CN110461582B - 复合材料的双隔膜成型、用于此种成型的组件、及所得复合材料 - Google Patents

复合材料的双隔膜成型、用于此种成型的组件、及所得复合材料 Download PDF

Info

Publication number
CN110461582B
CN110461582B CN201880020714.5A CN201880020714A CN110461582B CN 110461582 B CN110461582 B CN 110461582B CN 201880020714 A CN201880020714 A CN 201880020714A CN 110461582 B CN110461582 B CN 110461582B
Authority
CN
China
Prior art keywords
composite material
membrane
sealing
composite
sealed cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880020714.5A
Other languages
English (en)
Other versions
CN110461582A (zh
Inventor
T.怀布罗
R.霍利斯
D.莱特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sete Engineering Materials Co ltd
Original Assignee
Sete Engineering Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1702071.0A external-priority patent/GB201702071D0/en
Priority claimed from GBGB1716869.1A external-priority patent/GB201716869D0/en
Application filed by Sete Engineering Materials Co ltd filed Critical Sete Engineering Materials Co ltd
Publication of CN110461582A publication Critical patent/CN110461582A/zh
Application granted granted Critical
Publication of CN110461582B publication Critical patent/CN110461582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/849Packaging machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/542Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable

Abstract

本文披露了用于复合材料与环境隔离的方法,以及隔离的复合材料。本文还披露了用于使复合材料成型的方法,该方法包括使用隔离的复合材料。例如,披露了一种用于复合材料机械热成型以形成成型复合材料的方法。

