟南芥八氢番茄红素脱氢酶(phytoene desaturase,PDS)基因的剪切,获得高频率的白化苗。
附图说明
图1 植物TALENs 的精简骨架表达单元示意图
图2水稻和拟南芥八氢番茄红素脱氢酶(phytoene desaturase,PDS)基因TALEN的植物表达载体SFok1II[TNOsPDS]和 SFok1II[TNOsPDS]构建图谱。
图3水稻八氢番茄红素脱氢酶剪切后白化苗。
图4拟南芥八氢番茄红素脱氢酶剪切后白化苗
本发明有益效果
该发明能够高效用于植物基因的定向剪切,从而完成各种植物的定点改造。
具体实施方式
实施例1:定向编辑植物基因TALENs 的精简骨架编码序列的化学合成
以基因合成方法(Nucleic Acids Research, 2004, 32, e98)合成TALENs 的精简骨架。设计的引物为:
SplantTALENs-1 ATGGACCCAATCCGTTCTCGTACTCCATCTCCT GCACGTGAACTGCTGCCTGGTCCACAA (SEQ ID NO.2所示)
SplantTALENs-2 GTGCACCACCACGATCAGCAGTAGGCTGGACCCTGTCAGGTTGTGGACCAGGCAGCAGTT(SEQ ID NO.3所示)
SplantTALENs-3 TGCTGATCGTGGTGGTGCACCACCTGCTGGTGGTCCACTGGACGGTCTTCCTGCTCGTCG (SEQ ID NO.4所示)
SplantTALENs-4 TGGTGCAGGTGGAGATGGCAGCCGAGTCCGAGACATAGTACGACGAGCAGGAAGACCGTC(SEQ ID NO.5所示)
SplantTALENs-5 TGCCATCTCCACCTGCACCATCTCCTGCATTCTCTGCTGGTTCCTTCTCCGACCTGCTGC (SEQ ID NO.6所示)
SplantTALENs-6 TCAAGAAGGGAGGTGTCAAGAAGGGATGGATCGAACTGACGCAGCAGGTCGGAGAAGGAA (SEQ ID NO.7所示)
SplantTALENs-7 CTTGACACCTCCCTTCTTGACTCGATGCCTGCTGTTGGCACTCCACATACTGCTGCTGCT (SEQ ID NO.8所示)
SplantTALENs-8 CAGCACGCAGACCAGACTGGACCTCATCCCATTCAGCAGGAGCAGCAGCAGTATGTGGAG(SEQ ID NO.9所示)
SplantTALENs-9 CCAGTCTGGTCTGCGTGCTGCTGATGATCCACCACCAACCGTTCGTGTTGCTGTCACTGC (SEQ ID NO.10所示)
SplantTALENs-10 TTCCAGGGATCCAGCAGGCTTGGCACGTGGTGGACGTGCAGCAGTGACAGCAACACGAAC(SEQ ID NO.11所示)
SplantTALENs-11 AGCCTGCTGGATCCCTGGAACACTCCTTGTTTGTTGTGTCAAGCGAGCTCGCTGTCACTG (SEQ ID NO.12所示)
SplantTALENs-12 TCAGGAACACGGACCTCGAAGGACTGCTGTGCAGATGGACCAGTGACAGCGAGCTCGCTT(SEQ ID NO.13所示)
SplantTALENs-13 TTCGAGGTCCGTGTTCCTGAACAGCGTGATGCACTGCACTTGCCACTGTCTTGGAGGGTC (SEQ ID NO.14所示)
SplantTALENs-14 GGTCAGGAAGACCACCACCGATCCTGGTACGTGGACGTTTGACCCTCCAAGACAGTGGCA (SEQ ID NO.15所示)
SplantTALENs-15 CGGTGGTGGTCTTCCTGACCCTGGTACTCCAATCGCTGCTGACCTGGCTGCATCCTCTAC (SEQ ID NO.16所示)
SplantTALENs-16 CTCTTCCAGTTCGGACTTGACCAGCTGGGATCTGATGACGGTAGAGGATGCAGCCAGGTC(SEQ ID NO.17所示)
SplantTALENs-17 TCAAGTCCGAACTGGAAGAGAAGAAGTCCGAACTGAGACACAAGCTGAAGTATGTCCCAC(SEQ ID NO.18所示)
SplantTALENs-18 GTGGAGTTTCTGGCGATCTCAATCAGTTCAATGTACTCATGTGGGACATACTTCAGCTTG(SEQ ID NO.19所示)
SplantTALENs-19 GAGATCGCCAGAAACTCCACTCAGGACAGAATCCTGGAGATGAAGGTCATGGAGTTCTTC (SEQ ID NO.20所示)
SplantTALENs-20 AACCACCCAGGTGTTTACCACGATAACCGTAGACCTTCATGAAGAACTCCATGACCTTCA(SEQ ID NO.21所示)
