CN110459610A - 一种GaN基斜型栅极HEMT器件及其制备方法 - Google Patents

一种GaN基斜型栅极HEMT器件及其制备方法 Download PDF

Info

Publication number
CN110459610A
CN110459610A CN201810430601.4A CN201810430601A CN110459610A CN 110459610 A CN110459610 A CN 110459610A CN 201810430601 A CN201810430601 A CN 201810430601A CN 110459610 A CN110459610 A CN 110459610A
Authority
CN
China
Prior art keywords
layer
grid
barrier layer
oblique type
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810430601.4A
Other languages
English (en)
Inventor
王成新
马旺
肖成峰
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Inspur Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inspur Huaguang Optoelectronics Co Ltd filed Critical Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority to CN201810430601.4A priority Critical patent/CN110459610A/zh
Publication of CN110459610A publication Critical patent/CN110459610A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种GaN基斜型栅极HEMT器件及其制备方法,包括衬底层、沟道层、势垒层、源极、栅极和漏极,衬底层的表面设有所述沟道层,沟道层的表面设有势垒层,势垒层的表面两侧分别设有源极、漏极,在势垒层的表面上,源极、漏极之间设有栅极,栅极的两侧呈斜坡状;其制备方法包括:(1)在衬底层上进行GaN沉积,形成沟道层;(2)在沟道层上生长AlGaN,形成势垒层;(3)在势垒层上,采用栅极透射率渐变技术制作栅极;(4)在势垒层上,在栅极的两侧分别形成源极和漏极。本发明斜型栅极HEMT的制作简单,通过改变栅极版图的透射率渐变方式,得到不同形状的斜栅极结构,提升器件的击穿电压。