Description

复合材料的双隔膜成型、用于此种成型的组件、及所得复合 材料
相关申请
本申请涉及2017年2月8日提交的GB专利申请号1702071.0以及2017年10月13日提交的GB专利申请号1716869.1并要求其优先权。将这些申请的全部内容通过此援引方式明确并入本申请。
背景技术
纤维增强聚合物复合材料在许多行业如航空航天、汽车、海洋、工业、建筑和各种各样的消费产品中已经得到了广泛应用。复合材料通常是优选的因为它们是轻质的,但仍展现出高强度和耐腐蚀性,特别是在恶劣的环境中。
此种纤维增强聚合物复合材料通常由经预浸渍的材料或由树脂灌注方法制成。经预浸渍的材料或“预浸料”由浸渍有可固化基质树脂,如环氧树脂的纤维形成。预浸料中的树脂含量相对高,通常是按体积计40%-65%。可以将预浸料的多个层片切割成用于铺放的尺寸,然后随后在模制工具中组装并且成型。在其中预浸料不能容易地适配成模制工具的形状的情况下,可以将加热施加于这些预浸料,以便使其逐渐变形成模制表面的形状。纤维增强聚合物复合材料还可以由涉及树脂灌注技术的液体模制方法制成。这些方法包括例如树脂传递模制(RTM)、液体树脂灌注(LRI)、真空辅助树脂传递模制(VARTM)、柔性工具树脂灌注(RIFT)、真空辅助树脂树脂灌注(VARI)、树脂膜灌注(RFI)、受控大气压树脂灌注(CAPRI)、VAP(真空辅助工艺)、单线注射(SLI)和恒压灌注(CPI)。在树脂灌注方法中,将干粘合的纤维安排在模具中作为预成型件,随后将液体基质树脂直接原位注射或灌注。在注射或灌注之后,固化经树脂灌注的预成型件以提供成品复合制品。
对于两种类型的材料,用于复合材料三维成型(或模制)的方法对于最终模制产品的外观、特性和性能是至关重要的。例如,使用手工铺设方法将预成型件成型为精细的几何形状,该方法耗时并且通常导致零件与零件间变化。还存在用于使复合材料成型的真空成型方法,其中差压用于帮助形成成型的复合材料。参见例如,US 5,578,158和US 5,648,109。然而,这些真空成型方法通常是“离线的”方法,因为真空成型是与固化步骤分开的加工步骤。当它们进入压力机内的工具腔时,机器人和/或致动器还可以用于操作材料。通常,机器人/致动器围绕着材料的周边夹紧,并且然后随着压力机闭合并且材料被吸入与该材料一起移动。在此类过程中的目的是保持X和Y轴的张力以允许复合材料的受控成型。在一些情况下,剪切销围绕工具腔的外侧定位,使得销刺穿待成型的材料。当工具闭合时,在材料跨越销剪切或撕裂时保持在X和Y轴上的张力,但必须使用围绕零件的边缘的显著多余的材料。最后,工具可以包括可以分别被致动为所希望图案的可重构销。与真空/抽吸力相结合的这些可重构销的致动使材料变形。参见,例如US 6,484,776。
以上描述的方法中的每一种具有其自身的缺点和不足:例如,它们通常是耗时的和/或产品仍然容易出现平面起皱和其他缺陷。这些方法也没有考虑到成型的复合材料的流变学行为和固化特征。此外,复合材料通常暴露于环境条件中,这可能容易污染最终模制产品。最后,当前不存在能够在没有附加的硬件或设备的情况下利用现有的基础设施和设备,如金属冲压或压制压力机的方法。
概述
为了提供用于将复合材料与环境污染物隔离的组件以及不仅解决本领域中已知的其他方法的缺点和不足,而且还考虑到复合材料的流变学行为和固化特征并且还允许使用现有的基础设施和设备的可能性的模制方法的目的,在此披露了一种用于使复合材料成型的新型方法。
因此,在一方面,本传授内容提供了用于使复合材料与环境隔离的方法。此类方法包括:
(a)用不透气的、柔性的、无框架的隔膜(diaphragm)结构围绕基本上平面的复合材料,并且
(b)通过从该复合材料与该隔膜结构之间去除空气并且将该隔膜结构的全部开放边缘密封,在该隔膜结构中产生仅容纳该复合材料的密封腔体(pocket),使得在环境条件下在不使用框架的情况下阻止了污染物进入该密封腔体持续至少约1个月的时间段。
在一些实施例中,产生密封腔体包括将围绕复合材料布置的隔膜袋或折叠隔膜片的全部开放边缘密封。在其他实施例中,产生密封腔体包括将两个围绕复合材料的整个周边的隔膜片密封。
在一些实施例中,将隔膜结构的全部开放边缘密封包括机械密封、施加粘合剂、热密封、焊接、或其任何组合。
在一些实施例中,去除空气包括在复合材料与柔性隔膜结构之间施加真空压力。
在一些实施例中,隔膜结构包括包含一个或多个层的膜,这些膜各自独立地选自塑料层或弹性层。该膜可以是一次性的或可重复使用的。
在一些实施例中,将隔膜结构密封提供了足以在随后的复合材料成型期间阻止污染物吸入的密封强度。在一些实施例中,将隔膜结构密封提供了足以在复合材料的运输和处理期间阻止污染物吸入的密封强度。在某些实施例中,在环境条件下在不使用框架的情况下阻止污染物进入密封腔体持续最高达约6个月的时间段。
在一些实施例中,在环境条件下密封腔体保持真空完整性持续至少约1个月的时间段。
在另一个方面,本传授内容提供了用于使复合材料成型的方法。此类方法包括:
(a)用不透气的、柔性的、无框架的隔膜结构围绕基本上平面的复合材料;
(b)通过从该复合材料与该隔膜结构之间去除空气并且将该隔膜结构的全部开放边缘密封,在该隔膜结构中产生仅容纳该复合材料的密封腔体,由此形成层状结构,使得:
在不使用框架的情况下阻止了空气和污染物进入该密封腔体,并且
将该复合材料在该密封腔体内保持固定直到将热、力、或其组合施加到其上;
(c)任选地将该隔膜结构布置在结构框架内;以及
(d)使该复合材料在该隔膜结构的密封腔体内成型。
在一些实施例中,产生密封腔体包括将围绕复合材料布置的隔膜袋或折叠隔膜片的全部开放边缘密封。在其他实施例中,产生密封腔体包括将两个围绕复合材料的整个周边的隔膜片密封。
在一些实施例中,将隔膜结构的全部开放边缘密封包括机械密封、施加粘合剂、热密封、焊接、或其任何组合。
在一些实施例中,去除空气包括在复合材料与柔性隔膜结构之间施加真空压力。
在一些实施例中,隔膜结构包括包含一个或多个层的膜,这些膜各自独立地选自塑料层或弹性层。该膜可以是一次性的或可重复使用的。
在一些实施例中,将隔膜结构密封提供了足以在环境条件下阻止污染物吸入持续从1个月至6个月的时间段的密封强度。在其他实施例中,将隔膜结构密封提供了足以在步骤(c)中的成型期间阻止污染物吸入的密封强度。在还其他的实施例中,将隔膜结构密封提供了足以在复合材料的运输和处理期间阻止污染物吸入的密封强度。在另外的实施例中,将隔膜结构密封提供了足以在复合材料的储存期间阻止污染物吸入的密封强度,其中储存进行最高达约6个月。
在一些实施例中,在环境条件下密封腔体保持真空完整性持续至少约1个月的时间段。
在一些实施例中,该方法进一步包括根据在步骤(a)之前的图案加工复合材料。
在一些实施例中,层状结构通过自动化手段操作。
在还另一个方面,本传授内容提供了用于使复合材料成型的方法。此方法总体上包括:
(a)通过产生在上柔性隔膜与下柔性隔膜之间的容纳该复合材料的密封腔体将基本上平面的复合材料置于这些隔膜之间,
(b)使该上柔性隔膜和该下柔性隔膜与该复合材料紧密接触,由此形成层状结构,其中将该复合材料在该上柔性隔膜与该下柔性隔膜之间保持固定直至将热或力施加到层状结构上;
(c)任选地在加热装置中在足以降低该复合材料的粘度或软化这些隔膜的温度下预加热该层状结构;
(d)将该层状结构定位在包括通过间隙分开的阳模和对应的阴模的压制工具中,其中该阳模和该阴模各自独立地具有非平面的模制表面,
(e)通过闭合在该阳模与该阴模之间的间隙压缩该阳模与该阴模之间的层状结构;并且
(f)将该阳模与该阴模保持在闭合位置上直至该层状结构的粘度达到足以保持模制形状的水平。
在一些实施例中,根据在步骤(a)之前的图案可以加工复合材料。
在一些实施例中,步骤(e)包括部分地闭合在阳模与阴模之间的间隙使得在这些模之间形成较小的间隙,该较小的间隙随后在达到特定的时间或粘度之后闭合。在一些实施例中,步骤(e)包括以约0.7mm/s与约400mm/s之间的速度闭合在阳模与阴模之间的间隙,同时将该阳模和该阴模保持在高于复合材料的软化点温度下。在某些实施例中,进行步骤(e)直至复合材料的粘度小于1.0x108mPa。
在一些实施例中,将阳模和阴模保持在高于环境温度的温度下。例如,在一些实施例中,将阳模和阴模保持在高于100℃的温度下。在一些实施例中,将阳模和阴模保持在闭合位置处持续在约10秒与约30分钟之间。
在一些实施例中,步骤(b)包括在上柔性隔膜与下柔性隔膜之间施加至少约670毫巴的真空压力。
在一些实施例中,该方法还包括(g)将工具上的层状结构冷却至低于复合材料的软化温度的温度。在其他实施例中,该方法还包括(g)在该层状结构高于复合材料的软化温度时从该工具中移出该层状结构。
在一些实施例中,通过包含顶部框架、中心框架和底部框架的结构框架将上隔膜和下隔膜保持在一起,其中:
该下隔膜被保持在该底部框架与该中心框架之间;并且
该上隔膜被保持在该中心框架与该顶部框架之间。
中心框架可以被配置成用于为组件提供真空源。在其他实施例中,通过包含顶部框架和底部框架的结构框架将上隔膜和下隔膜保持在一起,其中下隔膜和上隔膜两者都保持在中心框架与顶部框架之间。
用于制造上隔膜和下隔膜的材料通常基于它们所希望的功能选择,如在以下更详细的描述。在一些实施例中,上隔膜和下隔膜各自独立地选自包括一个或多个层的膜,这些层各自独立地选自橡胶层、硅酮层和塑料层。
加热装置可以是本领域已知的任何装置,并且在一些实施例中,可以具体地选自接触加热器或IR加热器。在一些实施例中,通过自动化手段将层状结构定位在压制工具中和/或在任选的加热装置中。
在一些实施例中,没有真空压力被施加到压制工具的任何部分。
在又另一个方面,本传授内容提供了隔离的复合材料。此类材料包括在隔膜结构(不透气的、柔性的、无框架的)的空气抽空的腔体内密封的基本上平面的复合材料,其中在环境条件下阻止污染物进入空气抽空的腔体持续至少约1个月的时间段。
在一些实施例中,在复合材料的成型期间阻止污染物进入空气抽空的腔体。在其他实施例中,在复合材料的储存、运输和/或处理期间阻止了污染物进入空气抽空的腔体。在还其他实施例中,在复合材料的储存期间阻止了污染物进入空气抽空的腔体,其中储存进行最高达约6个月。