SplantTALENs-21TGGTAAACACCTGGGTGGTTCCAGGAAACCTGACGGTGCCATCTACACTGTCGGTTCTCC (SEQ ID NO.21所示)
SplantTALENs-22 AGAGTAAGCCTTGGTGTCAACGATGACACCGTAGTCGATTGGAGAACCGACAGTGTAGAT(SEQ ID NO.23所示)
SplantTALENs-23 TTGACACCAAGGCTTACTCTGGTGGTTACAACCTGCCAATCGGTCAAGCAGACGAAATGC(SEQ ID NO.24所示)
SplantTALENs-24 ATGTGCTTGTTTCTGGTTTGGTTCTCTTCGACGTATCTCTGCATTTCGTCTGCTTGACCG(SEQ ID NO.25所示)
SplantTALENs-25 CAAACCAGAAACAAGCACATCAACCCTAACGAATGGTGGAAAGTCTATCCATCCTCCGTC (SEQ ID NO.26所示)
SplantTALENs-26 CCTTGAAGTGACCAGAGACGAACAGGAACT TGAACTCGGTGACGGAGGATGGATAGACTT(SEQ ID NO.27所示)
SplantTALENs-27 CGTCTCTGGTCACTTCAAGGGAAACTACAAAGCTCAGCTGACCAGACTGAACCACATCAC (SEQ ID NO.28所示)
SplantTALENs-28 CAACAGCTCTTCGACAGACAGGACAGCACCGTTGCAGTTGGTGATGTGGTTCAGTCTGGT(SEQ ID NO.29所示)
SplantTALENs-29 TGTCTGTCGAAGAGCTGTTGATTGGTGGAGAGATGATCAAAGCTGGTACTCTGACCCTTG (SEQ ID NO.30所示)
SplantTALENs-30 AAGTTGATCTCACCGTTGTTGAACTTCCTTCTGACTTCCTCAAGGGTCAGAGTACCAGCT(SEQ ID NO.31所示)
SplantTALENs-31 TTAGAAGTTGATCTCACCGTTGTT(SEQ ID NO.32所示)
利用PCR 合成TALENs 的精简骨架编码序列,在100µl反应体系中,TN11a-2-TN11a-30共29个引物的添加量为2ng,外侧引物TN11a-1和TN11a-31添加量为50 ng,扩增条件为:94℃ 预热1 min;94℃, 30 s, 50℃, 30 s, 72℃, 2 min,使用的Taq DNA聚合酶为KOD FX taq酶(Toyobo公司,日本),共25个循环。PCR产物进行1% 琼脂糖胶回收,取10 µl直接与平端克隆载体相连(大连宝生物公司)。4℃连接过夜,高效转化 DH5α感受态中,获得阳性克隆。
实施例2:植物基因TALENs 的精简骨架植物表达元件化学构建
植物TALENs 的精简骨架SplantTALENs的启动子为CaMV35S+Omega[Omega为来自TMV病毒的翻译增强子]、终止子为Nos,在FokI 切割结构域的N端附加了TALEN需要的N端和C末端序列(包括N端163个氨基酸的序列及C末端的63aa骨架),N端和C末端序列之间引入了两端分别带有BamHI和SacI限制性内切酶切点的小片段DNA序列,用于插入以上构建的靶位点结合功能模块。SplantTALENs的两端分别带有EcoRI和HindIII切点,便于植物表达单元的克隆和鉴定
从常规载体中PCR扩增CaMV35S+Omega和Nos终止子,然后通过重叠延伸PCR将启动子、TALENs 的精简骨架和Nos终止子无缝连接。 引物分别为:
35SZ:GAATTCATCTTCGTCAACATGGTG(SEQ ID NO.33所示)
35SF:GAGTACGAGAACGGATTGGGTCCATGGTAATTGTAA AT AG TAATTGTAAT GTTG(SEQID NO.34所示)
SplantTALENsZ:CAACATTACAATTACTATTTACAATTACCA TGGACCCAATCCGTTCTCGTACTC(SEQ ID NO.35所示)
SplantTALENsF:CTTTATTGCCAAATGTTTGAACGTTAGAAG TTGATCTCAC CGTTGTTG(SEQID NO.36所示)
NosZ:CAACAACGGTGAGATCAACTTCTAACGTTCAAACAT TTGGCAATAAAG(SEQ ID NO.37所示)
NosF:AAGCTTGGTG ATCCCACCGT GTCGAG(SEQ ID NO.38所示)
利用PCR分别扩增CaMV35S+Omega、TALENs 的精简骨架编码序列、Nos终止子,在100µl反应体系中,CaMV35S+Omega扩增引物为35SZ和35SF,TALENs 的精简骨架编码序列扩增引物为SplantTALENsZ和SplantTALENsF,Nos终止子扩增引物为NosZ和NosF。PCR产物进行8% 丙烯酰胺胶回收,将回收片段按等摩尔混合,加入引物35SZ和NosF进行片段拼接,PCR扩增条件为:94℃ 预热1 min;94℃, 30 s, 50℃, 30 s, 72℃, 2 min,使用的Taq DNA聚合酶为KOD FX taq酶(Toyobo公司,日本),共25个循环。