Description

一种GaN基斜型栅极HEMT器件及其制备方法
技术领域
本发明涉及一种GaN基斜型栅极HEMT器件及其制备方法,属于半导体技术领域。
背景技术
作为一种新型的半导体材料,氮化镓材料得到了越来越多的关注。氮化镓是第三代半导体材料的代表,其电学和光学性质优异,有较宽带隙、直接带隙的优点,耐高温高压,适合各种恶劣条件的应用环境。目前,氮化镓材料主要应用于发光二极管(LED)、半导体激光器(LD)和高电子迁移率晶体管(HEMT)的制造。通过变化材料组分,氮化镓基LED、LD可实现从紫外到红光的波长变化,覆盖了整个可见光波段。尤其是氮化镓蓝色LED+荧光粉的应用,带动了半导体照明领域的快速发展。
由于GaN材料的高电子饱和速度、沟道中的高浓度二维电子气(2DEG)以及较高的临界击穿电场,使得GaN基HEMT器件在高频RF领域比如通讯基站和大电流、低功耗、高压开关器件应用领域具有巨大的应用前景。
功率开关器件的关键是实现高击穿电压、低导通电阻和高可靠性。器件的击穿是由于栅肖特基结的泄漏电流和通过缓冲层的泄漏电流引起的。要提高器件耐压,纵向上需要增加缓冲层的厚度和质量,这主要由工艺技术水平决定;横向上需要漂移区长度增加,这不仅使器件或电路的芯片面积增加、成本增大,更为严重的是,器件的导通电阻增大,进而导致功耗急剧增加,且器件开关速度也随之降低。
现有技术中为了提高氮化镓器件的击穿电压,普遍采用场板技术,在栅极上加一个或者几个金属场板,来调节器件漂移区的电场分布,降低栅极边缘的电场强度,提高器件的击穿电压。
Suemitsu等提出了一种方法来制作斜斜结构的场板提高GaN HEMT击穿电压。用薄势垒层技术(Tetsuya Suemitsu,Kengo Kobayashi,Shinya Hatakeyama,A new processapproach for斜field plates in GaN-based high-electron-mobility transistors,Japanese Journal of Applied Physics 55,01AD02(2016))。通过在PECVD过程中控制H2/NH3混合气的比例来得到多层SiCN并控制栅的斜坡形状制作斜场板结构。使用10层SiCN可以得到的理想的斜场板。230nm栅长的ALGaN/GaN HEMT使用斜场板以后,击穿电压提高了68%,Ft-BVoff提高了4倍。但这种斜型栅极准备技术比较复杂,影响器件的均匀性和一致性。
发明内容
针对现有技术的不足,本发明提供了一种GaN基斜型栅极HEMT器件;
本发明还提供了上述GaN基斜型栅极HEMT器件的制备方法;
术语解释:
1、HEMT,High Electron Mobility Transistor,高电子迁移率晶体管;
2、化学气相沉积技术CVD,利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜的方法。
3、原子层淀积ALD,是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。但在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只沉积一层原子。
4、分子束外延MBE,是新发展起来的外延制膜方法,也是一种特殊的真空镀膜工艺。外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适的条件下,沿衬底材料晶轴方向逐层生长薄膜的方法。该技术的优点是:使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子显微结构材料。
本发明的技术方案为:
一种GaN基斜型栅极HEMT器件,包括衬底层、沟道层、势垒层、源极、栅极和漏极,所述衬底层的表面设有所述沟道层,所述沟道层的表面设有所述势垒层,所述势垒层的表面两侧分别设有所述源极、所述漏极,在所述势垒层的表面上,所述源极、所述漏极之间设有所述栅极,所述栅极的两侧呈斜坡状。
斜型栅极可以有效降低栅极侧跌尖峰电场,提升器件的击穿电场强度。
根据本发明优选的,所述衬底层的材质为硅、蓝宝石、碳化硅、氮化稼或稀土氧化物;所述沟道层的材质为GaN;所述势垒层的材质为AlGaN;所述栅极的材质为Ni、Au、Ni、Pt或Au等金属。
根据本发明优选的,所述衬底层的厚度为100-1000μm;
所述沟道层的厚度为0.1-5μm;
所述势垒层的厚度为0.2-8μm;
所述栅极的厚度为0.01-5um。
上述GaN基斜型栅极HEMT器件的制备方法,包括步骤如下:
(1)在温度为50-1500℃、压力为80-300mbar的条件下,在衬底层上进行GaN沉积,形成沟道层;
(2)在温度为80-1200℃的条件下,在沟道层上生长AlGaN,形成势垒层;
(3)采用PECVD、ALD等在AlGaN势垒层上生长厚度为1-300nm的Si3N4、SiO2等钝化层;
(4)在钝化层上,采用栅极透射率渐变技术制作栅极;
(5)在势垒层上,在栅极的两侧分别形成源极和漏极。
根据本发明优选的,所述步骤(4),采用栅极透射率渐变技术制作栅极,包括步骤如下:
A、在钝化层表面涂敷正光刻胶;
B、采用透射率渐变栅极光刻版曝光;正光刻胶因为栅极透射率渐变,导致栅极部分曝光量有差异;
C、采用显影液制作栅极图形,光刻胶因为曝光量不同,腐蚀速率不一致,形成倒梯形结构;
D、采用ICP等离子束刻蚀方法,刻蚀钝化层,至AlGaN势垒层,在钝化层形成倒梯形结构;
E、采用电子束蒸发台,烝镀Ni、Au、Ni、Pt或Au等金属;
F、采用去胶液去除光刻胶并剥离金属层,形成斜型栅极结构。
本发明采用栅极透射率渐变技术制作斜型栅极,可以显著降低斜型栅极HEMT的制作复杂性,通过改变栅极版图的透射率渐变方式,得到不同形状的斜型栅极结构,提升器件的击穿电压。
根据本发明优选的,采用现有的化学气相沉积MOCVD方法或分子束外延MBE方法,在衬底层上进行GaN沉积,形成沟道层;以及在沟道层上生长AlGaN,形成势垒层。
本发明的有益效果为:
1、本发明采用栅极透射率渐变技术制作斜型栅极,可以显著降低斜型栅极HEMT的制作复杂性。
2、通过改变栅极版图的透射率渐变方式,得到不同形状的斜栅极结构,提升器件的击穿电压。
附图说明
图1为本发明GaN基斜型栅极HEMT器件的结构示意图;
图2为本发明栅极透射率渐变技术的示意图;
图3为本发明钝化层上涂敷正光刻胶的示意图;
图4为本发明采用栅极透射率渐变技术光刻胶显影后的剖面图;
1、衬底层,2、沟道层,3、势垒层,4、源极,5、栅极;6、漏极,7、钝化层,8、正光刻胶,9、栅极光刻版。
具体实施方式
下面结合说明书附图和实施例对本发明作进一步限定,但不限于此。
实施例1
一种GaN基斜型栅极HEMT器件,如图1所示,包括衬底层1、沟道层2、势垒层3、源极4、栅极5和漏极6,衬底层1的表面设有沟道层2,沟道层2的表面设有势垒层3,势垒层3的表面两侧分别设有源极4、漏极6,在势垒层3的表面上,源极4、漏极6之间设有栅极5,栅极5的两侧呈斜坡状。
斜型栅极可以有效降低栅极侧跌尖峰电场,提升器件的击穿电场强度。
衬底层1的材质为硅、蓝宝石、碳化硅、氮化稼或稀土氧化物等适合生长Ⅲ-V族化合物的材料;沟道层2的材质为GaN;势垒层3的材质为AlGaN;栅极5的材质为Ni、Au、Ni、Pt或Au等金属。
衬底层1的厚度为100μm;沟道层2的厚度为0.1μm;势垒层3的厚度为0.2μm;栅极5的厚度为0.015um。
实施例2
根据实施例1所述的GaN基斜型栅极HEMT器件,其区别在于,衬底层1的厚度为1000μm;沟道层2的厚度为5μm;势垒层3的厚度为8μm;栅极5的厚度为5um。
实施例3
实施例1或2所述的GaN基斜型栅极HEMT器件的制备方法,包括步骤如下:
上述GaN基斜型栅极HEMT器件的制备方法,包括步骤如下:
(1)在温度为50-1500℃、压力为80-300mbar的条件下,在衬底层上进行GaN沉积,形成沟道层;
(2)在温度为80-1200℃的条件下,在沟道层上生长AlGaN,形成势垒层;
(3)采用PECVD、ALD等在AlGaN势垒层上生长厚度为1-300nm的Si3N4、SiO2等钝化层;
(4)在钝化层上,采用栅极透射率渐变技术制作栅极;包括步骤如下:
A、在钝化层表面涂敷正光刻胶;如图3所示;
B、采用透射率渐变栅极光刻版曝光;正光刻胶因为栅极透射率渐变,导致栅极部分曝光量有差异;栅极透射率渐变技术如图2所示,中间部分全透明,两侧透射率逐渐降低;
C、采用显影液制作栅极图形,光刻胶因为曝光量不同,腐蚀速率不一致,形成倒梯形结构;
D、采用ICP等离子束刻蚀方法,刻蚀钝化层,至AlGaN势垒层,在钝化层形成倒梯形结构;如图4所示。
E、采用电子束蒸发台,烝镀Ni、Au、Ni、Pt或Au等金属;
F、采用去胶液去除光刻胶并剥离金属层,形成斜型栅极结构。
本发明采用栅极透射率渐变技术制作斜型栅极,可以显著降低斜型栅极HEMT的制作复杂性,通过改变栅极版图的透射率渐变方式,得到不同形状的斜型栅极结构,提升器件的击穿电压。
(5)在势垒层上,在栅极的两侧分别形成源极和漏极。
采用现有的化学气相沉积CVD方法、氢化物气相外延HVPE方法、原子层淀积ALD方法或分子束外延MBE方法,在衬底层上进行GaN沉积,形成沟道层;以及在沟道层上生长AlGaN,形成势垒层。