在一些实施例中,在环境条件下空气抽空的腔体保持真空完整性持续至少约1个月的时间段。
用于本传授内容相关的复合材料包括结构纤维。此类结构纤维包括但不限于芳族聚酰胺、高模量聚乙烯(PE)、聚酯、聚对亚苯基-苯并二噁唑(PBO)、碳、玻璃、石英、氧化铝、氧化锆、碳化硅、玄武岩、天然纤维及其组合。用于与本传授内容结合使用的复合材料还包含粘合剂或基质材料。此种粘合剂或基质材料包括但不限于热塑性聚合物、热固性树脂、及其组合。
附图说明
图1A和1B说明了根据本传授内容的示例性框架层状结构的形成。
图2A和2B说明了根据本传授内容的示例性无框架层状结构的形成。
图3说明了根据本传授内容的示例性模制过程(使用框架层状结构)。
具体实施方式
鉴于复合材料加工的潜在缺点,包括加工时间、零件与零件间变化和产品污染,仍然存在开发更快的、改进的且更可靠的组件和方法的需要。还希望考虑到流变学行为和固化特征以及如果可能的化,提供可以充分利用现有设备(例如金属冲压或压制)的方法。本披露提供了用于将复合材料与环境污染物隔离的组件,包括适用于储存、处理和/或运输的无框架组件以及用于使复合材料成型的方法,包括使用双隔膜机械热成型的方法,其-单独地和共同地都-克服了这些缺点。
隔离的复合材料
通常,使用拉延和/或冲压技术将传统的金属片形成为例如成型产品,如汽车覆盖件。因为金属对大气影响,如氧、灰尘和来自机器的油是完全不渗透的,所以金属可以形成为高度错综复杂的形状,而不需要与从此类大气影响隔离来避免在成型期间的缺陷。遗憾的是,对于复合材料通常不是如此。将传统的金属冲压设备直接用于复合材料上将通常导致不完美的粗糙表面,这在消费者产品,如汽车中是不能接受的。因此,在某些方面,本发明涉及用于使复合材料成型的组件。此类组件隔离复合材料,例如使得它们可以在现有的金属冲压设备上成型。
因此,在一些方面,本传授内容提供形成用于使复合材料成型的组件的方法。可以将复合材料与环境隔离的此类方法包括:
(a)通过隔膜之间的产生容纳该复合材料的腔体将基本上平面的复合材料置于上柔性隔膜与下柔性隔膜之间,并且
(b)使该上柔性隔膜和该下柔性隔膜与该复合材料紧密接触,由此形成层状结构,其中将该复合材料在该上柔性隔膜与该下柔性隔膜之间保持固定直至将热或力施加到层状结构上。
如本文所使用的,术语“基本上平面的”是指具有一个可测量地大于其他两个平面(例如,大至少2、3、4或5倍,或更多)的平面的材料。在一些实施例中,基本上平面的材料沿着最大的平面具有厚度变化。例如,复合材料可以包含增强材料,如垫起(即层片的量局部增加)或层片下落(即层片的量局部减少)、材料改变,和/或其中复合材料过渡例如到织物的区域。在其他实施例中,基本上平面的材料沿着复合材料的区域展现出最小的厚度变化。例如,术语基本上平面的可以意指复合材料在90%的区域上具有不大于+/-15%的整体厚度变化。在一些实施例中,在90%的区域上厚度变化不大于+/-10%。基本上平面的不仅旨在表示完全平坦的材料,而且还包括在凹度和/或凸度上具有略微变化的材料。如本文所使用的,术语“柔性”是指材料在没有显著的返回力的情况下能够变形。柔性材料通常具有在约1,000N/m与约2,500,000N/m之间,例如在约1,500N/m与约2,000,000N/m之间、或在约2,000N/m与约1,500,000N/m之间的柔性系数(测量的以帕斯卡计的杨氏模量和测量的以米计的总厚度的乘积)。
在某些实施例中,容纳复合材料的腔体由结构框架限定,该腔体容纳保持在隔膜之间的复合材料。现在参考图1A,在某些实施例中,将基本上平面的复合材料110置于上柔性隔膜130与下柔性隔膜120之间。这在容纳复合材料的隔膜之间产生了腔体140。在某些实施例中,此腔体将由结构框架限定,该腔体容纳保持在隔膜之间的复合材料。例如,下柔性隔膜可以置于保持底部框架160的床150上;随后可以将复合材料110铺设在下柔性隔膜120的顶部;然后可以将中心框架170置于下隔膜上,随后上柔性隔膜130并且最后顶部框架180。在一些实施例中,可以排除中心框架。顶部、中心(在存在的情况下)和底部框架通过被支撑的周边,例如通过围绕周边在预定间隔下定位夹子保持所希望的隔膜形状。此类顶部、中间和底部框架可以基于待模制的复合材料的尺寸和形状制造。任选地,预制造的结构支撑框架在本领域内用于与常规的金属或复合压制工具(例如来自制造商如Langzauner或Schubert)一起使用是已知的。在一些实施例中,中心框架170可以包括用于去除空气的装置,例如真空入口或其他阀。真空入口(如果存在)连接到真空源(例如真空泵)。在一些实施例中,容纳复合材料的腔体可以是密封腔体,例如气密密封腔体,由此结构框架围绕复合材料的整个周边布置。
现在参考图1B,使上柔性隔膜130和下柔性隔膜120与复合材料110紧密接触(参见190及其分解图),以形成层状结构。这可以例如通过在上柔性隔膜与下柔性隔膜之间施加真空压力完成。在其他实施例中,这可以通过在上和/或下柔性隔膜上物理地施加压力(例如通过手动或通过机械手段)以去除空气来完成。在某些情况下真空压力可以是希望的,例如以抽出可能阻碍模制性能的残余空气,以阻碍复合材料(或其组分)的变形或起皱,以帮助保持纤维对齐,以在加工期间和在成型期间对材料提供支撑,和/或以在高温下保持所希望的厚度。如在本文中使用的术语“真空压力”是指小于1个大气压(或小于1013毫巴)的真空压力。在一些实施例中,在隔膜之间的真空压力设定为小于约1个大气压、小于约800毫巴、小于约700毫巴、或者小于约600毫巴。在一些实施例中,在隔膜之间的真空压力设定为约670毫巴。此时,无论通过真空还是通过机械手段,将复合材料牢固地保持在隔膜之间,使得其固定直至施加热或力。此种固定的层状结构可以是有利的,例如,因为保持在层状结构内的复合材料不仅在其X或Y轴上的足够张力下在其位置被保持固定,而且其还被定位。也就是说,复合材料可以(例如通过自动化手段)被置于固定的层状结构内的隔膜之间的特定位置。然后可以将此定位的固定层状结构(例如通过自动化手段)置于压制工具中的特定位置(如在下文中更详细描述的),使得压制工具始终接合复合材料的预定区域。因此,固定的层状结构可以可靠地用于生产模制产品的多个副本,无需单独地定位每种复合材料坯料。
在一些情况下,在除了成型设备的位置之外的位置处制造框架组件可能存在显著的、可能不可克服的困难。组件的重量、尺寸和其他方面对储存和/或运输隔离的复合材料的能力具有巨大的影响。因此,在某些情况下具有无框架组件是有利的或者甚至是必要的。因此,在一些实施例中,容纳复合材料的腔体由隔膜结构本身限定并且本传授内容提供了用于使复合材料成型的无框架组件。用于使用无框架组件使复合材料与环境隔离的方法包括:
(a)用不透气的、柔性的、无框架的隔膜结构围绕基本上平面的复合材料,并且
(b)通过从该复合材料与该隔膜结构之间去除空气并且将该隔膜结构的全部开放边缘密封,在该隔膜结构中产生仅容纳复合材料的密封腔体,使得在不使用框架的情况下阻止污染物进入该密封腔体。
现在参考图2,在某些实施例中,基本上平面的复合材料210被不透气的柔性隔膜结构围绕。隔膜结构可以是例如,包含一个或多个开放边缘的袋220或一个或多个布置在复合材料周围的材料片。例如,复合材料可以置于两个片230之间。这在袋内或在片之间产生腔体240,该腔体容纳复合材料。然后从复合材料与隔膜结构之间将空气去除。这可以通过在复合材料与隔膜结构之间施加真空压力,通过物理地施加压力(例如通过手动或通过机械手段)至隔膜结构的外部表面,或通过其某些组合来完成。当与框架组件相比时,在无框架组件中,可以选择特定的真空压力,例如还阻碍复合材料(或其组分)的变形或起皱,以帮助保持纤维对齐,以在加工期间和在成型期间为材料提供支撑,和/或以在高温下保持所希望的厚度。在一些实施例中,在隔膜结构与复合材料之间的真空压力设定为小于约1个大气压、小于约800毫巴、小于约700毫巴(例如约670毫巴)、或小于约600毫巴。然后将隔膜结构260密封以在隔膜结构内形成密封腔体,该腔体容纳在层状结构250内的复合材料,使得在不使用框架的情况下阻止污染物进入密封腔体。如本文所使用的,术语“污染物”是指空气、微粒、油、和任何其他可能显著影响复合材料的表面特性或机械特性的污染物。在一些实施例中,在单个步骤中去除空气并且将这些开放边缘密封。例如,使用机械压力可以去除空气并且同时可以密封边缘。在其他实施例中,在不连续的步骤中去除空气并且将开放边缘密封。例如,可以使用真空去除空气,随后使用机械手段或其他手段密封。
在一些实施例中,在环境条件下在不使用框架的情况下阻止了污染物进入密封腔体持续至少约1个月的时间段。在某些实施例中,在环境条件下在不使用框架的情况下阻止了污染物进入密封腔体持续至少约2、3、4或甚至5个月的时间段。在一些实施例中,在环境条件下在不使用框架的情况下阻止了污染物进入密封腔体持续最高达约6个月的时间段;然而,在某些实施例中,在环境条件下在不使用框架的情况下可以阻止污染物进入密封腔体持续大于6个月的时间段。在某些实施例中,在低温条件(即-18℃或更低)下在不使用框架的情况下阻止了污染物进入密封腔体持续至少约2个月的时间段。在某些实施例中,在低温条件下在不使用框架的情况下阻止了污染物进入密封腔体持续至少约4、6、8、10或甚至12个月的时间段。
用于产生密封腔体的材料和方法将取决于用于隔膜结构的隔膜材料的性质和形状。例如,如果隔膜结构是袋,则产生密封腔体是指将复合材料置于袋的内部并且将袋的开放边缘密封。如果隔膜结构是折叠片,则产生密封腔体是指将折叠片的三个开放边缘密封,其中复合材料被布置在片的褶层内。另一方面,如果隔膜结构是两个隔膜片,则产生密封腔体是指将两个隔膜片的四个开放边缘密封,其中复合材料布置在两个片之间(即将围绕复合材料的整个周边密封)。在所有情况下,每个开放边缘可以以直线或以非直线方式密封。
此外,可以利用许多用于将隔膜材料密封(在不存在结构框架的情况下)的方法。例如,可以机械地密封隔膜结构的开放边缘。在其他实施例中,可以使用粘合剂密封隔膜结构的开放边缘。在其他实施例中,可以焊接隔膜结构的开放边缘。在还其他实施例中,可以利用热密封隔膜结构的开放边缘。