实施例3:植物基因TALENs 的精简骨架用于植物基因剪切
八氢番茄红素脱氢酶(phytoene desaturase,PDS)是类胡萝卜素合成途径中的关键酶,PDS 基因功能的失活会导致类胡萝卜素不能有效合成,叶绿素在光照条件下会被破坏,使本应呈绿色的组织变成白色,即出现光漂白现象,这为基因功能缺失提供一个肉眼可见的明显表型变化。
为了验证TALENs 的精简骨架在植物基因剪切中的应用效果。本研究根据水稻OsPDS1基因的基因组DNA序列和拟南芥AtPDS1基因的基因组DNA序列选择靶位点15个碱基,通过和水稻基因组的Blast分析保证靶位点在水稻基因组中的唯一性。按照NG识别碱基T,HD识别碱基C,NI识别碱基A,NN识别碱基G和A,设计及合成PDS特异DNA序列的TALE的重复模块,通过BamHI和SacI插入TALENs 的精简骨架的N端和C端,构建PDS基因的TALENs 剪切载体Sfok1II[TNOsPDS] 和Sfok1II[TNAtPDS]。
实施例4:水稻和拟南芥转化
所用菌株为根癌农杆菌。质粒经电击法导人农杆菌中。挑取单菌到25 ml YEB培养基(50mg/l 利福平)培养过夜,取5 ml菌液转接到100 ml YEB培养基(50mg/l 利福平),培养至OD600 = 0.7-0.8,菌液冰上放置10分钟,5000 rpm离心10 min ,4℃,收集菌体,加入100 ml 无菌双蒸水清洗两次。加入4 ml 10%甘油悬浮菌体,转到50 ml离心管。5500 rpm离心10 min ,4℃。收集菌体,加入500 µl 10%甘油悬浮菌体,转到1.5 ml离心管。取70µl感受态细胞,加入1µl重组质粒Sfok1II[TNOsPDS]。用去头的黄枪头混匀,转到0.1cm 电击杯中。电击参数:200Ω,1.7 KV, 2.5F,电击后立即加入800µl SOC 培养液。培养1小时后,取100µl 涂抗性板筛选转化子,28℃培养。
N6培养基为基本培养基,去壳的种子,授粉后12-15天的幼胚,经表面消毒后接种到N6D2培养基中诱导愈伤组织(N6培养基,水解乳蛋白500mg/L,蔗糖30g/L,2,4-D 2mg/L,植物凝胶2.5g/L,pH5.8);培养4-7天后取愈伤组织进行转化。农杆菌培养OD0.8-1.0后离心5000 g离心 8分钟,ddH2O清洗一次,等体积MS培养液悬浮侵染8分钟后,吸干放置在MS+NAA1 mg/L +BA 2 mg/L的培养基中,22度共培养3天。然后转入筛选培养基(加入头孢Cb(500ug/ml) 和潮霉素HAT(50ug/ml),转化后的愈伤在含有和的抗性培养基上培养3-4代,转入分化培养基中(2 mg/L KT);幼芽长至2 mm转移到生根培养基(1/2MS+0.5mg/L IBA)。以上培养基中分别加入500 mg/L酶水解乳蛋白(CH),0-700 mg/L谷氨酰胺或精氨酸,蔗糖30-80 g/L,琼脂6 g,pH 5.8。继代周期为25 d。将淡黄色的胚性愈伤组织转入分化培养基中,30 d左右分化出芽。光照强度1 500-2 000lx,12-14 h/d。
将转基因水稻种植到田间,收取种子,种子用含潮霉素HAT(50ug/ml)的MS培养基筛选,筛选抗性水稻苗进行分子检测,提取叶片总DNA,参照《分子克隆》的方法,以潮霉素抗性基因HPT设计专有引物对转基因植株进行PCR检测,扩增条件为:94℃ 预热1 min;94℃,30 s, 60℃, 30 s, 72℃, 4 min。共25个循环。从分子水平上证明目的基因是否导入。
拟南芥转化采用蘸花法。含目的基因质粒Sfok1II[TNAtPDS]的农杆菌菌株单菌落接菌在5毫升含对应抗生素的LB培养基中28℃培养2天。将5毫升菌液转到500毫升的液体LB培养基中28℃培养16-24小时(OD=1.5-2.0)。室温下离心收集菌体,4000g离心10分钟。用等体积5%的新鲜蔗糖溶液悬浮。加入0.02%的Silwet-77混匀后转移到烧杯中。每个菌株用300毫升转化,转2-3钵。隔7天后再转化1次。将拟南芥倒置后浸入菌液中10秒钟。莲座和花序都要侵染。侵染后将转化植株菌液空干3-5秒。用保鲜膜将转化植株圈好,平放16-24小时。转化后不要放置在高温和强光下。揭开保鲜膜,保持一定湿度,再生长1个月后收种子。
序列表
<110> 上海市农业科学院
<120> 一种用于植物基因定点剪切的TALE核酸酶精简骨架构建
<130> 2019
<160> 37
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1224
<212> DNA
<213> Artificial sequence
<400> 1
atggacccaa tccgttctcg tactccatct cctgcacgtg aactgctgcc tggtccacaa 60