Claims (6)

1.一种GaN基斜型栅极HEMT器件,其特征在于,包括衬底层、沟道层、势垒层、源极、栅极和漏极,所述衬底层的表面设有所述沟道层,所述沟道层的表面设有所述势垒层,所述势垒层的表面两侧分别设有所述源极、所述漏极,在所述势垒层的表面上,所述源极、所述漏极之间设有所述栅极,所述栅极的两侧呈斜坡状。
2.根据权利要求1所述的一种GaN基斜型栅极HEMT器件,其特征在于,所述衬底层的材质为硅、蓝宝石、碳化硅、氮化稼或稀土氧化物;所述沟道层的材质为GaN;所述势垒层的材质为AlGaN;所述栅极的材质为Ni、Au、Ni、Pt或Au。
3.根据权利要求1所述的一种GaN基斜型栅极HEMT器件,其特征在于,所述衬底层的厚度为100-1000μm;所述沟道层的厚度为0.1-5μm;所述势垒层的厚度为0.2-8μm;所述栅极的厚度为0.01-5um。
4.一种权利要求1-3任一所述GaN基斜型栅极HEMT器件的制备方法,其特征在于,包括步骤如下:
(1)在温度为50-1500℃、压力为80-300mbar的条件下,在衬底层上进行GaN沉积,形成沟道层;
(2)在温度为80-1200℃的条件下,在沟道层上生长AlGaN,形成势垒层;
(3)在势垒层上生长厚度为1-300nm的钝化层;
(4)在钝化层上,采用栅极透射率渐变技术制作栅极;
(5)在势垒层上,在栅极的两侧分别形成源极和漏极。
5.根据权利要求4所述的GaN基斜型栅极HEMT器件的制备方法,其特征在于,所述步骤(4),采用栅极透射率渐变技术制作栅极,包括步骤如下:
A、在钝化层表面涂敷正光刻胶;
B、采用透射率渐变栅极光刻版曝光;
C、采用显影液制作栅极图形,形成倒梯形结构;
D、采用ICP等离子束刻蚀方法,刻蚀钝化层,至势垒层,在钝化层形成倒梯形结构;
E、采用电子束蒸发台,烝镀Ni、Au、Ni、Pt或Au;
F、采用去胶液去除光刻胶并剥离金属层,形成斜型栅极结构。
6.根据权利要求4所述的GaN基斜型栅极HEMT器件的制备方法,其特征在于,采用化学气相沉积MOCVD方法或分子束外延MBE方法,在衬底层上进行GaN沉积,形成沟道层;以及在沟道层上生长AlGaN,形成势垒层。
CN201810430601.4A 2018-05-08 2018-05-08 一种GaN基斜型栅极HEMT器件及其制备方法 Pending CN110459610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810430601.4A CN110459610A (zh) 2018-05-08 2018-05-08 一种GaN基斜型栅极HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810430601.4A CN110459610A (zh) 2018-05-08 2018-05-08 一种GaN基斜型栅极HEMT器件及其制备方法

Publications (1)

Publication Number Publication Date
CN110459610A true CN110459610A (zh) 2019-11-15

Family

ID=68472053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810430601.4A Pending CN110459610A (zh) 2018-05-08 2018-05-08 一种GaN基斜型栅极HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110459610A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208020A1 (en) * 2020-04-16 2021-10-21 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device and fabrication method thereof
CN117928769A (zh) * 2024-03-21 2024-04-26 山东大学 一种确定氮化镓器件沟道载流子温度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066865A (en) * 1998-04-14 2000-05-23 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal enhancement mode field-effect transistor apparatus
CN102714219A (zh) * 2009-12-10 2012-10-03 特兰斯夫公司 反侧设计的iii-氮化物器件
CN104094408A (zh) * 2011-12-06 2014-10-08 Hrl实验室有限责任公司 高电流高电压GaN场效应晶体管及其制造方法
US20170373179A1 (en) * 2016-06-24 2017-12-28 Cree, Inc. Depletion mode semiconductor devices including current dependent resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066865A (en) * 1998-04-14 2000-05-23 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal enhancement mode field-effect transistor apparatus
CN102714219A (zh) * 2009-12-10 2012-10-03 特兰斯夫公司 反侧设计的iii-氮化物器件
CN104094408A (zh) * 2011-12-06 2014-10-08 Hrl实验室有限责任公司 高电流高电压GaN场效应晶体管及其制造方法
US20170373179A1 (en) * 2016-06-24 2017-12-28 Cree, Inc. Depletion mode semiconductor devices including current dependent resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208020A1 (en) * 2020-04-16 2021-10-21 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device and fabrication method thereof
CN117928769A (zh) * 2024-03-21 2024-04-26 山东大学 一种确定氮化镓器件沟道载流子温度的方法
CN117928769B (zh) * 2024-03-21 2024-05-31 山东大学 一种确定氮化镓器件沟道载流子温度的方法

Similar Documents

Publication Publication Date Title
US20220209000A1 (en) High-threshold-voltage normally-off high-electron-mobility transistor and preparation method therefor
Pu et al. Review of recent progress on vertical GaN-based PN diodes
US10319829B2 (en) Method and system for in-situ etch and regrowth in gallium nitride based devices
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
KR101008272B1 (ko) 노멀 오프 특성을 갖는 질화물계 고전자 이동도 트랜지스터및 그 제조방법
JP5731687B2 (ja) 窒化物半導体素子及びその製造方法
US10629720B2 (en) Layered vertical field effect transistor and methods of fabrication
US8796097B2 (en) Selectively area regrown III-nitride high electron mobility transistor
US8637902B2 (en) Semiconductor device and method of manufacturing the same
CN110459610A (zh) 一种GaN基斜型栅极HEMT器件及其制备方法
CN106449773B (zh) GaN基肖特基二极管结构及其制作方法
CN115084260A (zh) 基于范德华外延的氮化镓高电子迁移率晶体管器件及其制备方法
CN113555429A (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
US8592869B2 (en) Nitride-based heterojunction semiconductor device and method for the same
CN210897292U (zh) 氮化镓外延层及半导体器件
US10879063B2 (en) Method for fabricating high-quality and high-uniformity III-nitride epi structure
KR20120060303A (ko) 질화물 반도체 소자의 제조 방법 및 이에 의해 제조된 질화물 반도체 소자
CN109243978B (zh) 氮面极性氮化镓外延结构制造方法
Greco AlGaN/GaN heterostructures for enhancement mode transistors
KR101952175B1 (ko) 질화물 반도체 소자 및 이의 제조 방법
JP5837465B2 (ja) 窒化物半導体電界効果トランジスタの評価方法
RU2646536C1 (ru) Гетероструктурный полевой транзистор на основе нитрида галлия с улучшенной температурной стабильностью вольт-амперной характеристики
JP2017092081A (ja) 半導体装置及び半導体装置の製造方法
JP6087414B2 (ja) トランジスタ用窒化物半導体エピタキシャルウエハの製造方法
廖亚强 Nanorod-Based Vertical GaN-on-GaN Schottky Barrier Diodes Fabricated by Top-Down Approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191115

WD01 Invention patent application deemed withdrawn after publication