将隔膜结构的腔体中的复合材料密封不仅在静态环境条件下阻止污染物,而且还可以在动态环境下阻止污染物。在一些实施例中,将隔膜结构密封提供了足以在随后的复合材料成型期间阻止污染物吸入的密封强度。在一些实施例中,将隔膜结构密封提供了足以在复合材料的储存、运输和/或处理期间阻止污染物吸入的密封强度。
能够阻止污染物的无框架组件还能够保持真空。因此,此时-并且与框架组件类似的-将复合材料牢固地保持在密封腔体内,并且可以保持固定直至施加热或力。特别地,在一些实施例中,在环境条件下密封腔体保持真空完整性持续至少约1个月的时间段。在某些实施例中,在环境条件下密封腔体保持真空完整性持续至少约2、3、4、5或6个月、或者更多的时间段。如本文所使用的,术语“真空完整性”是指无框架组件基本上保持密封腔体内的负压的能力。当密封腔体保持真空完整性时,复合材料通过在其X和Y轴上的足够张力在无框架组件内被保持固定在其位置处,并且还被定位(即在无框架组件内的特定位置)。在一些实施例中,此定位的无框架组件可以具有与在框架组件的背景下限定的固定层状结构相同的优点。换言之,定位的无框架组件可以置于压制工具中的特定位置,使得压制工具始终接合复合材料的预定区域。然而,在一些实施例中,在使复合材料成型之前无框架组件将被布置在结构框架内。当与结构框架一起使用时,定位的无框架组件的使用还将提供显著的优点,不仅在以上详述的储存和运输能力方面,而且还在成型期间。特别地,可以可靠地使用定位的无框架组件-不需要附加的定位-与结构框架相比,甚至在储存、处理、和/或运输之后。
隔膜材料和隔膜结构
如本文所使用的,术语“隔膜”是指划分或分隔两个不同的物理区域的任何阻隔层。术语“隔膜结构”是指一个或多个隔膜的组件,其限定外部空间和隔离的内部空间,例如在密封腔体内的区域和密封腔体外部的区域。隔膜是柔性的并且可以是弹性的或非弹性可变形的材料片。典型地,隔膜厚度范围在约10微米与约200微米之间,例如在约20微米与约150微米之间。特别有利的隔膜具有在约30微米与约100微米之间的厚度。在一些实施例中,用于制造隔膜的材料不受特别限制并且可以是例如橡胶、硅酮、塑料、热塑性塑料、或类似的材料。然而,在某些实施例中,用于制造隔膜的材料包括包括一个或多个层的膜,这些层各自独立地选自塑料层或弹性层。隔膜可以由单一材料组成或者可以包括多种材料,例如以层安排的。隔膜结构的上隔膜和下隔膜,例如可以各自独立地选自包括一个或多个层的膜,每个单独的层与隔膜中的其他层相同或不同。可以使用常规的流延或挤出程序将隔膜材料形成为膜。在一些实施例中,膜是一次性的。在其他实施例中,膜是可重复使用的。
取决于所希望的功能,还可以选择具有许多特性的隔膜材料。例如,在一些实施例中,隔膜是自释放的。即,隔膜可以容易地从最终模制零件中释放和/或模制组件可以容易地从模具中释放。在其他实施例中,隔膜被设计为暂时(或轻轻地)粘附到模制的复合材料上。此种暂时粘附可以有利于保护最终模制产品,例如在随后的加工、运输和/或储存期间。在仍其他实施例中,隔膜被设计为永久粘附到模制的复合材料上。此种暂时粘附可以有利于对最终模制产品提供永久保护性涂层和/或涂漆涂层。可以基于其特定的物理特性选择隔膜材料。例如,在一些实施例中,用于制造隔膜的材料具有大于100%的断裂伸长率。在一些实施例中,用于制造隔膜的材料具有类似与复合材料的模制温度(例如在其10℃内)的熔融温度。
在一些实施例中,隔膜对空气是可透的。在其他实施例中,隔膜对空气是不可透的,使得它们能够一起形成密封腔体。密封腔体阻止污染物(例如空气、微粒、油等)进入密封腔体,持续一定时间段。在一些实施例中,不可透的隔膜形成气密密封腔体。如本文所使用的,术语“气密”是指对于加工过程期间材料保持真空的能力。此气密密封腔体是有利的,例如,当真空用于将上和下隔膜与复合材料紧密接触时。
复合材料
如本文所使用的,术语“复合材料”是指结构纤维和粘合剂或基质材料的组合。结构纤维可以是有机纤维、无机纤维或其混合物,包括例如可商购的结构纤维,如碳纤维、玻璃纤维、芳族聚酰胺纤维(例如Kevlar)、高模量聚乙烯(PE)纤维、聚酯纤维、聚对亚苯基-苯并二噁唑(PBO)纤维、石英纤维、氧化铝纤维、氧化锆纤维、碳化硅纤维、其他陶瓷纤维、玄武岩、天然纤维及其混合物。注意到,需要高强度的复合结构的最终应用将典型地采用具有高拉伸强度(例如≥3500MPa或≥500ksi)的纤维。此类结构纤维可以包括任何常规构型的一个或多个纤维材料的层,包括例如单向带(单带)网、非织造垫或面纱、机织织物、针织织物、非卷曲织物、纤维丝束及其组合。应理解,可以包括作为遍及全部或部分的复合材料的一个或多个层片,或者以垫起或层片下落的形式(其中厚度局部增加/降低)的结构纤维。
通过粘合剂或基质材料将纤维材料保持在适当的位置并保持稳定,使得保持纤维材料的对齐并且可以储存、运输和处理稳定的材料(例如成型的或以其他方式变形的)而没有磨损、散开、拉开、翘曲、起皱或以其他方式降低纤维材料的完整性。由少量的粘合剂(例如典型地按重量计小于约10%)保持的纤维材料典型地被称为纤维预成型件。此类预成型件将适用于树脂灌注应用,如RTM。纤维材料还可以由较大量的基质材料保持(当提及浸渍有基质的纤维时通常称为“预浸料”),并且因此将在没有进一步添加树脂的情况下适用于最终产品形成。
粘合剂或基质材料通常选自热塑性聚合物、热固性树脂、及其组合。当用于形成预成型件时,此类热塑性聚合物和热固性树脂可以以各种形式,如粉末、喷雾、液体、糊剂、膜、纤维、和非织造面纱被引入。用于利用这些各种形式的手段在本领域内通常是已知的。
热塑性材料包括例如,聚酯、聚酰胺、聚酰亚胺、聚碳酸酯、聚(甲基丙烯酸甲酯)、聚芳香族烃、聚酯酰胺、聚酰胺酰亚胺、聚醚酰亚胺、聚芳酰胺、聚芳酯、聚芳醚酮、聚醚醚酮、聚醚酮酮、聚丙烯酸酯、聚(酯)碳酸酯、聚(甲基丙烯酸甲酯/丙烯酸丁酯)、聚砜、聚芳砜、其共聚物及其组合。在一些实施例中,热塑性材料还可以包括一个或多个反应性端基,如胺基或羟基,这些对于环氧化物或固化试剂是反应性的。
热固性材料包括例如,环氧树脂、双马来酰亚胺树脂、甲醛-缩合物树脂(包括甲醛-酚树脂)、氰酸酯树脂、异氰酸酯树脂、酚醛树脂及其混合物。环氧树脂可以是一种或多种选自下组的化合物的单或聚缩水甘油衍生物,该组由以下各项组成:芳香族二胺、芳族单伯胺、氨基酚、多元酚、多元醇和多元羧酸。环氧树脂还可以是多官能的(例如双官能的、三官能的、和四官能的环氧树脂)。
在一些实施例中,将一种或多种热塑性聚合物和一种或多种热固性树脂的组合用于复合材料。例如,某些组合在流量控制和柔性方面起协同效应。在这类组合中,热塑性聚合物将为共混物提供流量控制和柔性,主导典型地低粘度、脆性的热固性树脂。
用于使复合材料成型的双隔膜方法
本传授内容还包括用于使用本文提供的组件使复合材料成型的方法。在一些实施例中,该方法包括使用框架组件并且在其他实施例中,该方法包括使用无框架组件。在仍其他实施例中,该方法可以使用框架或无框架组件。
因此,在一些方面,本传授内容提供用于使复合材料成型的方法,该方法总体上包括:
(a)用不透气的、柔性的、无框架的隔膜结构围绕基本上平面的复合材料;
(b)通过从该复合材料与该隔膜结构之间去除空气并且将该隔膜结构的全部开放边缘密封,在该隔膜结构中产生仅容纳该复合材料的密封腔体,由此形成层状结构,使得:
在不使用框架的情况下阻止了污染物进入密封腔体,并且
将该复合材料在该密封腔体内保持固定直到将热、力、或其组合施加到其上;
(c)任选地将该隔膜结构布置在结构框架内;并且
(d)使该复合材料在该无框架隔膜结构的密封腔体内成型。
在步骤(d)中使复合材料成型可以包括真空热成型、机械热成型、或其组合。
真空热成型通常包括:
(a”)将层状结构定位在其中模具定位在其中的壳体上,该模具具有非平面模制表面,以便限定由隔膜结构和壳体界定的密封室,并且使得下隔膜定位在模制表面上;
(b”)任选地在足以降低复合材料的粘度和/或软化隔膜结构的温度下加热层状结构
(c”)通过去除空气在隔膜结构与壳体之间的密封室内部产生真空,由此层状结构被拉向模制表面并最终与其贴合,
(d”)保持真空直至层状结构的粘度达到足以对复合材料保持模制形状的水平
可以使用本领域已知的用于真空热成型常规参数。例如,在一些实施例中,在步骤(c”)中以1毫巴/15分钟或者更快的速率去除空气直至达到950毫巴或更低的真空压力。在其他实施例中,当在步骤(c”)中去除空气时保持加热。
在一些实施例中,真空热成型进一步包括将模具上的层状结构冷却至低于复合材料的软化温度的温度。在还其他的实施例中,真空热成型进一步包括(e”)在层状结构高于复合材料的软化温度的温度时从该工具中移出层状结构。
另一方面,机械热成型可以包括
(a’)任选地在加热装置中在足以降低复合材料的粘度、足以软化隔膜结构或者两者的温度下预加热层状结构;
(b’)将层状结构定位在包含通过间隙分开的阳模和对应的阴模的压制工具中,其中该阳模和该阴模各自独立地具有非平面的模制表面,
(c’)通过闭合在该阳模与该阴模之间的间隙压缩在该阳模与阴模之间的层状结构;以及
(d’)将该阳模与该阴模保持在闭合位置处直至层状结构的粘度达到足以对复合材料保持模制形状的水平。
特别注意的是,以上描述的机械热成型方法可以与框架组件或无框架组件结合使用。例如,在一些实施例中,本传授内容提供了用于使复合材料成型的方法,该方法大体上包括:
(a°)任选地在加热装置中在足以降低复合材料的粘度或软化隔膜的温度下预加热层状结构,该层状结构包括布置在隔膜结构内的复合材料;
(b°)将层状结构定位在包含通过间隙分开的阳模和对应的阴模的压制工具中,其中该阳模和该阴模各自独立地具有非平面的模制表面,
(c°)通过闭合在该阳模与该阴模之间的间隙压缩阳模与阴模之间的层状结构;以及
(d°)将该阳模与该阴模保持在闭合位置直至层状结构的粘度达到足以保持模制形状的水平。
在仍其他实施例中,本传授内容提供了用于使复合材料成型的方法,该方法大体上包括:
(a)通过产生在上柔性隔膜与下柔性隔膜之间的容纳该复合材料的密封腔体将基本上平面的复合材料置于这些隔膜之间,
(b)使该上柔性隔膜和该下柔性隔膜与该复合材料紧密接触,由此形成层状结构,其中将该复合材料在该上柔性隔膜与该下柔性隔膜之间保持固定直至将热或力施加到层状结构上;