cctgacaggg tccagcctac tgctgatcgt ggtggtgcac cacctgctgg tggtccactg 120
gacggtcttc ctgctcgtcg tactatgtct cggactcggc tgccatctcc acctgcacca 180
tctcctgcat tctctgctgg ttccttctcc gacctgctgc gtcagttcga tccatccctt 240
cttgacacct cccttcttga ctcgatgcct gctgttggca ctccacatac tgctgctgct 300
cctgctgaat gggatgaggt ccagtctggt ctgcgtgctg ctgatgatcc accaccaacc 360
gttcgtgttg ctgtcactgc tgcacgtcca ccacgtgcca agcctgctgg atccctggaa 420
cactccttgt ttgttgtgtc aagcgagctc gctgtcactg gtccatctgc acagcagtcc 480
ttcgaggtcc gtgttcctga acagcgtgat gcactgcact tgccactgtc ttggagggtc 540
aaacgtccac gtaccaggat cggtggtggt cttcctgacc ctggtactcc aatcgctgct 600
gacctggctg catcctctac cgtcatcaga tcccagctgg tcaagtccga actggaagag 660
aagaagtccg aactgagaca caagctgaag tatgtcccac atgagtacat tgaactgatt 720
gagatcgcca gaaactccac tcaggacaga atcctggaga tgaaggtcat ggagttcttc 780
atgaaggtct acggttatcg tggtaaacac ctgggtggtt ccaggaaacc tgacggtgcc 840
atctacactg tcggttctcc aatcgactac ggtgtcatcg ttgacaccaa ggcttactct 900
ggtggttaca acctgccaat cggtcaagca gacgaaatgc agagatacgt cgaagagaac 960
caaaccagaa acaagcacat caaccctaac gaatggtgga aagtctatcc atcctccgtc 1020
accgagttca agttcctgtt cgtctctggt cacttcaagg gaaactacaa agctcagctg 1080
accagactga accacatcac caactgcaac ggtgctgtcc tgtctgtcga agagctgttg 1140
attggtggag agatgatcaa agctggtact ctgacccttg aggaagtcag aaggaagttc 1200
aacaacggtg agatcaactt ctaa 1224
<210> 2
<211> 60
<212> DNA
<213> Artificial sequence
<400> 2
atggacccaa tccgttctcg tactccatct cctgcacgtg aactgctgcc tggtccacaa 60
<210> 3
<211> 60
<212> DNA
<213> Artificial sequence
<400> 3
gtgcaccacc acgatcagca gtaggctgga ccctgtcagg ttgtggacca ggcagcagtt 60
<210> 4
<211> 60
<212> DNA
<213> Artificial sequence
<400> 4
tgctgatcgt ggtggtgcac cacctgctgg tggtccactg gacggtcttc ctgctcgtcg 60
<210> 5
<211> 60
<212> DNA
<213> Artificial sequence
<400> 5
tggtgcaggt ggagatggca gccgagtccg agacatagta cgacgagcag gaagaccgtc 60
<210> 6
<211> 60
<212> DNA
<213> Artificial sequence
<400> 6
tgccatctcc acctgcacca tctcctgcat tctctgctgg ttccttctcc gacctgctgc 60
<210> 7
<211> 60
<212> DNA
<213> Artificial sequence
<400> 7
tcaagaaggg aggtgtcaag aagggatgga tcgaactgac gcagcaggtc ggagaaggaa 60
<210> 8
<211> 60
<212> DNA
<213> Artificial sequence
<400> 8
cttgacacct cccttcttga ctcgatgcct gctgttggca ctccacatac tgctgctgct 60
<210> 9
<211> 60
<212> DNA
<213> Artificial sequence
<400> 9
cagcacgcag accagactgg acctcatccc attcagcagg agcagcagca gtatgtggag 60
<210> 10
<211> 60
<212> DNA
<213> Artificial sequence
<400> 10
ccagtctggt ctgcgtgctg ctgatgatcc accaccaacc gttcgtgttg ctgtcactgc 60
<210> 11
<211> 60
<212> DNA
<213> Artificial sequence
<400> 11
ttccagggat ccagcaggct tggcacgtgg tggacgtgca gcagtgacag caacacgaac 60
<210> 12
<211> 60
<212> DNA
<213> Artificial sequence
<400> 12
agcctgctgg atccctggaa cactccttgt ttgttgtgtc aagcgagctc gctgtcactg 60
<210> 13
<211> 60
<212> DNA
<213> Artificial sequence
<400> 13
tcaggaacac ggacctcgaa ggactgctgt gcagatggac cagtgacagc gagctcgctt 60
<210> 14
<211> 60
<212> DNA
<213> Artificial sequence
<400> 14
ttcgaggtcc gtgttcctga acagcgtgat gcactgcact tgccactgtc ttggagggtc 60
<210> 15
<211> 60
<212> DNA
<213> Artificial sequence
<400> 15
ggtcaggaag accaccaccg atcctggtac gtggacgttt gaccctccaa gacagtggca 60
<210> 16
<211> 60
<212> DNA
<213> Artificial sequence
<400> 16
cggtggtggt cttcctgacc ctggtactcc aatcgctgct gacctggctg catcctctac 60
<210> 17
<211> 60
<212> DNA
<213> Artificial sequence
<400> 17
ctcttccagt tcggacttga ccagctggga tctgatgacg gtagaggatg cagccaggtc 60
<210> 18
<211> 60
<212> DNA
<213> Artificial sequence
<400> 18
tcaagtccga actggaagag aagaagtccg aactgagaca caagctgaag tatgtcccac 60
<210> 19
<211> 60
<212> DNA
<213> Artificial sequence
<400> 19
gtggagtttc tggcgatctc aatcagttca atgtactcat gtgggacata cttcagcttg 60
<210> 20
<211> 60
<212> DNA
<213> Artificial sequence
<400> 20
gagatcgcca gaaactccac tcaggacaga atcctggaga tgaaggtcat ggagttcttc 60
<210> 21
<211> 60
<212> DNA
<213> Artificial sequence
<400> 21
aaccacccag gtgtttacca cgataaccgt agaccttcat gaagaactcc atgaccttca 60
<210> 22
<211> 60
<212> DNA
<213> Artificial sequence
<400> 22
tggtaaacac ctgggtggtt ccaggaaacc tgacggtgcc atctacactg tcggttctcc 60
<210> 23
<211> 60
<212> DNA
<213> Artificial sequence
<400> 23
agagtaagcc ttggtgtcaa cgatgacacc gtagtcgatt ggagaaccga cagtgtagat 60
<210> 24
<211> 60
<212> DNA
<213> Artificial sequence
<400> 24
ttgacaccaa ggcttactct ggtggttaca acctgccaat cggtcaagca gacgaaatgc 60
<210> 25
<211> 60
<212> DNA