(c)任选地在加热装置中在足以降低该复合材料的粘度或软化这些隔膜的温度下预加热该层状结构;
(d)将该层状结构定位在包括通过间隙分开的阳模和对应的阴模的压制工具中,其中该阳模和该阴模各自独立地具有非平面的模制表面,
(e)通过闭合在该阳模与该阴模之间的间隙压缩该阳模与该阴模之间的层状结构;以及
(f)将该阳模与该阴模保持在闭合位置上直至该层状结构的粘度达到足以保持模制形状的水平。
现在参考图3A,在一些情况下,层状结构310可以在加热装置320中预加热。可以手动或通过自动化手段,例如使用自动化梭325将层状结构置于加热装置中。此加热装置可以是可以用于金属或复合材料产品成型或者模制的任何加热器,例如,接触加热器或红外线(IR)加热器。在一些情况下,此预加热使上柔性隔膜和下柔性隔膜软化,例如使得它们在形成最终模制产品期间更柔韧。在一些情况下,此预加热使得保持在层状结构中的复合材料达到所希望的粘度或温度。预加热可以在加热至高于约75℃、100℃、125℃、150℃、175℃、200℃的温度或甚至更高的温度的加热装置中进行。可以调节此温度,例如,取决于隔膜和/或复合材料中的组分的特性。此种预加热是有利的,例如,如果希望最小化或消除压制工具的加热和/或最小化层状结构驻留在压制工具中的时间量。
为了形成最终模制产品,将层状结构定位于压制工具中。在一些实施例中,没有真空压力被施加到压制工具的任何部分。在其他实施例中,局部真空被施加到工具表面,例如以去除在层状结构与工具之间的截留空气。然而,在此类实施例中,真空通常不用作形成最终模制产品的形状的力。可以手动或通过自动化手段,例如使用自动化梭325将层状结构置于压制工具中。此压制工具通常包括阳模330和阴模340,这些被间隙350隔开。每个模具有非平面的模制表面(分别是360和370)。模制表面是固定的,即不可重构的。模制表面通常还是匹配的,即阳模大致对应于对面的阴模;并且在一些实施例中,可以完美匹配。然而,在一些实施例中,阳模和阴模是使得(当闭合时)在它们之间的厚度变化。在某些实施例中,层状结构定位在阳模与阴模之间特定的、预定的距离处的间隙中。参照图2B,然后通过闭合间隙380在阳模与阴模之间压缩层状结构。在一些实施例中,这通过部分地闭合在阳模与阴模之间的间隙以在模具之间形成较小的间隙完成。随后在达到特定时间或粘度后闭合此较小的间隙。应理解,“闭合间隙”是指将模具压缩使得在它们之间获得沿着Z轴390的预定的最终腔厚度。可以例如通过控制其中模具相对于彼此停止来调节最终腔厚度,并且厚度的选择可以由模具的操作者进行并且将取决于最终模制产品的性质。在一些实施例中,最终腔厚度基本上是均匀的,即该过程产生双面模制的具有变化小于5%的厚度的最终产品在一些实施例中,该方法产生具有变化小于约4%、例如小于约3%、小于约2%或甚至小于约1%的厚度的最终模制产品。在其他实施例中,可以配置阳模和阴模工具以提供在X和Y轴上有意地变化的腔厚度。
在某些实施例中,将阳模和阴模保持在高于环境温度的温度下。例如,它们可以在高于约75℃、100℃、125℃、150℃、175℃、200℃或甚至更高的温度下保持。可以根据复合材料中的组分的性质(和粘度)调节此温度。例如,可以在高于用于复合材料的粘合剂或基质材料的软化点的温度下保持模具。在一些实施例中,复合材料包含热固性材料并且模具被保持在约100℃与200℃之间的温度下。在其他实施例中,复合材料包含热塑性材料并且模具被保持在高于约200℃的温度下。典型地,层状结构将在某种情况下,例如在预加热步骤期间或在模制过程期间在压制工具中或者两者中加热以使能够软化复合材料。在复合材料中的粘合剂或基质材料在环境温度(20℃-25℃)下呈固相,但在加热时将软化。此软化允许复合材料在压制工具中模制。
在一些实施例中,将阳模和阴模保持在闭合位置处持续预定时间。例如,在一些实施例中,加热模具并且保持在闭合位置处直至达到所希望的粘度或温度。在一些实施例中,将模具保持在闭合位置处直至复合材料的粘度小于约1.0x108mPa。在一些实施例中,加热模具并且保持在闭合位置处直至粘合剂或基质材料开始交联。在其他实施例中,不加热模具,但保持在闭合位置处持续足以对材料保持模制形状的一段时间。可以将模具保持在闭合位置处例如持续在约5秒与约60分钟之间,例如,持续在约10秒与约30分钟之间或在约15秒与约15分钟之间。模具保持在闭合位置处的时间长度将取决于很多因素,包括复合材料的性质和模具的温度。
在某些实施例中,阳模被驱动通过层状结构,同时阴模保持静止。在其他实施例中,阴模不保持静止,而是以慢于阳模的速率移动(使得阳模仍主要作为形成用表面)。在仍其他实施例中,两个模具以大致相同的速度移动以闭合在这些模具之间的间隙。模具以足以使复合材料变形/模制的速率和最终压力驱动。例如,可以以在约0.4mm/s与约500mm/s之间、例如在约0.7mm/s与约400mm/s之间、例如在约10mm/s与约350mm/s之间或在约50mm/s与300mm/s之间的速率驱动模具。此外,可以以在约100psi与约1000psi之间,例如在约250psi与约750psi之间的最终压力下驱动模具。在一些实施例中,在已经选择来控制最终模制产品的厚度同时避免褶皱的形成和结构纤维的变形的速率和最终压力下驱动模具。此外,在已经选择允许最终模制零件快速形成的速率和最终压力下驱动模具。
然后将层状结构冷却至低于粘合剂或基质材料的软化温度。这可以在层状结构保留在压制工具上时或在从压制工具中去除层状结构之后发生。此时,粘合剂或基质材料返回至固相并且复合材料保持其新成型的几何形状。如果复合材料是预成型件,则此预成型件将保持其所希望的形状用于随后的树脂灌注。
本发明的方法可以降低用于实现结构零件的最终几何形状的固化后加工的要求。此固化后加工不仅耗时,而且还非常有风险因为固化的结构零件不能再成型。因此,在固化后加工期间引起的损害可能导致零件报废。因此,在一些实施例中,本发明的方法包括在将其置于上隔膜与下隔膜之间之前的加工复合材料的步骤。这允许复合材料的自动化、有效和容易加工,而不是编程、定位和切割固化的三维复合材料的复杂过程。
以上描述的双隔膜装置不仅有助于复合材料的模制,例如通过在其X和Y轴上的足够张力下将复合材料保持在固定位置中,而且还提供了显著附加的功能的优点。例如,该装置保护复合材料坯料免受环境污染物,例如空气中或工具机械上的杂质。此保护使能够(否则难处理)使用常规压制工具,该压制工具比真空成型或可重构工具技术能够具有显著地更复杂的三维几何结构。此外,双隔膜装置的使用允许脱模过程从整个过程中消除。此外,如果需要,它提供了可以暂时或永久地保持隔膜层的最终模制产品。例如,对于释放涂层可能需要暂时层,而例如对于电晕处理或将隔膜材料粘合到模制零件上可能需要永久涂层。隔膜功能将取决于所用的隔膜材料,如在以下详细讨论的。因此,本文所描述的双隔膜机械热成型过程提供了用于以自动化方式生产复杂的三维复合结构的有效并且高效的手段。三维复合结构可以快速、重复和大规模生产。例如,三维复合结构可以由基本上平面的复合材料胚料以1-10分钟循环形成。此类快速、可重复的方法适用于制造自动化零件和镶板,如发动机罩、行李箱、门板、挡泥板和轮舱。
示例
以下实例仅出于说明目的并且不应该被解释为限制所附权利要求书的范围。
实例1:双隔膜机械热成型,框架的
在保持底部框架的床上将由塑料膜制成的下柔性隔膜(苏威公司,以前为氰特工业公司(Solvay,formerly Cytec Industries),EMX045)抽真空。由碳纤维增强环氧树脂制成的复合材料胚料(苏威公司,以前为氰特工业公司,MTM710-1)置于该下柔性隔膜的顶部,接着是具有真空入口的中心框架。然后放置由与下柔性隔膜相同的膜制成的上柔性隔膜,使得其覆盖中心框架和复合材料胚料。将顶部、中心和底部框架夹在一起,从而产生真空紧密封和由下柔性隔膜、上柔性隔膜和中心框架限定的密封腔体。然后施加真空以从上柔性隔膜与下柔性隔膜之间去除空气,直至真空压力达到670毫巴。此时,复合材料胚料由两个隔膜牢固地支撑,产生固定的层状结构。
然后将层状结构穿梭进接触加热装置中,在那里它被加热至120℃。一旦层状结构温度达到120℃,将其穿梭进包含以结构汽车门组件的形状构造的匹配的阳模和阴模的压制工具中。然后将阳模以大约200mm/s的速率向阴模驱动。阴模保持固定,并且两个模保持在140℃下直至交联开始。在还热的时候将成型结构从压制工具中移出并且允许在移出之后冷却。
用于使复合材料胚料成型的方法从开始到结束是10分钟(即,下柔性隔膜的第一放置至最终成型的确立)。
实例2:复合材料的无框架隔离
将由碳纤维增强环氧树脂(苏威公司,以前为氰特工业公司,SolvaliteTM 710-1)制成的平坦的复合材料胚料布置在两个80微米塑料膜的片(苏威公司,以前为氰特工业公司,EMX045)中。从塑料膜的片之间去除空气之后,将这些片在约140℃下密封在一起,具有总共大约8秒的加热和冷却持续时间。一旦冷却低于80℃,发现由两个围绕复合材料胚料布置的片形成的层状结构具有足够的强度和足够的焊接特征。将密封的平坦胚料储存在21℃下4天和在-18℃下6个月,在每种情况下没有观察到污染物的侵入。
使用由碳纤维增强酯(苏威公司,以前为氰特工业公司,SolvaliteTM 730)制成的平坦复合材料胚料进行相同的过程。将密封的平坦胚料以堆叠在21℃下储存18个月,而没有观察到污染物的侵入。
预期实例3:使用无框架胚料的双隔膜机械热成型
在储存之后,将根据实例2制备的包括SolvaliteTM 710-1的密封的平坦胚料置于结构框架中,使得该框架围绕复合材料胚料的周边布置并且该复合材料胚料由膜的片和框架两者牢固地支撑。然后此结构将穿梭进接触加热装置,在那里将它加热至120℃。一旦层状结构温度达到120℃,将它穿梭进包含以所希望的三维形状构造的匹配的阳模和阴模的压制工具中。然后将阳模以大约200mm/s的速率向阴模驱动。阴模将保持固定,并且将两个模保持在140℃下直至交联开始。将成型结构在还热的时候从压制工具中移出并且使其在移出之后冷却。
预期,用于使复合材料胚料成型的方法从开始到结束将显著地低于10分钟(即将密封的平坦胚料到框架中的放置至最后成型的确立)。

Claims (14)

1.一种用于使复合材料成型的方法,该方法包括:
(a) 用不透气的、柔性的、无框架的隔膜结构围绕基本上平面的复合材料;
(b) 通过从该复合材料与该隔膜结构之间去除空气并且将该隔膜结构的全部开放边缘密封,在该隔膜结构中产生仅容纳该复合材料的密封腔体,由此形成层状结构,使得:
在不使用框架的情况下阻止了空气和污染物进入该密封腔体,并且
将该复合材料在该密封腔体内保持固定直到将热、力、或其组合施加到其上;
(c) 任选地将该隔膜结构布置在结构框架内;并且
(d) 使该复合材料在该隔膜结构的密封腔体内成型,
其中,该隔膜结构包括包含一个或多个层的膜,所述层各自独立地选自塑料层或弹性层,该膜是可重复使用的。
2.如权利要求1所述的方法,其中,产生密封腔体包括将围绕该复合材料布置的隔膜袋或折叠隔膜片的开放边缘密封。
3.如权利要求1所述的方法,其中,产生密封腔体包括将两个围绕该复合材料的整个周边的隔膜片密封。
4.如权利要求1所述的方法,其中,将该隔膜结构的全部开放边缘密封包括机械密封、施加粘合剂、热密封、焊接、或其任何组合。
5.如权利要求1所述的方法,其中,去除空气包括在该复合材料与该柔性隔膜结构之间施加真空压力。
6.如权利要求1所述的方法,其中,将该隔膜结构密封提供了足以在环境条件下阻止污染物吸入持续从1个月至6个月的时间段的密封强度。
7. 如权利要求1所述的方法,其中,将该隔膜结构密封提供了足以在步骤 (c) 中的成型期间阻止污染物吸入的密封强度。
8.如权利要求1所述的方法,其中,将该隔膜结构密封提供了足以在该复合材料的运输和处理期间阻止污染物吸入的密封强度。
9.如权利要求1所述的方法,其中,将该隔膜结构密封提供了足以在该复合材料的储存期间阻止污染物吸入的密封强度,其中储存进行最高达6个月。
10.如权利要求1所述的方法,其中,在环境条件下该密封腔体保持真空完整性持续至少1个月的时间段。
11. 如权利要求1所述的方法,该方法进一步包括:根据步骤 (a) 之前的图案加工该复合材料。
12.如权利要求1所述的方法,其中,该层状结构通过自动化手段操作。
13.如权利要求1-12中任一项所述的方法,其中,该复合材料包括选自以下项的材料的结构纤维:芳族聚酰胺、高模量聚乙烯(PE)、聚酯、聚对亚苯基-苯并二噁唑(PBO)、碳、玻璃、石英、氧化铝、氧化锆、碳化硅、玄武岩、天然纤维及其组合。
14.如权利要求1-12中任一项所述的方法,其中,该复合材料包含选自热塑性聚合物、热固性树脂、及其组合的粘合剂或基质材料。
CN201880020714.5A 2017-02-08 2018-02-08 复合材料的双隔膜成型、用于此种成型的组件、及所得复合材料 Active CN110461582B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1702071.0A GB201702071D0 (en) 2017-02-08 2017-02-08 Double diaphragm mecanical thermoforming of composite materials and the resulting composite materials
GB1702071.0 2017-02-08
GBGB1716869.1A GB201716869D0 (en) 2017-10-13 2017-10-13 Double diaphragm shaping of composite materials assemblies for such shaping and resulting composite materials
GB1716869.1 2017-10-13
PCT/EP2018/053132 WO2018146178A1 (en) 2017-02-08 2018-02-08 Double diaphragm shaping of composite materials, assemblies for such shaping, and resulting composite materials

Publications (2)

Publication Number Publication Date
CN110461582A CN110461582A (zh) 2019-11-15
CN110461582B true CN110461582B (zh) 2022-08-12

Family

ID=61188819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880020714.5A Active CN110461582B (zh) 2017-02-08 2018-02-08 复合材料的双隔膜成型、用于此种成型的组件、及所得复合材料

Country Status (11)

Country Link
US (4) US11034099B2 (zh)
EP (2) EP3580049A1 (zh)
JP (1) JP7064084B2 (zh)
KR (1) KR20190132364A (zh)
CN (1) CN110461582B (zh)
AU (1) AU2018217915A1 (zh)
BR (1) BR112019016377A2 (zh)
CA (1) CA3052723A1 (zh)
MX (1) MX2019009414A (zh)
RU (1) RU2019128105A (zh)
WO (1) WO2018146178A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201805320D0 (en) * 2018-03-29 2018-05-16 Mclaren Automotive Ltd Diaphragm forming
US11945176B2 (en) 2018-12-31 2024-04-02 Cytec Industries, Inc. Mechanical shaping of composite materials
GB2586219B (en) * 2019-08-02 2022-01-05 Mclaren Automotive Ltd Preform heating
GB201913332D0 (en) * 2019-09-16 2019-10-30 Blade Dynamics Ltd A container comprising fibre material for a fibre-reinforced composite component
WO2021102099A1 (en) 2019-11-21 2021-05-27 Cytec Industries Inc. Devices and methods for making uncured, near-net shape plies
EP3862158A1 (en) 2020-02-05 2021-08-11 Cytec Industries Inc. Devices and methods for making uncured, near-net shape plies
JP2023510605A (ja) * 2020-01-15 2023-03-14 サイテック インダストリーズ インコーポレイテッド 複合材料の自動化された機械的成形
CN111572068B (zh) * 2020-05-29 2021-10-22 常州市新创智能科技有限公司 一种具有双隔膜固定结构的隔膜加热装置
DE102020134704A1 (de) 2020-12-22 2022-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Spannrahmen zur abgedichteten Fixierung einer Folie an einem Produktionselement
CN114251336A (zh) * 2021-11-05 2022-03-29 湖北塞思博科技有限公司 悬臂梁结构磁电天线的制备方法、检测方法及磁电天线
EP4183543A1 (en) * 2021-11-22 2023-05-24 Siemens Gamesa Renewable Energy A/S Method for manufacturing a preform element made of preform building material for a wind turbine blade

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB848608A (en) * 1957-09-25 1960-09-21 Du Pont Method of making laminated structures
US3492392A (en) * 1967-04-21 1970-01-27 Fuji Jyu Kogyo Kk Method of molding reinforced plastics
BE739074A (zh) * 1968-09-28 1970-03-02
AU6387780A (en) * 1979-11-20 1981-05-28 Albert Fradin Moulding slow setting material
WO1984002490A1 (en) * 1982-12-23 1984-07-05 Rovac Ab Arrangement comprising plastic components enclosed in a cover and method of producing the arrangement
US4657717A (en) * 1984-03-16 1987-04-14 Alcan International Limited Forming fibre-plastics composites
FR2711682A1 (fr) * 1993-10-22 1995-05-05 Rossignol Sa Procédé de mise en Óoeuvre d'une nappe textile imprégnée de résine destinée à former un élément de renforcement d'un article.
CN102202849A (zh) * 2008-10-10 2011-09-28 爱尔兰复合材料有限公司 模制聚合物复合材料的加热塑模
CN103358432A (zh) * 2012-03-27 2013-10-23 Mbb制造技术有限责任公司 用于制造基本上壳状的纤维增强塑料部件的成形工具
CN104812556A (zh) * 2012-12-20 2015-07-29 塞特工业公司 用于形成成形的预成型物的方法
CN105365226A (zh) * 2015-12-16 2016-03-02 青岛林达科技开发有限公司 软模闭模纤维增强复合材料制品加工装置及加工方法
CN106142587A (zh) * 2016-07-27 2016-11-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种复合材料双袋热隔膜预成型方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689809B1 (fr) 1992-04-09 1995-08-11 Aerospatiale Procede et outillage de formage d'un profile epais et/ou non developpable en materiau composite.
JP2671781B2 (ja) * 1993-11-11 1997-10-29 ヤマハ株式会社 Frtp予備成形体の製造方法
US5578158A (en) 1994-03-01 1996-11-26 Massachusetts Institute Of Technology Method and system for forming a composite product from a thermoformable material
US5648109A (en) 1995-05-03 1997-07-15 Massachusetts Institute Of Technology Apparatus for diaphragm forming
RU13477U1 (ru) 1999-09-13 2000-04-20 Постнов Вячеслав Иванович Установка для пропитки длинномерного волокнистого наполнителя
US6484776B1 (en) 2000-04-07 2002-11-26 Northrop Grumman Corporation System for constructing a laminate
CA2731283C (en) 2008-07-31 2016-08-23 Toray Industries, Inc. Prepreg, preform, molded product, and method for manufacturing prepreg
EP2676780B1 (de) * 2012-06-18 2017-08-02 Technische Universität Dresden Verfahren zur Herstellung eines schichtförmigen Halbzeuges
CN104441697A (zh) 2014-11-17 2015-03-25 上海飞机制造有限公司 一种复合材料c型制件的预成型方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB848608A (en) * 1957-09-25 1960-09-21 Du Pont Method of making laminated structures
US3492392A (en) * 1967-04-21 1970-01-27 Fuji Jyu Kogyo Kk Method of molding reinforced plastics
BE739074A (zh) * 1968-09-28 1970-03-02
AU6387780A (en) * 1979-11-20 1981-05-28 Albert Fradin Moulding slow setting material
WO1984002490A1 (en) * 1982-12-23 1984-07-05 Rovac Ab Arrangement comprising plastic components enclosed in a cover and method of producing the arrangement
WO1984002491A1 (en) * 1982-12-23 1984-07-05 Rovac Ab Arrangement comprising plastic ingredients and reinforcement
US4657717A (en) * 1984-03-16 1987-04-14 Alcan International Limited Forming fibre-plastics composites
FR2711682A1 (fr) * 1993-10-22 1995-05-05 Rossignol Sa Procédé de mise en Óoeuvre d'une nappe textile imprégnée de résine destinée à former un élément de renforcement d'un article.
CN102202849A (zh) * 2008-10-10 2011-09-28 爱尔兰复合材料有限公司 模制聚合物复合材料的加热塑模
CN103358432A (zh) * 2012-03-27 2013-10-23 Mbb制造技术有限责任公司 用于制造基本上壳状的纤维增强塑料部件的成形工具
CN104812556A (zh) * 2012-12-20 2015-07-29 塞特工业公司 用于形成成形的预成型物的方法
CN105365226A (zh) * 2015-12-16 2016-03-02 青岛林达科技开发有限公司 软模闭模纤维增强复合材料制品加工装置及加工方法
CN106142587A (zh) * 2016-07-27 2016-11-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种复合材料双袋热隔膜预成型方法

Also Published As

Publication number Publication date
EP4249221A2 (en) 2023-09-27
US20200009805A1 (en) 2020-01-09
KR20190132364A (ko) 2019-11-27
CA3052723A1 (en) 2018-08-16
RU2019128105A (ru) 2021-03-10
JP2020514123A (ja) 2020-05-21
US11518118B2 (en) 2022-12-06
WO2018146178A1 (en) 2018-08-16
EP4249221A3 (en) 2023-12-27
US11034099B2 (en) 2021-06-15
MX2019009414A (es) 2020-01-15
EP3580049A1 (en) 2019-12-18
US20210299975A1 (en) 2021-09-30
US20210308960A1 (en) 2021-10-07
RU2019128105A3 (zh) 2021-11-02
US11518117B2 (en) 2022-12-06
BR112019016377A2 (pt) 2020-04-07
JP7064084B2 (ja) 2022-05-10
AU2018217915A1 (en) 2019-08-29
US11534988B2 (en) 2022-12-27
CN110461582A (zh) 2019-11-15
US20210299976A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN110461582B (zh) 复合材料的双隔膜成型、用于此种成型的组件、及所得复合材料
KR102085014B1 (ko) 형태성형된 프리폼을 형성하기 위한 방법
US11945176B2 (en) Mechanical shaping of composite materials
US20230059269A1 (en) Automated mechanical shaping of composite materials
CN117561162A (zh) 聚甲基戊烯膜在复合材料成形方法中作为离型膜的用途
CN117561161A (zh) 氟聚合物膜在使复合材料成形的方法中作为离型膜的用途
JP2024517677A (ja) 複合材料の成形方法における剥離フィルムとしてのフルオロポリマーの使用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220211

Address after: Croydshire, UK

Applicant after: Sete Engineering Materials Co.,Ltd.

Address before: Derbyshire County

Applicant before: Cytec Industrial Materials (Derby) Ltd.

GR01 Patent grant
GR01 Patent grant