<213> Artificial sequence
<400> 25
atgtgcttgt ttctggtttg gttctcttcg acgtatctct gcatttcgtc tgcttgaccg 60
<210> 26
<211> 60
<212> DNA
<213> Artificial sequence
<400> 26
caaaccagaa acaagcacat caaccctaac gaatggtgga aagtctatcc atcctccgtc 60
<210> 27
<211> 60
<212> DNA
<213> Artificial sequence
<400> 27
ccttgaagtg accagagacg aacaggaact tgaactcggt gacggaggat ggatagactt 60
<210> 28
<211> 60
<212> DNA
<213> Artificial sequence
<400> 28
cgtctctggt cacttcaagg gaaactacaa agctcagctg accagactga accacatcac 60
<210> 29
<211> 60
<212> DNA
<213> Artificial sequence
<400> 29
caacagctct tcgacagaca ggacagcacc gttgcagttg gtgatgtggt tcagtctggt 60
<210> 30
<211> 60
<212> DNA
<213> Artificial sequence
<400> 30
tgtctgtcga agagctgttg attggtggag agatgatcaa agctggtact ctgacccttg 60
<210> 31
<211> 60
<212> DNA
<213> Artificial sequence
<400> 31
aagttgatct caccgttgtt gaacttcctt ctgacttcct caagggtcag agtaccagct 60
<210> 32
<211> 24
<212> DNA
<213> Artificial sequence
<400> 32
ttagaagttg atctcaccgt tgtt 24
<210> 33
<211> 24
<212> DNA
<213> Artificial sequence
<400> 33
gaattcatct tcgtcaacat ggtg 24
<210> 34
<211> 54
<212> DNA
<213> Artificial sequence
<400> 34
gagtacgaga acggattggg tccatggtaa ttgtaaatag taattgtaat gttg 54
<210> 35
<211> 54
<212> DNA
<213> Artificial sequence
<400> 35
caacattaca attactattt acaattacca tggacccaat ccgttctcgt actc 54
<210> 36
<211> 48
<212> DNA
<213> Artificial sequence
<400> 36
caacaacggt gagatcaact tctaacgttc aaacatttgg caataaag 48
<210> 37
<211> 26
<212> DNA
<213> Artificial sequence
<400> 37
aagcttggtg atcccaccgt gtcgag 26

Claims (1)

1.一种用于植物基因定点剪切的TALE核酸酶精简骨架,由特异性N端、C端和非特异性中间模块组成,编码该骨架的核苷酸序列按照植物偏爱密码优化,如SEQ ID NO.1所示。
CN201910704929.5A 2019-08-01 2019-08-01 一种用于植物基因定点剪切的tale核酸酶精简骨架构建 Active CN110468148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910704929.5A CN110468148B (zh) 2019-08-01 2019-08-01 一种用于植物基因定点剪切的tale核酸酶精简骨架构建

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910704929.5A CN110468148B (zh) 2019-08-01 2019-08-01 一种用于植物基因定点剪切的tale核酸酶精简骨架构建

Publications (2)

Publication Number Publication Date
CN110468148A CN110468148A (zh) 2019-11-19
CN110468148B true CN110468148B (zh) 2023-08-25

Family

ID=68509455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910704929.5A Active CN110468148B (zh) 2019-08-01 2019-08-01 一种用于植物基因定点剪切的tale核酸酶精简骨架构建

Country Status (1)

Country Link
CN (1) CN110468148B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558309A (zh) * 2012-02-10 2012-07-11 浙江大学 一对转录激活子样效应因子核酸酶及其编码基因与应用
CN102787125A (zh) * 2011-08-05 2012-11-21 北京大学 一种构建tale重复序列的方法
CN105367628A (zh) * 2014-08-19 2016-03-02 深圳华大基因科技有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
CN105838691A (zh) * 2016-04-18 2016-08-10 浙江大学 一对转录激活子样效应因子核酸酶及其编码基因与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787125A (zh) * 2011-08-05 2012-11-21 北京大学 一种构建tale重复序列的方法
CN102558309A (zh) * 2012-02-10 2012-07-11 浙江大学 一对转录激活子样效应因子核酸酶及其编码基因与应用
CN105367628A (zh) * 2014-08-19 2016-03-02 深圳华大基因科技有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
CN105838691A (zh) * 2016-04-18 2016-08-10 浙江大学 一对转录激活子样效应因子核酸酶及其编码基因与应用

Also Published As

Publication number Publication date
CN110468148A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
Martinez-Trujillo et al. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method
US9756871B2 (en) TAL-mediated transfer DNA insertion
CN109652422B (zh) 高效的单碱基编辑系统OsSpCas9-eCDA及其应用
EP2893024A1 (en) Fluorescence activated cell sorting (facs) enrichment to generate plants
CN105037521B (zh) 一种与植物抗逆性相关蛋白TaWrky48及其编码基因与应用
CN112538492B (zh) 一种识别PAM序列为NRTH的SpCas9n变体及相应碱基编辑系统
CN112048493B (zh) 一种增强Cas9及其衍生蛋白介导的基因操纵系统的方法及应用
CN107012147B (zh) 一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用
CN107827975B (zh) 一种用紫花苜蓿表达的基因重组人血清白蛋白及表达方法
CN104404043B (zh) 疣粒野生稻抗白叶枯病相关基因Me094启动子
CN106978438B (zh) 提高同源重组效率的方法
CN110468148B (zh) 一种用于植物基因定点剪切的tale核酸酶精简骨架构建
CN105820220B (zh) 抗逆相关蛋白及其编码基因在调控植物耐碱性中的应用
CN110684089B (zh) 植物耐逆性相关蛋白GmMYB118在调控植物耐逆性中的应用
CN110106171B (zh) 长链非编码rna及其在调控植物耐低温中的应用
CN114686456B (zh) 基于双分子脱氨酶互补的碱基编辑系统及其应用
WO2011069459A1 (zh) 一种种子特异型表达载体及其构建方法与应用
CN115925848A (zh) 一种石斛ERF类转录因子基因DoERF5及其应用
CN114438056A (zh) CasF2蛋白、CRISPR/Cas基因编辑系统及其在植物基因编辑中的应用
CN103261419A (zh) 一种调控植物花粉育性的构建体及其使用方法
CN112430613A (zh) 一种宽编辑范围的SpG基因及其应用
CN108424911B (zh) 种子特异性双向启动子及其应用
CN112218951B (zh) 小麦蓝粒基因及其应用
CN106399312B (zh) 一种诱导启动子NtPCS1P及其应用
CN113832180B (zh) CRISPR/Cas13b介导的棉花RNA转录调控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant