CN110430918B - 模块化植入物输送和定位系统 - Google Patents

模块化植入物输送和定位系统 Download PDF

Info

Publication number
CN110430918B
CN110430918B CN201880011446.0A CN201880011446A CN110430918B CN 110430918 B CN110430918 B CN 110430918B CN 201880011446 A CN201880011446 A CN 201880011446A CN 110430918 B CN110430918 B CN 110430918B
Authority
CN
China
Prior art keywords
implant
positioning unit
external positioning
elongate member
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880011446.0A
Other languages
English (en)
Other versions
CN110430918A (zh
Inventor
克里斯托弗·考夫曼
亚当·哈恩
艾伦·亨斯利
马兰·汉森
埃里克·蒂姆科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iotamotion Inc
Original Assignee
Iotamotion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iotamotion Inc filed Critical Iotamotion Inc
Priority to CN202310560680.1A priority Critical patent/CN116712667A/zh
Publication of CN110430918A publication Critical patent/CN110430918A/zh
Application granted granted Critical
Publication of CN110430918B publication Critical patent/CN110430918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • A61N1/36039Cochlear stimulation fitting procedures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Robotics (AREA)
  • Prostheses (AREA)

Abstract

该文件讨论了用于将植入物机器人辅助地植入患者体内的系统和方法等。一种系统包括:外部定位单元,其被配置成接合植入物的细长构件;以及控制台,其通信上耦接至外部定位单元。控制台可以具有用户接口,该用户接口使得用户能够输入运动控制指令。控制台可以根据特定的运动控制指令生成用于控制外部定位单元以将植入物推进至目标植入部位的运动控制信号。该系统可以被用于在听力保留耳蜗植入物手术期间机器人式控制耳蜗植入物的输送和定位。

Description

模块化植入物输送和定位系统
技术领域
本专利申请要求2017年2月14日提交的美国临时专利申请第62/458,846号和2017年10月17日提交的美国临时专利申请第62/573,487号的优先权的益处,其全部内容通过引用并入本文。
本文件一般地涉及医疗系统,并且更特别地,涉及用于机器人式控制植入物的输送和定位的的系统、装置和方法。
背景技术
耳蜗是内耳的听觉部分。其包括螺旋的、中空的、圆锥形的骨腔,在骨腔中声波从基底传播至耳蜗的顶点。声波振动外淋巴,外淋巴移动科蒂氏(Corti)器官中的毛细胞,从而将振动转换为电信号,电信号被发送至耳蜗神经。螺旋耳蜗的基底或外部区域中的毛细胞和神经对较高频率的声音更敏感,并且通常是耳蜗丧失敏感性的第一部分。螺旋耳蜗的顶端或内部区域对较低频率的声音更敏感。
中度至重度听力损失影响全世界范围的大量人,并且可能对患者的身心健康、教育、就业和整体生活质量具有显著的影响。听力损失可能由对耳蜗的部分损伤引起。很多具有不同程度的听力损失的患者由于诸如噪声暴露、药物、基因突变或衰老等常见原因而在高频区域(基底耳蜗)具有对耳蜗的部分损伤,但可能保留足够的低频听力。
已经使用耳蜗植入物来治疗患有听力损失的患者。耳蜗植入物是一种医疗装置,该医疗装置包括外部声音处理器、皮下植入式刺激器以及被定尺寸和成形为耳蜗插入的电极组件。声音处理器可以将声音信号转换为电信号,并将电信号发送至植入式刺激器。基于所接收到的电信号的物理特性(例如,频率),刺激器可以生成电脉冲以通过手术插入耳蜗中的电极组件上的电极阵列刺激耳蜗中的特定区域。可以基于所接收到的电信号的频率来确定刺激的区域。例如,较高的频率会产生外部或基底耳蜗区域的刺激,而较低的频率会产生内部或顶端耳蜗区域的刺激。
对于已经失去高频听力并因此对单词理解有显著困难但在顶端耳蜗中具有大量残余、低频听力功能的患者,会需要短电极组件作为治疗以电刺激基底或外耳蜗来恢复高频听力。可以由外科医生执行耳蜗植入物手术以将电极组件手动地插入患者耳蜗的损伤部分(例如,基底耳蜗),同时避免或最小化对未损伤的耳蜗区域的任何创伤以保留低频听力功能。耳蜗植入物可以与在声学上刺激未损伤的低频敏感的顶端耳蜗的助听器一起使用。
耳蜗内创伤可能由在插入耳蜗植入物电极期间生成的大压力尖峰出现。耳蜗植入物手术还可以涉及将导引鞘或管插入耳蜗附近或部分地插入耳蜗。将任何固体或柔性体、管或鞘插入耳蜗可能引起类似的液体和力尖峰。这些压力尖峰可能具有足够的强度以引起类似于听觉冲击伤的创伤,并且是手术后残余听力损失的一个可能的原因。类似于通过电极插入导致的插入创伤,手动地将鞘或其他固体/管手动插入耳蜗可能导致耳蜗内液体压力尖峰并产生耳蜗内损伤。
发明内容
听力保留耳蜗植入物手术涉及将电极组件植入受损的耳蜗区域,同时避免对未受损的耳蜗区域的任何创伤以保留任何正常的残余听力。在当前的耳蜗植入物手术中,外科医生手动地将电极组件插入患者耳蜗。然而,完全手动操纵电极组件可能在一些患者中导致不期望的结果。例如,手动插入电极组件可能会导致植入位置和运动控制例如插入速率、距离或用于使电极组件前进至目标耳蜗区域而施加至植入物的力的控制的精确度不够。这可能对易碎的耳蜗结构造成损伤例如对耳蜗壁和毛细胞的局部创伤,并且导致残余听力损失。
电极组件的完全手动操纵也可能受到外科医生之间的高操作员间变化的影响。高操作员间变化表现在不同技能水平的机构和外科医生之间患者效果的巨大差异。一些接受听力保留耳蜗植入物手术的患者可能在手术后数周至数年经受附加的听力下降。这样的听力功能的持续下降可能归因于对在初始耳蜗植入物手术期间造成的创伤的炎症反应。一些临床研究表明,旨在减少手术期间的电极插入力的技术改善了患者听力保留效果。至少由于这些原因,本发明人已经认识到仍需要改善听力保留耳蜗植入物手术后的患者效果,特别地提高植入物输送和定位中的手术精确度并且降低对未受损的耳蜗区域的围手术期创伤的风险的系统、装置和方法。
该文件讨论了用于将植入物机器人辅助地植入患者体内,例如用于在听力保留耳蜗植入物手术中输送和定位用于治疗听力损失的耳蜗植入物的系统、装置和方法等。所讨论的系统和装置还可以适于机器人式控制导引鞘或管的插入,导引鞘或管可以与电极植入结合使用。本文讨论的模块化系统包括:外部定位单元,其与植入物例如具有细长构件的耳蜗植入物可逆地对接并牢固地接合植入物;以及计算机化控制单元,其用于机器人式控制外部定位单元以调节植入物的运动。计算机化控制单元可以具有用户接口,该用户接口使得用户(例如,外科医生)能够对各种运动控制参数进行编程或选择植入协议。该系统可以包括传感器,传感器提供关于植入物的位置或运动或在植入过程期间施加至植入物的力或摩擦力的反馈。计算机化控制单元可以基于用户输入和传感器反馈来调节植入物的运动。控制系统还可以与提供电生理测量的外部系统对接以能够在植入期间实时实现对电极定位的闭环反馈。
示例1是一种用于将植入物机器人辅助地植入患者体内的系统。该系统包括:外部定位单元,其被配置成接合植入物并且将植入物机器人式输送并定位至目标植入部位;以及控制台,其通信上耦接至外部定位单元。控制台可以包括控制器电路,该控制器电路被配置成根据特定的运动控制指令生成用于控制外部定位单元以将植入物机器人式输送并定位至目标植入部位的运动控制信号。
在示例2中,示例1的主题可选地包括植入物,该植入物可以包括细长构件。外部定位单元可以包括耦接单元,该耦接单元被配置成与植入物的细长构件对接,并且响应于运动控制信号摩擦地移动细长构件。
在示例3中,示例2的主题可选地包括植入物,该植入物可以包括耳蜗植入物,该耳蜗植入物具有布置在细长构件上的电极阵列。
在示例4中,示例2至3中的任何一个或更多个的主题可选地包括耦接单元,该耦接单元可以包括至少两个滚轮,所述至少两个滚轮被布置和配置成:通过至少两个滚轮的相应径向外表面之间的压紧来接合植入物的细长构件的至少一部分;以及旋转以通过由于压紧所生成的摩擦力来推进植入物。
在示例5中,示例4的主题可选地包括马达,该马达经由动力传输单元耦接至至少两个滚轮中的至少一个滚轮以驱动至少两个滚轮的旋转。
在示例6中,示例4的主题可选地包括至少两个滚轮,其中,滚轮中的至少一个滚轮的径向外表面覆盖有摩擦材料。
在示例7中,示例5至6中的任何一个或更多个的主题可选地包括至少两个滚轮,其中,滚轮中的至少一个滚轮的径向外表面具有径向凹入轮廓。
在示例8中,示例5的主题可选地包括马达,该马达可以包括在外部定位单元中,并且外部定位单元还包括电耦接至马达的电源。
在示例9中,示例8的主题可选地包括电源,该电源可以包括可再充电电源。
在示例10中,示例5的主题可选地包括马达,该马达可以包括在控制台中。马达可以经由在控制台与外部定位单元之间延伸的轴耦接至至少两个滚轮中的至少一个滚轮。
在示例11中,示例2至10中的任何一个或更多个的主题可选地包括第一马达和第二马达。外部定位单元可以包括第一耦接单元和第二耦接单元,每个耦接单元与植入物的细长构件的相应部分对接。第一马达经由第一动力传输单元可以耦接至第一耦接单元以驱使细长构件的平移运动。第二马达经由第二动力传输单元可以耦接至第二耦接单元以驱使细长构件的旋转运动。
在示例12中,示例5至11中的任何一个或更多个的主题可选地包括手动驱动轮,该手动驱动轮耦接至至少两个滚轮中的至少一个滚轮。手动驱动轮被配置成能够手动旋转至少两个滚轮中的至少一个滚轮。
在示例13中,示例2至12中的任何一个或更多个的主题可选地包括鞘,该鞘从外部定位单元延伸至目标植入部位的手术入口。鞘可以被配置成至少部分地包围细长构件以在植入期间为电极阵列提供弹性支承。
在示例14中,示例1至13中的任何一个或更多个的主题可选地包括外部定位单元上的用于警告特定的植入物状态的指示器。
在示例15中,示例1至14中的任何一个或更多个的主题可选地包括外部定位单元,该外部定位单元可以包括固定构件,固定构件被配置成将外部定位单元可拆卸地附接至患者。
在示例16中,示例15的主题可选地包括固定构件,固定构件可以包括螺钉、销、钉子、线、钩、缝合线或磁体中的一个或更多个。
在示例17中,示例1至16中的任何一个或更多个的主题可选地包括外部定位单元,该外部定位单元可以包括外部患者接触表面,该外部患者接触表面配备有夹持元件,夹持元件被配置成将外部定位单元摩擦地附接至患者。
在示例18中,示例5至12中的任何一个或更多个的主题可选地包括控制器电路,该控制器电路可以被配置成生成用于控制马达以调节细长构件的一个或更多个运动参数的运动控制信号。运动参数包括以下中的一个或更多个:移动速率;移动方向或取向;移动距离;细长构件的远端的位置;或者施加在细长构件上的力的量。
在示例19中,示例18的主题可选地包括控制器电路,该控制器电路经由有线连接通信上耦接至马达。
在示例20中,示例18的主题可选地包括控制器电路,该控制器电路经由无线通信链接通信上耦接至马达。
在示例21中,示例1至20中的任何一个或更多个的主题可选地包括控制台,该控制台可以包括用户接口模块,该用户接口模块被配置成从用户接收一个或更多个运动参数。运动参数包括以下中的一个或更多个:目标移动速率;目标移动方向或取向;目标移动距离;细长构件的远端的目标位置;或者施加在细长构件上的力的目标量。
在示例22中,示例21的主题可选地包括用户接口模块,该用户接口模块可以被配置成接收关于患者音调拓扑听力损失模式的信息。控制器电路可以被配置成进一步根据所接收到的关于患者音调拓扑听力损失模式的信息控制外部定位单元以输送并定位植入物的细长构件的至少一部分。
在示例23中,示例5至12以及18至20中的任何一个或更多个的主题可选地包括运动控制指令,该运动控制指令可以包括可选择地启用用于植入物的细长构件的机器人辅助运动控制的机器人模式或用于植入物的细长构件的手动运动控制的手动超驰模式。
在示例24中,示例2至13、18至20以及23中的任何一个或更多个的主题可选地包括一个或更多个传感器,所述一个或更多个传感器被配置成感测植入物在植入期间的一个或更多个运动参数。控制台被配置成根据所感测到的一个或更多个运动参数控制外部定位单元以推进植入物的细长构件。
在示例25中,示例24的主题可选地包括一个或更多个传感器,所述一个或更多个传感器可以包括霍尔效应传感器,霍尔效应传感器被配置成感测植入物的细长构件在患者体内的位置或位移。
在示例26中,示例24至25中的任何一个或更多个的主题可选地包括力传感器,力传感器被配置成感测在植入期间施加在植入物的细长构件上的力或摩擦力的指示。
在示例27中,示例24至26中的任何一个或更多个的主题可选地包括外部定位单元中包括的一个或更多个传感器。
在示例28中,示例21至22中的任何一个或更多个的主题可选地包括用户接口模块,该用户接口模块可以包括输出模块,该输出模块被配置成生成植入物的一个或更多个运动参数的人类可感知的呈现。
在示例29中,示例1至28中的任何一个或更多个的主题可选地包括外围控制单元,该外围控制单元通信上耦接至外部定位单元或控制台。外围控制单元可以被配置成控制外部定位单元以推进植入物。外围控制单元包括脚踏板或手持装置中的一个或更多个。
示例30是一种用于机器人辅助地植入耳蜗植入物的非植入式装置,该耳蜗植入物具有布置在细长构件上的电极阵列。该装置包括:外部定位单元,其包括至少两个滚轮,所述至少两个滚轮被布置成在至少两个滚轮子中的每个滚轮的径向外表面的部分之间压紧细长构件的至少一部分以在细长构件上传输平移力或旋转力;其中,至少两个滚轮中的至少一个滚轮耦接至机器人控制的马达,并且由机器人控制的马达来驱动。
在示例31中,示例30的主题可选地包括外部定位单元,该外部定位单元可以包括以下中的一个或更多个:马达;动力传输单元,其与马达和至少两个滚轮中的至少一个滚轮相互作用;或者,通信器电路,其被配置成接收用于控制马达的运动控制信号。
在示例32中,示例30至31中的任何一个或更多个的主题可选地包括外部定位单元,该外部定位单元可以包括一个或更多个传感器,所述一个或更多个传感器被配置成感测耳蜗植入物在植入期间的一个或更多个运动参数。
示例33是一种用于经由外部机器人辅助植入系统将耳蜗植入物的在细长构件上的电极输送并定位至患者的目标植入部位的方法。该方法包括以下的步骤:在外部定位单元与控制台之间建立通信;将耳蜗植入物的细长构件的至少一部分接合至外部定位单元;经由外部定位单元的固定构件将外部定位单元附接至患者;并且经由控制台机器人式控制外部定位单元以将耳蜗植入物输送并定位至目标植入部位。
在示例34中,示例33的主题可选地包括细长构件的接合,该细长构件的接合可以包括通过至少两个滚轮的相应径向外表面之间的压紧来接合耳蜗植入物的细长构件的至少一部分。
在示例35中,示例33至34中的任何一个或更多个的主题可选地包括外部定位单元的机器人式控制,外部定位单元的机器人式控制可以包括控制耦接至外部定位单元的马达,并且调节细长构件的一个或更多个运动参数。运动参数可以包括以下中的一个或更多个:移动速率;移动方向或取向;移动距离;细长构件的远端的位置;或者施加在细长构件上的力的量。
在示例36中,示例33至35中的任何一个或更多个的主题可选地包括感测细长构件在植入期间的一个或更多个运动参数,并且根据所感测到一个或更多个运动参数机器人式控制外部定位单元以推进所述耳蜗植入物。
本文中讨论的系统、装置和方法可以改进机器人手术的技术领域,特别地植入物或假体的机器人辅助植入。例如,当本文讨论的系统或方法被用在听力保留耳蜗植入物手术时,耳蜗植入物和/或导引鞘的机器人式运动控制可以减小施加在易碎的耳蜗结构例如基底膜和科蒂氏(Corti)器官上的机械力,从而使对例如在顶端耳蜗处的未受损结构创伤的风险最小化。这最终可以更好地保留患者残余的自然听力。与耳蜗植入物的手动插入和操作相比,机器人辅助耳蜗植入可以允许更多的患有听力损失的人在其一生中更好地听见。
如本文中所讨论的,机器人辅助植入系统的模块化设计允许容易地更换或替换特定模块。这不仅可以提高系统的可重用性和效率,还可以降低系统维护的成本。例如,外部定位单元可以是位于无菌手术区中或在植入手术期间与患者接触的一次性装置,并且在手术后是可丢弃的。计算机化控制单元可以定位在非无菌区例如控制室中,并且可以与可替换的外部定位单元一起重复使用。
外部定位单元是非植入式外部装置。与部分或全部植入式插入装置相比,本文讨论的外部定位单元可以显著地降低与手术植入、取出或替换其他部分或全部植入式插入装置相关联的并发症的风险。外部定位单元还具有易于故障排除、维护和更换的优点,从而降低了系统和过程的成本。如下面将要讨论的,外部定位单元可以具有有限的机械部件和电气部件的小尺寸,因此使其对于患者的外部固定是灵活的。
本发明内容旨在提供本专利申请的主题的概述。不旨在提供对本公开内容的排他或穷举的解释。包括具体实施方式以提供关于本专利申请的进一步信息。在阅读和理解以下的具体实施方式并查看形成本公开内容的一部分的附图时,本公开内容的其他方面对于本领域技术人员而言将是明显的,每个方面都不应被视为具有限制意义。
附图说明
在附图的图中通过示例的方式示出了各种实施方式。这些实施方式是说明性的,并非旨在是本主题的穷举或排他性实施方式。
图1通过示例而非限制的方式示出了机器人辅助植入系统和机器人辅助植入系统可以在其中操作的环境的部分。
图2通过示例而非限制的方式示出了用于向外部定位单元提供驱动力和运动以推进和定位植入物的动力系统的框图。
图3A至图3C通过示例而非限制的方式示出了外部定位单元的图,每个外部定位单元耦接至植入物的细长构件。
图4A至图4C通过示例而非限制的方式示出了用于将植入物导引器鞘与植入物的细长构件分开的脱离装置。
图5通过示例而非限制的方式示出了被配置成能够手动控制植入物的运动的外部定位单元的一部分。
图6A通过示例而非限制的方式示出了用于机器人辅助地输送和定位植入物的控制系统的一部分的框图。
图6B通过示例而非限制的方式示出了用于使用实时反馈来机器人式控制植入物的输送和定位的控制系统的一部分的框图。
图7通过示例而非限制的方式示出了用于经由外部非植入式机器人式控制植入系统将植入物输送并定位至患者的目标植入部位的方法。
图8通过示例而非限制的方式示出了用于耳蜗植入物的基于传感器的机器人式控制的方法。
图9通过示例而非限制的方式示出了用于植入物输送和定位的基于传感器和基于测量的实时控制的方法。
图10A至图10B通过示例而非限制的方式示出了被配置成输送并定位导引鞘和植入式电极的外部定位单元的一部分。
图11通过示例而非限制的方式示出了用于植入物和导引鞘输送和定位的实时控制的方法。
图12A至图12C通过示例而非限制的方式示出了外部定位单元的一部分的不同视图的图。
图13A至图13B通过示例而非限制的方式示出了与导引鞘耦接的外部定位单元的一部分的图。
图14通过示例而非限制的方式示出了安装在可调整臂上的外部定位单元的图。
具体实施方式
在下面的具体实施方式中,参考附图,附图形成具体实施方式的一部分并且通过可以实践本发明的图示特定实施方式的方式被示出。足够详细地描述了这些实施方式以使得本领域技术人员能够实践本发明,并且要理解的是,可以组合实施方式或者可以利用其他实施方式,并且在不偏离本发明的精神和范围的情况下可以进行结构、逻辑和电气变化。在本公开内容中提及“一个(a)”、“一种(one)”或“各种”实施方式不一定是相同的实施方式,并且这些提及设想不止一个实施方式。以下的具体实施方式提供了示例,并且本发明的范围由所附权利要求及其合法等同物限定。
本文公开了用于将植入物机器人辅助地植入患者体内的系统、装置和方法。本系统可以使用硬件和软件的组合来实现,硬件和软件被设计成提供对植入物移动,例如在听力保留耳蜗植入物手术期间插入耳蜗植入物和/或导引鞘的精确控制。该系统包括:外部定位单元,其被配置成接合植入物;以及控制台,其通信上耦接至外部定位单元。控制台可以具有用户接口,该用户接口使得用户能够输入运动控制指令。控制台可以根据特定的运动控制指令生成用于控制外部定位单元将植入物推进至目标植入部位的运动控制信号。
尽管本文件中的讨论集中于耳蜗植入物,但是这仅通过示例而非限制的方式来表示。本文所讨论的系统、装置和方法可以被配置成机器人式输送、操纵、定位或取出各种类型的植入物或假体以及相关联的工具是在本发明人的设想内,并且在本文件的范围内。通过非限制性示例的方式,植入物可以包括引线、导管、导丝、导引鞘或其他机械或电气装置。植入物可以被设计为临时或永久植入。植入物可以被用于疾病或其他病症的医学诊断例如诊断导管,或用于治愈、缓解、治疗或预防疾病的治疗目的例如用于刺激心脏、神经、肌肉或其他组织的植入式电极。除了新植入之外,本文所讨论的系统、装置和方法还可以被用来手术重新定位或替换现有植入物。
图1通过示例而非限制的方式示出了机器人辅助植入系统100和系统100可以在其中操作的环境的部分。机器人辅助植入系统100可以包括外部定位单元110和控制台120。机器人辅助植入系统100可以另外包括动力系统130。机器人辅助植入系统100可以接合植入物140,并且将植入物140机器人式输送并定位至患者101的目标植入部位。
植入物140可以包括细长构件141。细长构件141可以是植入物141的组成部分,例如管状植入物主体或细长轴。这样的植入物的示例可以包括植入式引线或导管。可替选地,细长构件141可以是可拆卸地耦接至植入物的输送系统的一部分。这样的植入物的示例可以包括导丝或导引器,该导丝或导引器可以在特定位置处,例如在细长构件141的远端部分处抓住植入物。外部定位单元110可以推进细长构件141,从而将附接的植入物运输至目标植入部位。一旦植入物到达并且已经牢固地定位在目标植入部位处,细长构件141就可以从植入物脱离,并且外部定位单元110可以将细长构件141从患者101收回。
通过示例而非限制的方式,植入物140可以包括用于通过特定耳蜗区域的电刺激来治疗听力损失的耳蜗植入物。如图1中所示,耳蜗植入物可以包括植入式刺激器143和细长构件141,细长构件141具有例如布置在细长构件141的远端部分142处的电极阵列。可以植入头皮下的植入式刺激器143可以生成电脉冲,并且通过细长构件141中的导体将电脉冲输送至电极阵列。电极阵列可以手术插入目标耳蜗部位并且定位在目标耳蜗部位处。在具有受损的高频听力功能但保留低频听力功能的患者中,植入物的短电极阵列可以被定位在外部或基底耳蜗区域处以在其中输送电刺激来恢复高频听力功能。
如下面进一步详细讨论的,植入物140可以通过导引鞘来输送,该导引鞘可替选地或另外地由外部定位单元110控制。在一些示例中,外部定位单元110包括用于与植入物140分开地控制导引鞘的单独结构。在其他示例中,导引鞘可以最初由外部定位单元110定位,并且植入物140通过先前定位的导引鞘植入。在该示例中,一旦导引鞘就位,植入物140就可以由外部定位单元140控制。
外部定位单元110是非植入式外部装置。这可以大大地降低与另外的植入式植入物插入装置的手术植入相关联的并发症的风险。外部定位单元110可以包括耦接单元111,该耦接单元111被配置成与植入物的细长构件141对接,并且向特定方向(例如,用于植入物插入的前向,或用于植入物取出的反向)、以特定速率或相对于参考点例如耦接单元111与细长构件141之间的界面距特定距离摩擦地移动细长构件141。耦接单元111的示例可以包括导螺杆、夹具、一组转子或齿条和小齿轮布置,以及其他耦接机构。耦接单元111可以相对于细长构件141中的至少一部分压紧(compress)以在耦接单元111与细长构件141之间生成足够的摩擦力。在一些示例中,耦接单元111可以包括用于外部定位单元110与细长构件141之间的可逆或可替换的连接的可调整的联接器。在植入物替换或更换的情况下,可以调整耦接单元111以释放对现有植入物的细长构件141的压紧,然后可以从外部定位单元110移除现有植入物的细长构件141。具有细长构件的新植入物可以重新加载并接合至外部定位单元110中。在植入物更换期间外部定位单元110不需要被移除并且可以保持在适当位置。下面例如参照图3A至图3C讨论了耦接单元111的示例。进一步参照图4A至图4C讨论了包括导引鞘的定位的示例。
外部定位单元110被配置成稳定地被附接至患者,或者被附接至患者的当前环境例如手术台处的物体。在示例中,动力系统130可以与外部定位单元110分开,并且可以在外部定位单元110外部。外部定位单元110可以是紧凑的轻量的微机械装置,该微机械装置适于在耳蜗植入物手术期间直接附接至患者例如附接在患者头部上同时在植入期间保持足够的稳定性。外部定位单元110可以被定尺寸并成形以便于患者附接。在示例中,外部定位单元110可以具有弯曲的外部接触表面,该弯曲的外部接触表面符合患者101的身体部位例如头部的轮廓。在示例中,外部定位单元110可以包括固定构件以允许外部定位单元110可拆卸地附接至患者101。固定可以是涉及皮肤的切口和皮下组织的穿透的侵入式固定。固定构件的示例可以包括外部定位单元110内的螺钉、销、钉子、线、钩、缝合线或磁体中的一个或更多个,所述一个或更多个固定构件耦接至附接至患者101的身体部位的一个或更多个磁性螺钉或销。在示例中,固定构件可以包括自钻螺钉、自攻螺钉或自穿孔螺钉中的一个或更多个,使得在螺钉安装之前在附接部位处不需要钻导向孔。可替选地,固定可以是使用非侵入式夹具或防止相对于患者101移动的保持装置的非侵入式固定。在一些示例中,外部定位单元110可以附接至植入物140的至少一部分例如植入式刺激器143。在示例中,附接可以是可拆卸的。通过非限制性示例的方式,附接装置可以包括钩、夹具或磁体以及用于防止外部定位单元110与植入物140之间的相对运动的其他直接或间接保持构件。在示例中,外部定位单元110可以磁性地附接至植入式刺激器143,该植入式刺激器143在其内具有磁体。在各种示例中,植入物140可以包括用于与外部定位单元110和控制模块120进行数据通信的通信线圈。如本文所讨论的外部定位单元110与植入物140之间的磁性耦接可以允许植入物140内的通信线圈与外部定位单元110内的通信天线线圈对准以向或从下面的植入物140传送、接收或发送数据,例如用于发送从患者101获取的电生理数据。
可以处理外部定位单元110的接触表面以改善植入物前进过程期间的稳定性。在示例中,外部定位单元110可以具有带有粗糙表面处理例如脊、波纹、齿或其他粗糙表面纹理的外表面。另外地或可替选地,外部定位单元110可以具有一个或更多个夹持元件,夹持元件被配置成将外部定位单元110摩擦地接合至患者101的身体部位。夹持元件可以分布在外表面的一部分上。夹持元件的示例可以包括从外表面突出的穿透器例如长钉、销或倒钩。当外部定位单元110相对于附接区域(例如,患者头部)被按压并保持时,粗糙表面或夹持元件可以提供足够的摩擦力或夹持力以在植入物前进期间相对于患者101将外部定位单元110牢固地保持在适当的位置处。
控制台120可以包括专用硬件/软件系统例如编程器、基于远程服务器的患者管理系统或者可替选地主要由在标准个人计算机上运行的控制器软件限定的系统。控制台120可以机器人式控制耦接单元111来以特定速率、向特定方向、或距特定距离、或以特定的最大力推进细长构件141,从而输送植入物140例如耳蜗植入物的电极阵列并将其定位在患者101的目标植入部位处。控制台120可以另外接收由传感器获取的信息,该传感器设置在马达系统130或外部定位单元110上,如下要讨论的。控制台120还可以从外部系统接收测量数据,该测量数据可以与植入物位置直接相关。控制台120可以利用这样的测量数据(例如,电生理测量)用于进行植入物定位的闭环控制。除了感测运动参数之外,电生理测量可以通过软件接口或用于输入至控制系统的装置链接至系统控制器,以实时测量例如来自耳蜗植入物或其他ECoG记录系统或方法的耳蜗电图(ECoG)、神经反应遥测、耳蜗反应遥测或听觉脑干反应(ABR)记录。
控制台120可以经由动力系统130控制外部定位单元110。动力系统130包括:马达,其可以生成驱动力和运动;以及动力传输单元,其用于将驱动力和运动传输至耦接单元111以驱使细长构件141的运动。动力传输单元可以包括链、带、齿轮或联轴器等中的一个或更多个。在示例中,动力系统130可以与外部定位单元110和控制台120分开,并且经由连接152耦接至耦接单元111。连接152可以是传输单元的一部分。在另一示例中,动力系统130可以至少部分地包括在外部定位单元110中或者与外部定位单元110相关联。在又一示例中,动力系统130可以至少部分地包括在控制台120中或者与控制台120相关联。下面例如参照图2讨论动力系统111的示例。
控制台120可以包括用户接口模块121和控制器电路122。用户接口模块121可以包括用户输入模块125和输出模块126。用户输入模块125可以被耦接至一个或更多个输入装置例如键盘、屏幕键盘、鼠标、轨迹球、触摸板、触摸屏或者其他指示或导航装置。在一些示例中,用户输入模块125可以包括在通信上耦接至控制台120的移动装置例如手持装置中。用户输入模块125可以被配置成从用户接收运动控制指令。运动控制指令可以包括表征植入物的细长构件141的期望移动的一个或更多个目标运动参数。例如,目标运动参数可以限定运动参数的最大值或值范围。目标运动参数的示例可以包括目标移动速率、目标移动方向或取向、目标移动距离、细长构件的远端的目标位置或施加在细长构件141上的力的目标量。可以以预定步长大小的间隔激活植入物的移动。在植入耳蜗植入物的示例中,目标移动速率约为100微米间隔。在示例中,目标移动距离约为1毫米至35毫米。运动控制指令可以包括限定多个运动参数的目标值的预定义的植入物输送协议。植入物输送协议被设计成使运动控制的编程容易并且使对植入物的围手术期组织创伤或损伤最小化。
用户接口模块121可以允许用户从多个植入物输送协议的菜单中选择,定制现有植入物输送协议,调整一个或更多个运动参数或者在植入物输送过程期间切换至不同的植入物输送协议。控制台可以包括用于存储运动控制指令等的存储器电路124。在示例中,输送协议之一可以包括使用可以反映在电极阵列的插入前、插入期间和插入后耳蜗修复和插入创伤的即时变化的手术中ECoG测量例如耳蜗微音电位(CM)、听觉神经音(ANN)。下面参照图6和图9进一步详细地讨论其使用。
输出模块126可以生成关于包括由用户提供的可编程运动控制参数和运动控制指令的植入物输送控制的信息的人类可感知的呈现。呈现可以包括音频、视觉或其他人类可感知的媒体格式或者不同媒体格式的组合。输出模块126可以包括用于显示信息的显示屏,或者用于打印信息的复印件的打印机。信息可以以表格、图表、图示或任何其他类型的文本、表格或图形呈现格式显示。另外地或可替选地,输出模块126可以包括例如以蜂鸣声、警报、模拟语音形式的音频指示器或其他声音指示器。
机器人辅助植入系统100可以包括一个或更多个传感器,一个或更多个传感器被配置成感测植入物在植入期间的一个或更多个运动参数。输出模块126可以生成传感器反馈的人类可感知的呈现,传感器反馈包括关于植入物的位置、植入物的运动或施加至植入物运动的力或摩擦力的一个或更多个参数。这允许外科医生实时监测植入的进展,并根据需要调整运动控制。呈现可以包括具有与植入期间遇到的不同类型的事件对应的指定模式的实时视觉或听觉通知。在示例中,输出模块126可以包括显示屏上的视觉指示器例如发光二极管(LED)或屏幕上指示器。特定LED颜色或特定闪烁模式图向用户发信号通知植入物成功定位在目标植入部位处。不同的LED颜色或不同的闪烁模式可以警告在植入物前进期间由于非预期的组织阻力而施加在植入物上的过大的力。输出模块126可以另外地或可替选地包括音频指示器例如具有特定音调、特定频率或特定模式(例如,连续、间歇、脉冲、向上扫频或向下扫频声音)的蜂鸣声。在示例中,具有特定音调或模式的蜂鸣声或警报可以向用户发信号通知植入物成功定位在目标植入部位处。具有不同音调或不同模式的蜂鸣声或警报可以警告施加在植入物上的过大的力。在示例中,当传感器感测到植入物靠近目标部位时,蜂鸣声或警报可以连续地进行。当植入物更接近并最终到达目标部位时,蜂鸣声或警报的声音频率或脉冲速率可能会增加。在示例中,蜂鸣声或警报的频率可以对应于运动速率,例如每一毫米运动发声一次。关于运动参数的听觉反馈可能是有利的,因为可以实时通知外科医生所遇到的植入状态或事件而无需离开手术区域观看。这可以有助于外科医生提高手术精度和患者安全性。在一些示例中,听觉或视觉传感器反馈可以向用户发信号通知所感测到的植入物位置、运动或者已经超过编程的目标或最大参数值。
控制器电路122可以被配置成根据由用户经由用户输入模块125提供的运动控制指令生成运动控制信号。运动控制信号可以控制动力系统130以调整细长构件141的一个或更多个运动参数。运动参数的示例可以包括移动速率、移动方向或取向、移动距离,细长构件的远端的位置或施加在细长构件141上的力的量等。在动力系统130与控制台120分开并且在控制台120外部的示例中,控制器电路122可以经由通信电路123远程控制动力系统130。通信电路123可以经由通信链接151将运动控制信号发送到动力系统130。通信链接151可以包括具有通用串行总线(USB)连接的有线连接,或者连接控制台120和动力系统130上的通信接口的其他线缆。通信链接151可以可替选地包括无线连接,例如蓝牙协议、蓝牙低能量协议、近场通信(NFC)协议、以太网、IEEE 802.11无线、感应遥测链接或射频遥测链接等。
在一些示例中,控制器电路122可以进一步根据经由用户输入模块125接收或者存储在存储器电路124中的关于患者病史或疾病状态的信息来控制细长构件141的运动。在耳蜗植入物的示例中,包括关于患者音调拓扑听力损失模式的信息。音调拓扑听力损失模式表示频率敏感度沿耳蜗长度的轴的空间分布。基于患者的音调拓扑听力损失模式的输入,控制器电路122可以自动地编程一个或更多个运动参数例如电极阵列插入距离。例如,对于具有高频不敏感并保留低频至中频敏感度的音调拓扑模式的患者,指示较短的耳蜗植入物插入距离。耳蜗植入物的电极阵列可以被定位并且电刺激外部或基底耳蜗区域以恢复高频听力。相反,对于具有高频不敏感以及恶化的低频至中频听力的音调拓扑模式的患者,指示较长的插入距离。植入物的电极阵列可以被定位成刺激较宽的耳蜗区域,该较宽的耳蜗区域覆盖外部或基底区域以及某些内部或顶端耳蜗区域。基于患者音调拓扑模式定制植入物运动参数(例如植入物插入距离)使得个体化治疗方案能够实现改善的治疗效果,并且可以最好地适合患者的不断演变的听力损失。其可能会扩大候选人范围,使更多人具有耳蜗植入物治疗资格。
在示例中,控制器电路122可以进一步根据所接收到的ECoG测量控制细长构件141的运动。在植入物插入期间与ECoG测量的实时链接使得能够通知对于耳蜗内结构的潜在生理伤害例如与基底膜的接触。如果在ECoG测量中记录减少或显著变化,则控制器电路122可以通过用户接口模块121以视觉或听觉通知的形式向外科医生提供即时反馈,并且可以向系统控制器发送停止命令以防止进一步的植入物运动。可选地,控制器电路122可以被编程为在检测到某些ECoG测量特征时自动停止或撤销插入。在系统通知用户或自动干预之后,外科医生可以根据需要调整植入物插入轨迹或系统运动参数以避免耳蜗内损伤,或次优电极位置或者经由物理确认机制选择超驰通知。在确认警告通知之后,停止反馈被移除并且用户可以继续植入物的机器人辅助插入。
除了耦接单元111的机器人式控制之外,外部定位单元110可以包括手动控制机制。手动控制机制可以越过或超驰植入物140的机器人式运动控制。手动控制机制的示例可以包括拨号转盘、螺钉或直接插入技术。输出模块126可以使用户能够选择性地启用用于经由动力系统130的机器人辅助运动控制的机器人模式或者用于细长构件141的手动运动控制的手动超驰模式。可替选地,对手动控制机制的操作可以自动地抑制或禁用细长构件141的机器人式运动控制。下面例如参照图5讨论外部定位单元的手动控制的示例。
可以使用硬件、软件、固件或其组合来实现控制台120的部分。控制台120的部分可以使用可以被构造成或被配置成执行一个或更多个特定功能的专用电路来实现,或者可以使用可以被编程或以其他方式被配置成执行一个或更多个特定功能的通用电路来实现。这样的通用电路可以包括微处理器或其一部分、微控制器或其一部分、或可编程逻辑电路或其一部分。例如,“比较器”可以包括电子电路比较器等,电子电路比较器可以被构造成执行两个信号之间的比较的特定功能,或者比较器可以被实现为通用电路的一部分,该通用电路的一部分可以由指示通用电路的一部分以执行两个信号之间的比较的代码驱动。
图2通过示例而非限制的方式示出了动力系统230的框图,该动力系统230向外部定位单元210提供驱动力和运动以输送并定位植入物。动力系统230可以是如图1中所示的机器人辅助植入系统100的动力系统130的实施方式。动力系统230可以提供对植入物的细长构件141的一个自由度或多个自由度的控制。
动力系统230可以包括一个或更多个电动马达231,每个电动马达231耦接至相应的动力传输单元232。一个或更多个动力传输单元232各自耦接至外部定位单元210中的相应耦接单元211,外部定位单元210是如图1中所示的外部定位单元110的实施方式。一个或更多个电动马达231可以电耦接至电源233。在示例中,电源233可以包括可再充电电源例如可再充电蓄电池或超级电容器。可再充电电源可以由诸如手持装置的便携式装置无线充电,该便携式装置具有被配置成通过电磁感应将能量传递至可再充电电源的电路系统。
一个或更多个电动马达231可以是相同或不同类型的马达。电动马达231的示例可以包括步进马达、直流(DC)马达、压电马达、超声马达或线性马达等。一个或更多个电动马达231各自可以耦接至应答器234,应答器234可以经由通信链接151从控制台120接收运动控制信号。控制台120可以根据由用户提供的运动控制指令生成用于电动马达231中的每一个的相应的运动控制信号。在示例中,用户可以例如经由用户输入模块125独立地编程(通过输入运动控制指令)并控制电动马达231中的每一个的操作。运动控制信号向相应的电动马达231指定配置和输入电压或电流,这些配置和输入电压或电流可以生成所需的转矩、速度或旋转方向。
响应于所接收到的运动控制信号,一个或更多个电动马达231可以生成相应的驱动力和运动,相应的驱动力和运动经由动力传输单元232控制植入物的细长构件141的各种运动参数。动力传输单元232可以调整从马达输出的速度或转矩,并将特定输出输送至相应的耦接单元211。动力传输单元232的示例可以包括正齿轮、斜齿轮、行星齿轮或齿轮头、蜗轮、微型皮带轮或同步皮带等。
通过示例而非限制的方式,并且如图2中所示,电动马达231至少可以包括第一电动马达231A和第二电动马达231B。第一电动马达231A可以生成经由第一动力传输单元232A输送至第一耦接单元211A的驱动力和运动以控制与沿第一取向的运动例如平移运动相关联的一个或更多个参数。平移运动参数的示例可以包括移动速率、方向、相对于参考点的距离、细长构件的远端的位置或施加至细长构件的轴向力的量。第二电动马达231B可以生成经由第二动力传输单元232B传输至第二耦接单元211B的驱动力和运动,并且控制与沿第二取向的运动例如旋转运动相关联的一个或更多个参数。旋转运动参数的示例可以包括角位置、角位移、角速度或施加至细长构件的横向力或旋转力的量。第一电动马达和第二电动马达连同相应的动力传输单元和外部定位单元中的耦接单元可以在多个自由度上提供对植入物的运动的灵活且精确的控制。这可以允许植入物最佳定位在目标植入部位处,例如耳蜗植入物电极阵列放置在听觉神经细胞和神经元附近。
一个或更多个传感器可以被配置成感测关于植入物在植入期间的位置和运动的信息,例如动力系统230中的传感器235或外部定位单元210中的传感器212。在示例中,一个或更多个线性或旋转编码器可以被附接至电动马达231、电力传输单元232或耦接单元211以检测关于植入物的位置的信息。在另一示例中,一个或更多个霍尔效应传感器可以被集成在电动马达231中。在又一示例中,一个或更多个可选的传感器可以被附接至耦接单元211。在一些示例中,传感器235或传感器212可以包括被配置成检测植入物运动的电容传感器。
除了运动和位置感测之外或代替运动和位置感测,传感器235或传感器212可以包括感测指示在植入物前进期间施加在植入物上的力例如在耳蜗植入物与耳蜗壁和周围组织相互作用时的轴向力、横向力或径向力或摩擦力的参数的力传感器。力传感器的示例可以包括电阻器、电容传感器、压电材料或应变计等。在示例中,可以通过测量提供给电动马达231的电流来间接地感测力。可以将电流测量传输至控制台120,在控制台120处使用预定的并存储在存储器电路124中的转矩电流曲线将该电流测量转换为力(或转矩)。
由传感器235和传感器212获取的信息可以经由通信链接151转发至控制台120。传感器信息可以在输出模块126中以特定的媒体格式显示或以其他方式呈现。在示例中,外部定位单元210可以包括耦接至传感器212的指示器213。指示器213可以响应于所感测到的传感器信号满足特定条件而产生视觉或音频通知。在示例中,指示器213可以包括发光二极管(LED),该发光二极管在所感测到的传感器信号指示植入物到达目标植入部位时可以接通。在一些示例中,指示器213可以包括具有不同颜色或不同的预定闪烁模式的多个LED。LED颜色或闪烁模式可以对应于在植入过程期间遇到的各种事件。
控制台120可以基于运动控制指令的用户输入来生成和修改运动控制信号以控制植入物的细长构件的运动。可替选地,控制台120可以根据所感测到的运动参数自动地调整运动控制。在示例中,如果所感测到的施加在植入物上的力超过阈值,则控制台120可以自动地停止植入物的持续运动或者降低运动的速度。可以生成警告并在输出模块126上呈现警告。这可以是可编程的安全机制以防止对植入物的非预期的组织创伤或损伤。如果植入物移动距离已经达到预定的目标移动距离,则控制台120可以自动地抑制植入物的运动。
图3A至图3C通过示例而非限制的方式示出了外部定位单元300A和300B的图,外部定位单元300A和300B每个耦接至植入物的细长构件301。作为细长构件141的实施方式的细长构件301可以是耳蜗植入物的一部分,耳蜗植入物包括设置在细长构件301上的电极阵列。外部定位单元300A和300B是如图1中所示的外部定位单元110的实施方式。
图3A中所示的外部定位单元300A包括壳体310,该壳体310包围互连以接合细长构件301并且将附接至细长构件310的植入物机器人式输送并定位至目标植入部位的机电部件。壳体310可以包括入口和出口以穿过外部定位单元300A馈送细长构件310。外部定位单元300A可以包括至少两个滚轮例如驱动轮320和惯性轮330,所述至少两个滚轮是耦接单元111或211的实施方式。驱动轮320和惯性轮330被布置和配置成接合细长构件301的至少一部分。细长构件301的接合可以通过驱动轮320和惯性轮330的相应径向外表面之间的压紧来实现。
驱动轮320可以经由轴承耦接至轴,该轴牢固地附接至壳体310,使得驱动轮320可以在轴上旋转而不会相对于壳体310横向移动。驱动轮320可以经由动力传输单元344耦接至电动马达342。作为电动马达231之一的实施方式的电动马达342可以根据由控制台120提供的运动控制信号生成驱动力和运动。电动马达231可以耦接至动力传输单元344,该动力传输单元344可以是动力传输单元232之一的实施方式。动力传输单元344可以包括调整马达的速度或转矩的齿轮、皮带轮或同步皮带。在如图3A中所示的示例中,动力传输单元344可以包括具有蜗轮的蜗轮组344以及牢固地耦接至电动马达342的齿轮头的轴。根据输入至马达342的运动控制信号,动力传输单元344可以驱动驱动轮320的旋转,这又向特定方向(例如,向前或向后)推进植入物或以特定速率推进植入物。
惯性轮330可以耦接至偏置系统,该偏置系统包括互连以支撑第二轮330并且提供相对于驱动轮320的横向压紧的扭转弹簧352、枢转臂354和弹簧偏置356。扭转弹簧352可以产生经由枢转臂354传递至第二轮310的弹簧张力,并且相对于驱动轮320压紧以在驱动轮320与惯性轮330之间的细长构件301上生成足够的摩擦力。因为通过偏置系统将惯性轮330保持在适当的位置处而不是附接至壳体310,所以惯性轮330可以相对于壳体310横向移动。这可以允许容纳具有一系列直径或截面形状的细长构件的植入物,同时在细长构件上保持足够的摩擦力以进行所需的移动。在示例中,用户可以手动地偏置扭转弹簧352并使惯性轮330远离驱动轮320移动,从而释放压紧并打开驱动轮320与惯性轮330之间的空间。外科医生可以从外部定位单元300A移除细长构件301,或者将具有细长构件的另一植入物装载至外部定位单元300A中。
在一些示例中,驱动轮320的径向外表面可以涂覆有摩擦材料,例如硅橡胶、聚合物或其他复合材料的层。另外地或可替选地,驱动轮320的径向外表面可以被机械地纹理化以具有粗糙和波纹状表面。驱动轮320的径向外表面的摩擦材料层或波纹表面光洁度可以增加摩擦力并防止细长构件301在摩擦运动期间在驱动轮301上滑动。惯性轮330的径向外表面可以类似地涂覆有摩擦材料或者具有粗糙的表面光洁度。
图3C示出了在其之间接合有细长构件301的驱动轮320和空转轮330的截面图300C。在如300C中所示的示例中,细长构件301具有圆柱形状或者以其他方式具有凸出截面轮廓。驱动轮320的径向外表面321和空转轮330的径向外表面331各自可以具有径向凹入轮廓,以允许细长构件301的牢固接合。凹入轮廓的对凹表面的程度进行量化的凹度可以基于几何形状例如细长构件301的直径来确定。
图3A中所示的驱动轮320和惯性轮330可以生成一个自由度的移动,例如平移运动。在一些示例中,外部定位单元300A可以包括另外的轮或齿轮组,轮或齿轮组被布置成和配置成将从马达342生成的力和运动转换成多个自由度的移动,如先前参照图2所讨论的。在示例中,外部定位单元300A可以包括将马达运动转换成细长构件301围绕其轴的旋转运动的齿轮组。齿轮组可以包括齿轮传动轮,该齿轮传动轮耦接至蜗轮,蜗轮沿细长构件301的一部分同轴地设置,并且可拆卸地耦接至细长构件301的一部分。齿轮传动轮在由马达342和动力传输单元344驱动旋转时可以驱动蜗轮的旋转,这又使细长构件301围绕其轴旋转。
通过说明而非限制的方式,驱动轮320和弹簧偏置的惯性轮330是耦接单元的示例。可替选的耦接单元可以包括耦接至植入物托架的齿轮传动轮。托架可以包括放置于植入物的细长构件上并牢固地保持植入物的细长构件的适配器壳体。适配器壳体可以由硅树脂或金属制成。托架可以具有线性齿轮装置,该线性齿轮装置具有被配置成与齿轮传动轮接合的齿。因此,齿轮传动轮和托架的线性齿轮可以具有齿条齿轮装置,在该齿条齿轮装置中齿轮传动轮(小齿轮)将旋转运动施加至线性齿轮(齿条)以引起相对于小齿轮的线性运动,这又可以使保持在托架的适配器壳体内的细长构件线性地移动。
一个或更多个传感器可以附接至外部定位单元300A的内部部件例如电动马达342、动力传输单元344、驱动轮320或弹簧偏置的惯性轮330。传感器的示例可以包括编码器或霍尔效应传感器。传感器可以感测细长构件301的位置或运动,或施加至细长构件301的力或摩擦力。在示例中,第一传感器可以附接至马达342以检测马达的运动(其指示细长构件301的位置或运动),并且第二传感器可以附接至惯性轮330以检测惯性轮的运动(其也指示细长构件301的位置或运动)。第一传感器和第二传感器可以共同地提供对植入物位置的双重检查,并且可以更可靠地检测驱动轮320与细长构件301之间可能发生的任何滑动。例如,如果马达342正常工作但是细长构件301在驱动轮320上滑动,则马达上的第一位置传感器将指示植入物移动,但是惯性轮330上的第二位置传感器将不指示植入物移动或指示植入物的不规则移动。控制台120可以包括用于检测来自第一传感器和第二传感器的位置或运动反馈之间的差异的电路系统。如果差异超过特定阈值,则控制台120可以生成装置故障的警告并经由输出模块126呈现给用户,或者自动地停止植入过程直到用户提供重新开始过程的指令。
外部定位单元300A可以包括鞘360。鞘360可以附接至壳体310的远端,并延伸至目标植入部位的手术入口。细长构件301可以是柔性的并且易于扭曲、缠结或弯曲。鞘360可以至少部分地包围细长构件301以向植入物的细长构件301提供弹性支承,从而将植入物保持在壳体310与目标植入部位的手术入口之间的轨迹上。其还可以保护电子器件例如位于细长构件301上的电极阵列和细长构件301内的导体。
鞘360包括柔性管,该柔性管的尺寸可以与细长构件301基本匹配。例如,管的直径可以略大于细长构件301的直径,使得柔性管可以向细长构件301内部提供期望的刚度;同时,在细长构件301与管的内表面之间不会产生过度的摩擦力。为了减少在植入期间细长构件301相对于管的运动所产生的摩擦力,可以使用生物相容的且可消毒的润滑剂对鞘360进行预润滑。可替选地或另外地,管的内表面可以用聚四氟乙烯(PTFE)或线性纵向脊处理以允许细长构件301在管内的平滑滑动。
鞘360的远端可以固定或可逆地稳定在植入的手术开口的指定位置处。在耳蜗植入物的示例中,可以通过使管直径与耳蜗圆窗(RW)龛或耳蜗造口术尺寸紧密匹配来使鞘360的远端稳定在耳蜗RW或耳蜗造口术部位处。这将允许鞘360被压紧至RW龛中,或者暂时通过RW膜。鞘360可以由具有低摩擦并且与组织接触生物相容并且与各种一次性消毒方法例如辐射(例如,伽马、电子束或X射线)或环氧乙烷气体处理兼容的材料例如塑料或硅橡胶制成。一旦植入物定位在植入的目标部位处,鞘360就可以从植入物分离(detach)。下面例如参照图4A至图4C讨论了用于将鞘360与植入物分开的脱离装置的示例。
在一些示例中,外部定位单元300A可以附接至患者或手术的无菌区中的物体。外部定位单元300A内部的部件—包括驱动轮320、惯性轮330、惯性轮偏置系统(包括扭转弹簧352、枢转臂354和弹簧偏置356)以及动力系统(包括电动马达342和动力传输单元344)—可以由既具有生物相容性又与特定消毒方法例如伽马或环氧乙烷兼容的材料制成。机电部件可以由塑料例如丙烯腈丁二烯苯乙烯(ABS)、聚碳酸酯、聚醚醚酮或聚砜等制成。可替选地,机电部件可以由金属例如不锈钢、钴铬或钛等制成。
除了电动马达342位于壳体310外部之外,如图3B中所示的外部定位单元300B具有与外部定位单元300A类似的结构。从电动马达342生成的力和运动可以经由在马达342与外部定位单元300B之间延伸的弯曲旋转轴356传输至驱动轮320。在示例中,电动马达342可以被包围在与外部定位单元300B和控制台120分开的独立壳体中。在另一示例中,电动马达342可以包括在控制台120中或者与控制台120相关联。弯曲旋转轴356可以与链接外部定位单元300B和控制台120的通信线缆集成在一起,使得单根线缆离开定位单元300B。通信线缆可以传输关于例如由例如图2中所示的定位单元300B上的一个或更多个传感器感测到的细长构件301的位置或运动或者施加在细长构件301上的力的传感器反馈。
除了电动马达342之外,外部定位单元300B可以提供若干益处。外部定位单元300B可以是更小、更简单、重量轻且低成本的微机械装置。由于电动马达342和相关联的电气系统远离直接患者接触并且在患者当前环境之外,因此外部定位单元300B可以提供增加的患者安全性。外部定位单元300B可以用于在无菌手术区中的单次使用,并且在手术后可丢弃。至少由于其小尺寸和重量轻,因此外部定位单元300B可以适于固定在患者身上作为用于使植入物前进的稳定平台。
图4A至图4C通过示例而非限制的方式示出了用于在植入物定位在植入的目标部位时将植入物导引器鞘460A至460C与植入物的细长构件301分开的脱离装置。导引器鞘460A至460C是如图3A至图3B中所示的鞘360的实施方式。脱离装置可以将细长构件301从导引器鞘460A至460C分离而不会在植入物上施加破坏力,以便防止在移除鞘360时植入物从植入部位的移位。在听力保留耳蜗植入物手术中,例如,一旦将耳蜗植入物的电极阵列定位在期望的耳蜗区域(例如,基底耳蜗)处用于刺激其中的听觉神经,外科医生就可以使用脱离装置在没有引起电极阵列的移位或对附近耳蜗组织的任何创伤的情况下将导引器鞘460A至460C与细长构件301分开。
图4A示出了导引器鞘460A的示例,导引器鞘460A具有半圆形或劣弧形的截面461,以及沿截面461的轨迹的开口部分。开口部分可以被定尺寸,使得细长构件301在植入期间保持稳定地嵌入鞘460A内,并且可以在之后容易地拉出。这样的具有开口部分的鞘可以实现开口部分的尺寸与鞘和植入物材料的硬度的相对差异之间的平衡。
图4B示出了导引器鞘460B的示例,该导引器鞘460B包括两个平行延伸的纵向半部例如顶部件462和底部件463。两个纵向半部可拆卸地彼此附接。如图4B中所示,顶部件462和底部件463各自可以具有半圆形状(即,180度弧形)。可替选地,一件可以成形为劣弧(即,小于180度)并且另一件可以成形为优弧(即,大于180度)。两个纵向半部可以用生物相容的且耐消毒的粘合剂或密封剂连接。粘合剂或密封剂可以具有足以将两个纵向件保持在一起的粘合强度,并且可以在拉应力下减弱。在将植入物定位在期望的植入部位之后,两个纵向半部可以在由外科医生的拉应力下彼此释放,从而将细长构件301与顶部件462和底部件463分开。
图4C示出了被构造为剥离鞘的导引器鞘460C的示例。导引器鞘460C可以包括附接至细长构件301的圆周表面例如附接在细长构件301的远端部分处的双把手或释放片464和465。双把手或释放片464和465可以是被定尺寸和成形为在植入物定位在目标植入部位之后通过使用诸如镊子的手术工具使得用户能够剥离导引器鞘460C。导引器鞘460C可以在相对的纵向侧上具有线性穿孔466以便于将导引器鞘460C撕成两个相对件。
图5通过示例而非限制的方式示出了外部定位单元500的被配置成能够对植入物的运动进行手动控制的部分。可以是外部定位单元110或210的实施方式的外部定位单元500可以包括包围在附接至基座550的壳体310中的机制。基座550可以经由固定构件560例如如参照图1所讨论的螺钉、销、钉子、线、钩、缝合线或磁体可拆卸地附接至患者或患者当前环境上的物体。类似于图3A至图3B中所示的外部定位单元300A或300B,外部定位单元500的所示部分包括至少两个滚轮,包括驱动轮520和惯性轮530,驱动轮520和惯性轮530被布置和构造成例如通过驱动轮520和惯性轮530的相应的径向外表面之间的压紧来接合细长构件301中的至少一部分。至少一个滚轮例如驱动轮520可以经由传输单元540耦接至手动驱动轮510。传输单元540可以包括诸如正齿轮的齿轮组,或者链条、皮带或联轴器等中的一个或更多个。手动驱动轮510可以在使得手动驱动轮510的一部分伸出壳体310外的位置处耦接轴,该轴牢固地附接至基座550或壳体310。用户可以手动地接近并围绕轴旋转手动驱动轮510,这又驱动驱动轮520的旋转,并且以期望的方向和速度摩擦地移动细长构件301。
在一些示例中,如外部定位单元500中的手动运动控制可以与外部定位单元300A或300B中的电动运动控制组合。驱动轮520和惯性轮530可以接合细长构件301的第一位置以手动地控制植入物运动,并且驱动轮320和惯性轮330可以接合细长构件301的不同的第二位置以机器人式控制植入物运动。在另一示例中,外部定位单元500的一部分例如手动驱动轮510和耦接的传输单元520可以包括在外部定位单元300A或300B中并且耦接至驱动轮320。驱动轮320可以通过马达342和动力传输单元344经受机器人式控制并且通过手动驱动轮510和耦接的传输单元520经受手动控制这两者。机器人式控制和手动控制可以彼此独立地激活。在示例中,用户接口模块121可以使用户能够选择性地启用用于细长构件301的机器人式运动控制的机器人模式或者用于细长构件301的手动运动控制的手动模式。在示例中,手动模式可以优先于机器人模式,使得手动驱动轮510的手动旋转可以自动地超驰机器人式运动控制。在马达342或动力传输单元344中存在故障的情况下,手动超驰功能可以用作故障安全紧急停止。
图6A通过示例而非限制的方式示出了用于机器人辅助地输送和定位植入物的控制系统600的一部分的框图。控制系统600包括与用于植入物运动控制的一个或更多个外围设备耦接的控制台120。外围设备可以包括脚踏板610或手持装置620中的一个或更多个。在马达和动力系统包括在外部定位单元内的情况下,一个或更多个外围设备可以通信上耦接至外部定位单元以直接地控制马达输出。一个或更多个外围设备可以例如经由有线连接或无线通信链接通信上耦接至控制台120中包括的控制器电路122。与控制台120相比,外围设备可以具有更小的尺寸、更轻的重量和更大的移动性,从而可以提供增强的操作灵活性。一些外围设备例如脚踏板可以是可重复使用的。材料不需要是可消毒的或者与外部定位单元材料达到的水平生物相容。
脚踏板610可以为外科医生提供控制植入物的运动的手段。脚踏板可以定位在病床下方,能够由外科医生接近。脚踏板610可以包括运动控制输入611。在示例中,运动控制输入611可以包括两个或更多个踏板以用于以不同方向控制导引运动,例如一个踏板用于启动向前的前进运动以及另一个踏板用于启动收回运动以微调植入物位置或用于植入物取出。在另一示例中,运动控制输入611可以包括两个或更多个踏板以用于以不同导引取向控制导引运动,例如一个踏板用于控制平移运动以及另一个踏板用于控制旋转运动,如先前参照图2所讨论的。在又一示例中,运动控制输入611可以包括用于控制植入物前进的一个踏板以及用于重置当前植入物位置(即,将当前位置设置为零)的另一个踏板。在可以从控制台120生成收回命令的情况下,如果需要收回动作,则这可以是控制台120上的输入。这将防止由踩踏错误的踏板而造成的植入物的意外收回。
在一些示例中,每个脚踏板可以结合有一个或更多个命令按钮或开关,所述命令按钮或开关被编程用于不同的功能,例如用于在插入期间控制包括运动速率、运动距离或施加至植入物的力的量的各种运动参数。在示例中,不同的运动控制动作可以对应于当按压和保持踏板时编程的持续时间,或者踏板按压的模式(诸如一次按压、两次按压或者短按压和长按压的组合)。例如,短按压可以将当前植入位置设置为零(即,位置重置),并且长按压(例如,按压并保持至少三秒)可以使植入物前进。在示例中,一次按压或按钮按下可以对应于在耳蜗植入过程期间移动的特定距离例如100微米。在另一示例中,插入速率或移动距离可以基于脚踏板位移的程度而变化,直到由用户经由用户接口模块121编程的最大设置的插入速率和距离。
手持装置620可以包括运动控制输入621例如按钮、开关、或者控制植入物的一个或更多个运动参数的其他选择和启动机制。在一些示例中,通信电路123可以实现在手持装置620内。在示例中,通信电路123可以经由无线通信链接与外部定位单元210通信,包括将马达控制信号发送至电动马达231,以及从位于动力系统230或外部定位单元210处的一个或更多个传感器接收传感器反馈。手持装置的移动性可以允许无线通信的增强的可靠性。在一些示例中,手持装置620可以包括用于对用于为位于外部定位单元内的电动马达供电的电源进行无线充电的充电器电路622。
图6B通过示例而非限制的方式示出了用于使用实时反馈来机器人式控制植入物的输送和定位的控制系统的一部分的框图。在该示例中,控制系统600可以可选地包括ECoG输入630。ECoG输入630可以实时地向控制器电路122提供ECoG测量数据。ECoG输入630可以将控制系统600链接至ECoG测量例如耳蜗微音电位(CM)、听觉神经音(ANN),ECoG测量可以反映在电极阵列的插入前、插入中和插入后耳蜗修复和插入创伤的即时变化。控制器电路122可以利用这些类型的数据来基于ECoG测量以闭环反馈实时控制植入物输送和定位。ECoG记录是使用放置在诸如耳道、鼓膜、圆窗或耳蜗内的部位处的电极响应于声音或电刺激在内耳、耳蜗和听觉神经中生成的电势。虽然听觉脑干反应(ABR)反映了来自沿脑干的不同神经发生器的电生理反应,但是耳蜗微音电位(CM)反映了外毛细胞和内毛细胞的耳蜗内生理反应。
如图6B中所示,控制系统600可以在电极插入期间将运动控制参数与耳蜗功能的实时、手术中的电生理测量链接、耦接或对接以用作确定和设置最佳电极定位的手段。互操作性可以包括将在实时插入期间来自电极阵列或其他耳蜗内/耳蜗外记录的软件/数据链接至控制台反馈机制,以基于诸如神经反应遥测、听觉神经音或耳蜗微音电位的电生理测量来指示何时实现了最佳电极位置。
在插入期间或在插入之后降低的ECoG可能反映由于植入物的耳蜗内位置引起的耳蜗修复和插入创伤的变化,这可能是植入物插入后听力损失的机制。例如,CM幅度变化被示出为受到阵列在基底膜的物理接触/升高时的无意移动的影响最大。因此,能够向插入控制系统600提供实时监测链接(经由ECoG输入630)和反馈以通过机器人辅助和外科医生控制的微机械位置调整来监测和微调植入物位置,直到ECoG测量例如CM根据外科医生或听力学家确定的偏好来保持或优化。在某些示例中,用户接口模块121可以向外科医生提供ECoG测量的实时反馈,并且能够响应于ECoG测量和外科医生输入实现另外的控制。
利用在植入物插入期间与ECoG测量的实时控制系统链接和对接,系统可以通知外科医生对例如与基底膜接触的耳蜗内结构的实时生理损伤的可能性。如果在ECoG测量中记录减少或显著的变化,则系统以视觉或听觉通知的形式向外科医生提供反馈,并且可以向系统控制器发送停止命令以防止进一步的植入物运动。在系统通知用户之后,外科医生可以根据需要调整植入物插入轨迹或系统运动参数以避免耳蜗内损伤,或次优电极位置或者经由物理确认机制选择超驰通知。在确认警告通知之后,移除停止反馈并且外科医生可以继续机器人辅助地插入植入物。
图7通过示例而非限制的方式示出了用于经由外部非植入式机器人控制植入系统例如机器人辅助植入系统100将植入物输送并定位至患者的目标植入部位的方法700。在示例中,方法700可以被用来操作机器人控制植入系统以使耳蜗植入物的电极阵列前进至目标耳蜗区域以通过电刺激恢复听力损失。方法700还可以被用于操作机器人控制植入系统以输送、操纵、定位或取出其他类型的植入物或假体。这样的植入物的示例可以包括引线、导管、导丝或其他机械或电气装置。植入物可以被用于诊断疾病或其他病症,或者可替选地或另外地用在治愈、缓解、治疗或预防疾病中,例如用于在心脏、神经、肌肉或其他组织处输送电刺激的植入式电极。
方法700开始于步骤710,在步骤710中在外部定位单元与控制台之间建立通信链接。外部定位单元包括用于接合植入物的细长构件的一部分的机械部件。外部定位单元还可以包括动力系统,该动力系统具有用于生成驱动力和运动的马达和用于将来自马达的驱动力和运动传达成植入物的细长构件的运动的动力输送单元。控制台包括用于根据由用户提供的运动控制指令生成运动控制信号的电路系统。运动控制信号可以控制动力系统以调节细长构件的一个或更多个运动参数。
外部定位单元与控制台之间的通信链接可以包括有线连接—有线连接包括通用串行总线(USB)连接—或者耦接至控制台和动力系统两者上的通信接口的其他线缆。在另一示例中,通信链接可以包括无线连接,该无线连接包括蓝牙协议、蓝牙低能量协议、近场通信(NFC)协议、以太网、IEEE 802.11无线、感应遥测链接或射频遥测链接等。
在720处,耳蜗植入物的细长构件的至少一部分可以接合至外部定位单元。耳蜗植入物可以包括用于皮下植入在头皮下方的植入式刺激器。植入式刺激器可以生成传导至电极阵列以用于刺激耳蜗神经的电刺激脉冲。耳蜗植入物可以包括细长构件,其中电极阵列设置在细长构件的远端部分处。外部定位单元可以包括耦接单元,该耦接单元可以与细长构件对接。在示例中,耦接单元可以包括如图3A至图3B中所示的驱动轮和惯性轮布置。植入物的细长构件可以经由入口和出口馈送通过外部定位单元,并且压紧接合在驱动轮与惯性轮之间。惯性轮可以是弹簧偏置的并且经由扭转弹簧相对于驱动轮压紧。可以手动地偏置扭转弹簧以释放压紧并打开驱动轮与惯性轮之间的空间以将细长构件容纳在外部定位单元中。
在730处,可以将外部定位单元附接至患者,例如在患者头部上以在植入物的前进期间保持足够的稳定性。可替选地,外部定位单元可以被牢固地附接至患者的当前环境处的物体,例如附接至手术台的设备。如先前参照图1所讨论的,外部定位单元可以被定尺寸和成形为便于患者附接。外部定位单元可以包括固定构件例如螺钉、销、钉子、线、钩、缝合线或磁体中的一个或更多个。外部定位单元可以具有带有粗糙纹理的外部接触表面,或者配备有一个或更多个夹持元件。夹持元件的示例可以包括从外表面突出的穿透器例如长钉、销或倒钩。当外部接触表面与患者的身体部位(例如,患者头部)接触并且外部定位单元相对于身体部位被按压并保持时,夹持元件可以提供足够的摩擦力或夹持力以在植入物前进期间将外部定位单元牢固地保持在适当的位置处。
在740处,可以通过外部定位单元机器人式控制将植入物输送并定位至目标植入部位。在耳蜗植入物的示例中,耳蜗植入物的电极阵列可以被插入并定位在目标耳蜗部位处。在具有受损的高频听力功能但保持低频听力功能的患者中,植入物的短电极阵列可以被定位在外耳蜗或基底耳蜗处。可以经由电极阵列在其中输送电刺激以恢复高频听力功能。植入物移动机器人式控制可以涉及根据用户编程指令从控制台生成马达控制信号。马达控制信号可以被传输至位于控制台内或外部定位单元内的马达。马达可以生成驱动力和运动,驱动力和运动经由动力传输单元控制植入物的细长构件的各种运动参数。控制台可以进一步基于对植入物的位置、植入物的运动或者施加至植入物的力或摩擦力的传感器反馈来调节电极阵列移动。下面例如参照图8讨论植入物的机器人辅助输送和定位的示例。
图8通过示例而非限制的方式示出了用于耳蜗植入物的基于传感器机器人式控制的方法840。方法840是如图7中所示的方法700的步骤740的实施方式。方法840可以被用于操作非植入式机器人控制植入系统例如机器人辅助植入系统100。
一旦在730处将外部定位单元附接至患者,则在841处可以例如经由控制台120的用户接口模块121对运动控制参数进行编程。运动控制参数可以表征植入物的细长构件的期望运动。运动参数的示例可以包括目标移动速率、目标移动方向或取向、目标移动距离、细长构件的远端的目标位置或施加在细长构件上的力的目标量。在一些示例中,可以将预定的植入物输送协议编程至系统中。植入物输送协议限定多个运动参数的目标值。用户可以在植入物输送过程期间调整一个或更多个运动参数,修改现有的植入物输送协议或者切换至不同的植入物输送协议。
在842处,可以将植入物的细长构件馈送至鞘中,并且可以将鞘的远端引入手术部位的入口例如用于耳蜗植入物放置的耳蜗入口。如图3至图4中所示,鞘可以部分地或全部地包围植入物的细长构件以为细长构件提供弹性支撑,从而使植入物保持在从外部定位单元到目标植入部位的手术入口的轨迹上。外科医生可以经由用户接口模块上的用户输入控制或通过外围输入设备例如脚踏板或手持装置使植入物前进通过外部定位单元,直到细长构件的远端尖端与鞘的远端成一直线。然后,可以将鞘的远端定位在耳蜗的入口处。鞘的远端可以固定或可逆地稳定在植入的手术开口的指定位置处。在耳蜗植入物的示例中,通过使管直径与圆窗(RW)龛或耳蜗造口术尺寸紧密匹配使鞘的远端可以稳定在耳蜗RW或耳蜗造口术部位处。
一旦鞘被定位并稳定在适当的位置处,植入物就可以经由控制台或耦接至控制台的外围输入控制中的一个或更多个而机器人式前进。在843处,可以例如通过短按压脚踏板将当前植入位置重置为零。在844处,根据编程的运动控制参数,可以将耳蜗植入物输送并定位至耳蜗区域的目标部位处。植入物的运动可以由外科医生使用控制台上的控制按钮或外围控制装置例如脚踏板或手持装置来启动。可以以预定步长大小的间隔启动植入物的移动。在示例中,对于耳蜗植入物,目标移动速率约为100微米间隔。在示例中,目标移动距离约为1毫米至35毫米。
在植入过程期间,在845处,一个或更多个传感器可以感测关于植入物的位置和运动的信息。传感器可以定位在电动马达、动力传输单元处或在外部定位单元内例如在驱动轮或惯性轮处。传感器的示例可以包括编码器、霍尔效应传感器或者用于检测植入物的位置的可选的传感器、用于检测植入物运动的电容式传感器或用于感测指示在植入物前进期间施加在植入物上的力,例如当植入物进入耳蜗时轴向、横向或径向插入力或摩擦力的参数的力传感器。还可以通过测量提供给电动马达的电流来间接地感测力。
在846处,可以将关于植入物的传感器反馈发送至控制台并输出给用户或过程。在示例中,可以生成所感测到的反馈的人类可感知的呈现,所感测到的反馈包括关于植入物的位置、植入物的运动或施加至植入物运动的力或摩擦力的一个或更多个参数。该呈现可以包括具有与在植入期间遇到的不同类型的事件对应的指定模式的实时视觉或听觉通知。听觉和视觉反馈还可以向用户发信号通知所感测到的植入物位置、运动或力已经超过例如由用户编程的目标参数值。
在847处,检查传感器反馈以确定是否已到达目标植入部位。如果所感测到的插入距离达到指定边界内的用户编程的目标距离,则到达目标植入部位。显示屏上的具有指定颜色或模式的视觉指示器例如发光二极管(LED)或屏幕上可视指示器可以向用户发信号通知植入物成功定位在目标植入部位处。可替选地或另外地,听觉通知,例如蜂鸣声或具有特定音调、频率或特定模式(例如,连续、间歇、脉冲、向上扫频或向下扫频声音)的警报可以发出以向用户发信号通知植入物成功定位在目标植入部位处。
如果在847处未到达目标植入部位,则在844处可以继续输送和定位过程。如果在847处确定已到达目标植入部位,则在848处可以释放植入物并且将植入物定位在目标植入部位处,并且可以移除鞘和外部定位单元。如图4A至图4C中所示,鞘可以包括脱离装置以便于鞘与细长构件的分开,同时避免对植入物的过量的损伤力,以便防止在移除鞘时植入物从植入部位移位。
图9通过示例而非限制的方式示出了用于植入物输送和定位的基于传感器和基于测量的实时控制的方法。与上面讨论的方法840一样,方法940是如图7中所示的方法700的步骤740的实施方式。方法940可以被用于操作非植入式机器人控制植入系统例如机器人辅助植入系统100。在该示例中,方法940包括与方法800相同的操作,外加在945处接收ECoG测量。如上面参照图6B所讨论的,外部定位单元110和/或控制台120可以利用ECoG测量值以有助于控制植入物的定位和输送。如图9中所示,方法940可以包括用于接收ECoG测量的操作,然后在847处可以利用ECoG测量来确定是否到达目标部位。如上所述,可以监测ECoG测量以确定何时到达最佳植入部位或者植入物输送的潜在问题。
图10A至图10B通过示例而非限制的方式示出了外部定位单元的一部分,该外部定位单元被配置成输送和定位导引鞘和植入式电极。类似于图4A至图4C,这些图阐述了图3A至图3B中所示的示例外部定位装置。外部定位单元1000A和1000B示出了对上述外部定位单元的变更以处理电极(细长植入物)以及导引鞘例如插入鞘1002(也称为内部鞘)的定位。类似于上面讨论的系统,外部定位单元1000A/1000B包括可以固定至外部定位单元的导引鞘1003。插入鞘1002和电极植入物1001在导引鞘1003内。图10A至图10B中示出的其他添加是另一组驱动轮和导向轮(参见弹簧加载的鞘轮1031和鞘驱动轮1021以及弹簧加载的电极轮1030和驱动轮1020)。
如上所述,耳蜗内创伤可以由在插入耳蜗植入物电极期间生成的大压力尖峰产生。类似的流体和力尖峰可以从插入耳蜗的任何固体或柔性体、管或鞘中引出。这些压力尖峰可能具有足够的强度以引起类似于听觉冲击伤的创伤的创伤,并且可能是手术后残余听力损失的原因。
类似于由电极插入导致的插入创伤,手动地将鞘或其他固体/管手动插入耳蜗可能导致耳蜗内流体压力尖峰并且导致耳蜗内损伤。为了有助于保持残余听力并防止这些来自手动、未辅助植入的创伤事件,外部定位单元1000A/1000B包括利用机器人辅助台和控制台系统执行导引鞘或插入鞘插入在耳蜗附近或耳蜗中的附加方法。该系统的微机械运动和对植入物、导引鞘或插入鞘的控制用于减少在耳蜗植入期间插入压力和插入力两者的幅度和频率。
在该示例中,导引鞘1003以伸缩方式支承并在内部容纳插入鞘/管1002。插入鞘1002可以在导引鞘1003内和在电极植入物1001上滑动,该电极植入物1001也容纳在导引鞘1003内。插入鞘1002移动通过导引鞘1003(向近侧附接至外部定位单元)并且在管腔内侧上的植入物1001上移动。这使得能够将插入鞘1002和植入物1001两者受控机器人式运动至精细的耳蜗内空间。
该系统能够利用外部定位单元内的两个或更多个耦接单元以协调的外科医生控制方式平行伸缩或旋转移动导引鞘内的插入鞘和植入物两者。可能有两个独立的驱动轮耦接系统,每个驱动轮耦接系统独立地或并行地、协调运动地控制鞘和电极插入。在内部插入鞘的末端插入一定距离之后,弹簧加载的轮将从内部插入鞘脱离并夹紧至内部电极植入物上,该一定距离通过远端耦接单元并从压紧抓握部分移出。然后,经由用户控制的运动参数用相同的驱动轮控制单元机器人式控制现在的直接对接植入物。
图10A示出了与控制插入鞘1002的定位的弹簧加载的鞘轮1031和鞘驱动轮1021接合的插入鞘1002。电极植入物1001由弹簧加载的电极轮1030和电极驱动轮1020接合。在该示例中,当外部定位单元1000A与电极植入物接合时,插入鞘1002可以完全定位。
图10B示出了与外部定位单元1000B内的两个驱动机制接合的插入鞘1002。在该示例中,弹簧加载的鞘轮1031和鞘驱动轮1021以及弹簧加载的电极轮1030和电极驱动轮1020与插入鞘1002接合。在该示例中,插入鞘1002仍然在定位/输送的过程中。
在这些示例中,描述了用于耳蜗植入物插入的系统,但是该方法和系统可以应用于任何薄的圆柱形、管状或细长构件,例如鞘、神经刺激器、电极或导管插入任何身体组织、腔或充满流体的空间。
图11通过示例而非限制的方式示出了用于实时控制植入物和导引鞘输送和定位的方法。与上面讨论的方法840和940一样,方法1140是如图7中所示的方法700的步骤740的实施方式。方法1140可以被用于操作非植入式机器人控制植入系统例如机器人辅助植入系统100。在该示例中,方法1140包括与方法840相同的操作,外加用于监测插入鞘例如插入鞘1002的定位和输送的操作。如所示,方法1140包括用于在1154处输送和/或定位鞘并且在1157处确定鞘是否已到达目标部位的附加操作1154和1157。监测鞘插入可以涉及与电极插入一样使用的类似传感器反馈。另外,方法1140的操作反映了上面参考方法840和940所讨论的那些操作。
图12A至图12C通过示例而非限制的方式示出了外部定位单元1200的一部分的不同视图的图,外部定位单元1200表示如图1中所示的外部定位单元110的实施方式。图12A是外部定位单元1200的透视图。外部定位单元1200包括单元主体1202,以及从单元主体1202延伸的第一臂1203和第二臂1204。单元主体1202以及第一臂1203和第二臂1204容纳机电部件的组件,机电部件互连以接合细长构件301并且将附接至细长构件301的植入物机器人式输送并定位至目标植入部位。外部定位单元1200包括电力或充电线缆1211,以及接收信号以控制马达输出并且因此控制植入物的运动的控制线缆1212和通信线缆1213中的一个或更多个。在示例中,外部定位单元1200可以包括蓄电池作为电源。该蓄电池可以是可再充电电池。第一臂1203和第二臂1204各自可以在其远端处容纳彼此可移动接触的相应耦接单元,例如如上面参照图1至图2所讨论的耦接单元111和211。
如图12A中所示,第一臂1203和第二臂1204各自可以相对于单元主体1202的平面倾斜一定角度,并且可操作地形成开放空间1205以容纳细长构件301中的至少一部分。在各种示例中,第一臂1203和第二臂1204可以是相对于不同轴倾斜的多个自由度。倾斜的臂和中间的开放空间还可以允许细长构件301纵向移动而不受单元主体1202干扰。
图12B是外部定位单元1200的剖视图,该剖视图示出了由壳体1210包围的机电组件。单元主体1202容纳电动马达1242,该电动马达1242可以根据例如由控制台120提供并且通过控制和通信电缆1212传输的运动控制信号生成驱动力和运动。电动马达1242耦接至动力传输单元1244,该动力传输单元1244表示如图2中所示的动力传输单元232的实施方式。通过示例而非限制的方式,动力传输单元1244可以包括通过皮带(未示出)连接的一系列皮带轮。皮带轮的旋转可以将动力传输至包围在第一臂1203中的驱动轮1220。类似于图3A中的驱动轮320,驱动轮1220可以在牢固地附接至壳体1210的轴上旋转。
包围在第二臂1204中的可以包括惯性轮1230,惯性轮1230是图3A中的惯性轮320的实施方式。惯性轮1230可以耦接至偏置系统,该偏置系统包括耦接至扭转弹簧1252的弹簧加载杆1254。第二臂1204可以另外容纳感测运动参数的传感器。图12C示出了这样的传感器的实施方式。编码器传感器1231可以经由附接至惯性轮1230的编码器轮1232感测惯性轮1230的旋转(因此细长构件301的运动参数)。编码器传感器1231的示例可以包括光学传感器、电容式传感器或基于霍尔效应的传感器。弹簧加载杆1254通过弹簧偏置1256可以支承惯性轮1230,并且相对于驱动轮1220提供横向压紧。由扭转弹簧1252生成的张力可以经由弹簧加载杆1254传递至惯性轮1230,并且相对于驱动轮1220压紧以在细长构件301上生成足够的摩擦力。根据输入至马达1242的运动控制信号,动力传输单元1244可以驱动驱动轮1220的旋转,这又以特定速率向特定方向(例如,向前或向后)推进植入物。如图12B中所示,扭转弹簧1252可以耦接至按钮1252,按钮1252允许用户控制弹簧张力。例如,用户可以按下按钮1252以释放压紧并且远离驱动轮320打开惯性轮1230。在一些示例中,压紧的释放可以允许用户容易地远离第一臂1203移动第二臂1204。然后,用户可以移除细长构件301,或者将具有细长构件的另一植入物装载至外部定位单元1200中。因为惯性轮1230通过偏置系统保持在适当的位置处,所以惯性轮1230可以相对于壳体1210横向移动,因此可以容纳具有各种直径或截面形状的细长构件,同时在细长构件上保持足够的摩擦力以实现期望的运动。
图13A至图13B通过示例而非限制的方式示出了外部定位单元1200的耦接至可移除的导引鞘1360的一部分的图。导引鞘1360表示鞘360或460A至460C之一的实施方式。在所示的示例中,导引鞘1360包括两个单独的部分1360A和1360B,这两个单独的部分1360A和1360B分别可移除地附接至第一臂1203和第二臂1204。图13A示出了处于打开位置的鞘部分1360A和1360B。当第二臂1204例如经由弹簧加载杆1254中的弹簧机制远离第一臂1203移动时,附接至第二臂1204的鞘部分1360B可以被分开并远离鞘部分1360A移动。图13B示出了处于闭合位置的鞘部分1360A和1360B,这可以通过朝向第一臂1203移动第二臂1204来实现。闭合位置可以通过由弹簧加载杆1254提供的压紧来保持。鞘部分1360A和1360B的闭合可以至少部分地包围细长构件301以向植入物的细长构件301提供弹性支承,防止植入物由于插入装置的受控力而弯曲,并且在导引植入物输送期间使植入物保持在轨迹上,例如插入植入部位。一旦植入物完全插入,可以例如通过线性穿孔撕开安全地移除导引鞘1360。在耳蜗植入物的示例中,导引鞘1360A至1360B是柔性的以将远端导引至圆窗或耳蜗造口术插入部位。
在一些示例中,如图13B中所示,感测探头1370可以附接至导引鞘1360以测量生理信号,例如耳蜗植入期间的耳蜗电图(EcoG)。在示例中,感测探头1370可以包括导电线,该导电线包括在鞘材料中或者经由单独的鞘通道。通过示例而非限制的方式,导线可以由铂、钯、铱、金或合金制成。导线具有暴露的远端电极,该远端电极经由球形尖端或线环端部与圆窗龛处的骨架直接接触。该感测电极或探头在其近端处与主插入系统单元处理器对接作为集成的感测电极。经由圆窗处的感测电极尖端获得的EcoG测量可以用作生理反馈以优化耳蜗植入物电极的插入系统控制和定位。
图14通过示例而非限制的方式示出了安装在可调节臂1420上的外部定位单元1410的图。如图14中所示,可调节臂1420可以是中空的、柔性的、可延展的臂例如鹅颈管。可调节臂1420被配置成允许用户在插入细长构件301之前定位轨迹。外部定位单元1410表示外部定位单元300A、300B、500之一或其变型的实施方式,并且可以经由可拆卸的联接器附接至可调节臂1420的远端1422。鹅颈管是柔性的、也是刚性的且可调节的以将外部定位单元1410相对于患者保持在空间中的用户手动设置的位置处。在示例中,外部定位单元1200的第一臂1203和第二臂1204中的一个或更多个可以采用如图14中所示的鹅颈管的形式。鹅颈管可以支承远端耦接单元(例如,驱动轮1220和惯性轮1230)并保持其位置,并且用作内部线缆的导管。在各种示例中,马达1242、动力传输单元1244和驱动缆线(例如旋转轴356)中的至少一部分可以容纳在柔性鹅颈管的中空空间内,该中空空间向下蛇行至远端处的耦接单元。这将为外科医生提供灵活性以机械地调整细长构件301的插入的轨迹。
在上面的附图中示出了各种实施方式。可以组合这些实施方式中的一个或更多个实施方式的一个或更多个特征以形成其他实施方式。
本文描述的方法示例可以至少部分地是机器或计算机实现的。一些示例可以包括编码有指令的计算机可读介质或机器可读介质,所述指令可操作以配置电子设备或系统来执行如以上示例中描述的方法。这些方法的实现可以包括代码例如微代码、汇编语言代码、更高级语言代码等。此类代码可以包括用于执行各种方法的计算机可读指令。代码可以形成计算机编程产品的部分。此外,代码可以在执行期间或在其他时间有形地存储在一个或更多个易失性或非易失性计算机可读介质上。
上面的具体实施方式旨在是说明性的而非是限制性的。因此,本公开内容的范围应该参考所附权利要求与这些权利要求所赋予的等同物的全部范围一起来确定。

Claims (15)

1.一种用于将植入物机器人辅助地植入患者体内的系统,所述系统包括:
外部定位单元(110;210;300A;300B),其包括耦接单元(111),所述耦接单元具有至少两个滚轮,所述至少两个滚轮被布置和被配置成接合所述植入物的细长构件(301)的至少一部分并且将所述植入物机器人式输送并定位至目标植入部位;
控制台(120),其通信上耦接至所述外部定位单元,所述控制台包括控制器电路(122),所述控制器电路被配置成根据特定的运动控制指令生成用于控制所述外部定位单元以将所述植入物机器人式输送并定位至所述目标植入部位的运动控制信号;以及
马达(342),其包括在所述外部定位单元或所述控制台中,
其中,所述耦接单元(111)被配置成通过所述至少两个滚轮的相应径向外表面之间的压紧来接合所述细长构件(301),并且
其中,所述马达(342)经由动力传输单元(232)耦接至所述至少两个滚轮中的至少一个滚轮以驱动所述至少两个滚轮的旋转,所述马达被配置成响应于所述运动控制信号驱动所述至少两个滚轮中的至少一个滚轮旋转以摩擦地移动所述细长构件(301)。
2.根据权利要求1所述的系统,其中,所述植入物包括耳蜗植入物,所述耳蜗植入物具有布置在所述细长构件(301)上的电极阵列。
3.根据权利要求1或2所述的系统,其中,所述至少两个滚轮中的至少一个滚轮包括覆盖有摩擦材料的径向外表面。
4.根据权利要求3所述的系统,其中,所述至少两个滚轮中的至少一个滚轮具有具有径向凹入轮廓的径向外表面。
5.根据权利要求1或2所述的系统,还包括用于给所述马达(342)供电的可再充电电源(233)。
6.根据权利要求1或2所述的系统,其中,所述马达(342)包括在所述控制台(120)中并且经由在所述控制台(120)与所述外部定位单元(300B)之间延伸的轴(356)耦接至所述至少两个滚轮中的所述至少一个滚轮。
7.根据权利要求1或2所述的系统,还包括第一马达(231A)和第二马达(231B),其中,所述外部定位单元包括第一耦接单元(211A)和第二耦接单元(211B),每个耦接单元与所述植入物的细长构件的相应部分对接,并且其中:
所述第一马达(231A)经由第一动力传输单元(232A)耦接至所述第一耦接单元(211A)以驱使所述细长构件的平移运动;并且
所述第二马达(231B)经由第二动力传输单元(232B)耦接至所述第二耦接单元(211B)以驱使所述细长构件的旋转运动。
8.根据权利要求1或2所述的系统,还包括手动驱动轮(510),所述手动驱动轮耦接至所述至少两个滚轮中的至少一个滚轮,所述手动驱动轮被配置成能够手动旋转所述至少两个滚轮中的所述至少一个滚轮。
9.根据权利要求2所述的系统,还包括鞘(360),所述鞘从所述外部定位单元延伸至所述目标植入部位的手术入口,所述鞘被配置成至少部分地包围所述细长构件(301)以在植入期间为所述电极阵列提供弹性支承。
10.根据权利要求1或2所述的系统,其中,由所述控制器电路(122)生成的所述运动控制信号控制所述马达(342)以调节所述细长构件(301)的一个或更多个运动参数,所述一个或更多个运动参数包括:
移动速率;
移动方向或取向;
移动距离;
所述细长构件的远端的位置;或者
施加在所述细长构件上的力的量。
11.根据权利要求1或2所述的系统,其中,所述运动控制指令还包括可选择地启用用于所述植入物的细长构件的机器人辅助运动控制的机器人模式或者用于所述植入物的细长构件的手动运动控制的手动超驰模式。
12.根据权利要求1或2所述的系统,还包括一个或更多个传感器(235,212),所述一个或更多个传感器被配置成感测所述植入物在植入期间的一个或更多个运动参数,其中,所述控制台(120)被配置成根据所感测到的一个或更多个运动参数控制所述外部定位单元以推进所述植入物的细长构件(301)。
13.一种用于机器人辅助地植入植入物的非植入式装置,所述植入物具有布置在细长构件上的电极阵列,所述装置包括:
外部定位单元,其包括至少两个滚轮,所述至少两个滚轮被布置成在所述至少两个滚轮中的每个滚轮的径向外表面的部分之间压紧所述植入物的细长构件的至少一部分以在所述细长构件上传输平移力或旋转力;以及
马达,其被配置成响应于运动控制信号机器人式驱动所述至少两个滚轮中的至少一个滚轮以摩擦地移动所述细长构件。
14.根据权利要求13所述的非植入式装置,其中,所述外部定位单元还包括以下中的一个或更多个:
动力传输单元,其与所述马达和所述至少两个滚轮中的所述至少一个滚轮相互作用;或
通信器电路,其被配置成接收用于控制所述马达的所述运动控制信号。
15.根据权利要求13或14所述的非植入式装置,其中,所述外部定位单元还包括一个或更多个传感器,所述一个或更多个传感器被配置成感测所述植入物在植入期间的一个或更多个运动参数。
CN201880011446.0A 2017-02-14 2018-02-14 模块化植入物输送和定位系统 Active CN110430918B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310560680.1A CN116712667A (zh) 2017-02-14 2018-02-14 模块化植入物输送和定位系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762458846P 2017-02-14 2017-02-14
US62/458,846 2017-02-14
US201762573487P 2017-10-17 2017-10-17
US62/573,487 2017-10-17
PCT/US2018/018182 WO2018152203A2 (en) 2017-02-14 2018-02-14 Modular implant delivery and positioning system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310560680.1A Division CN116712667A (zh) 2017-02-14 2018-02-14 模块化植入物输送和定位系统

Publications (2)

Publication Number Publication Date
CN110430918A CN110430918A (zh) 2019-11-08
CN110430918B true CN110430918B (zh) 2023-06-13

Family

ID=61283399

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310560680.1A Pending CN116712667A (zh) 2017-02-14 2018-02-14 模块化植入物输送和定位系统
CN201880011446.0A Active CN110430918B (zh) 2017-02-14 2018-02-14 模块化植入物输送和定位系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310560680.1A Pending CN116712667A (zh) 2017-02-14 2018-02-14 模块化植入物输送和定位系统

Country Status (4)

Country Link
US (2) US10987513B2 (zh)
EP (2) EP4249042A3 (zh)
CN (2) CN116712667A (zh)
WO (1) WO2018152203A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017048342A1 (en) 2015-09-14 2017-03-23 University Of Iowa Research Foundation Controlled position electrode array
US12011594B2 (en) 2015-09-14 2024-06-18 Iotamotion, Inc. Modular implant delivery and positioning system
CN116712667A (zh) 2017-02-14 2023-09-08 约塔莫绅有限公司 模块化植入物输送和定位系统
WO2019173107A1 (en) * 2018-03-09 2019-09-12 Iotamotion, Inc. Dynamically controlled soft tissue manipulator
US10945761B2 (en) 2017-02-14 2021-03-16 Iotamotion, Inc. Modular implant delivery and positioning system
CN113195045A (zh) * 2018-10-01 2021-07-30 约塔莫绅有限公司 模块化植入物位置操纵器系统
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
USD978348S1 (en) * 2019-08-15 2023-02-14 Auris Health, Inc. Drive device for a medical instrument
CN115038398A (zh) 2019-09-30 2022-09-09 约塔莫绅有限公司 模块化植入物输送和定位系统
EP3900779A1 (en) 2020-04-21 2021-10-27 Cochlear Limited Sensory substitution
CN113058156B (zh) * 2020-05-26 2021-12-07 复旦大学 一种人工耳蜗的植入装置
CN111739667A (zh) * 2020-07-22 2020-10-02 三门核电有限公司 一种用于内窥镜及远距离打捞工具位置微调的装置
US20230301733A1 (en) * 2020-07-30 2023-09-28 Cascination Ag System and Method for Insertion of a Cochlear Implant
US20230346538A1 (en) 2020-10-07 2023-11-02 Canary Medical Switzerland Ag Providing medical devices with sensing functionality
CN113599722B (zh) * 2021-08-03 2024-04-09 中科领航医疗科技有限公司 一种手术导航与放射性植入系统用植入针夹具及使用方法
WO2023230138A1 (en) * 2022-05-25 2023-11-30 Boston Scientific Scimed, Inc. Attachment mechanism for using an endoscope with a surgical robot
WO2023245167A2 (en) * 2022-06-17 2023-12-21 Iotamotion, Inc. Systems and methods for manipulation of perimodiolar electrode arrays
US12024330B1 (en) * 2022-10-18 2024-07-02 Rope Bag Solutions Llc Device and method for stuffing throw bags and life safety bags

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383532A (en) * 1980-10-14 1983-05-17 Medtronic, Inc. Epidural lead advancer
US4637404A (en) * 1983-10-20 1987-01-20 Gessman Lawrence J Method and apparatus for converting a catheter to a cardiac pacing electrode
CN101460219A (zh) * 2006-06-09 2009-06-17 Med-El电气医疗器械有限公司 用于人工耳蜗的扣式处理器
EP2113283A1 (en) * 2008-04-30 2009-11-04 Medizinische Hochschule Hannover System for insertion of an implant

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610877A (en) * 1970-01-02 1971-10-05 John J Driscoll Flexible electrode structure
US4532930A (en) 1983-04-11 1985-08-06 Commonwealth Of Australia, Dept. Of Science & Technology Cochlear implant system for an auditory prosthesis
US5201765A (en) 1991-09-20 1993-04-13 Xomed-Treace Inc. Vocal cord medialization prosthesis
US5306298A (en) 1993-02-16 1994-04-26 Godley Iii Frederick A Adjustable laryngoplasty device
KR970002997B1 (ko) 1993-05-04 1997-03-13 대우전자 주식회사 투사형화상표시장치용 광로조절장치의 제조방법
US5593439A (en) 1995-05-22 1997-01-14 Johns Hopkins University Vocal cord lateralization and medialization device and method
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
WO2001058388A1 (en) 2000-02-10 2001-08-16 Potencia Medical Ag Urinary incontinence treatment with wireless energy supply
JP5124074B2 (ja) * 2000-06-30 2013-01-23 コクレア リミテッド 蝸牛インプラント
JP4105953B2 (ja) 2001-03-19 2008-06-25 コックリアー,リミテッド 電極アレイ用挿入ツールシステム
EP1408846B1 (en) * 2001-06-29 2012-03-07 Intuitive Surgical Operations, Inc. Platform link wrist mechanism
AUPR851601A0 (en) 2001-10-26 2001-11-29 Cochlear Limited Auditory midbrain implant
CA2473041A1 (en) 2002-02-22 2003-08-28 Cochlear Limited An insertion device for an electrode array
AU2003900773A0 (en) 2003-02-21 2003-03-13 Cochlear Limited Telescopic array for a cochlear implant
US8229574B2 (en) 2003-02-21 2012-07-24 Cochlear Limited Telescopic electrode array
AU2003901852A0 (en) 2003-04-16 2003-05-01 Cochlear Limited Cochlear electrode array
WO2005097255A1 (en) 2004-04-02 2005-10-20 Advanced Bionics Corporation Electric and acoustic stimulation fitting systems and methods
US8116886B2 (en) 2005-10-14 2012-02-14 The Trustees Of Columbia University In The City Of New York Electrode arrays and systems for inserting same
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
US20080188931A1 (en) 2006-11-01 2008-08-07 Seoul National University Hospital Cricoid wedge implant
WO2008126087A2 (en) 2007-04-13 2008-10-23 Technion Research & Development Foundation Ltd. Vibrating robotic crawler
US20120041531A1 (en) 2007-11-30 2012-02-16 Cochlear Limited Cochlear implant with improved lumen arrangement
US8010210B2 (en) 2008-04-30 2011-08-30 Medizinische Hochschule Hannover Apparatus and system for insertion of an implant
JP5403785B2 (ja) * 2008-10-15 2014-01-29 国立大学法人 名古屋工業大学 挿入装置
US8594799B2 (en) * 2008-10-31 2013-11-26 Advanced Bionics Cochlear electrode insertion
US8260437B2 (en) 2009-10-28 2012-09-04 New York University Cochlear implant with improved electrode array and controller
WO2011053766A1 (en) * 2009-10-30 2011-05-05 Advanced Bionics, Llc Steerable stylet
US9656058B2 (en) 2010-02-17 2017-05-23 University Of Utah Research Foundation Cochlear implant insertion method and system
EP2539017A4 (en) 2010-02-22 2015-11-04 Univ Houston NEUTRAL PARTICLE NUMBER MODEL FOR NON-PALM MULTIMODAL NERVO STONES
US8886331B2 (en) 2010-06-25 2014-11-11 Vanderbilt University Apparatus and methods for percutaneous cochlear implantation
WO2012010783A1 (fr) 2010-07-19 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Outil d'insertion d'objets tubulaires fins dans la cochlée
US20120041515A1 (en) * 2010-08-16 2012-02-16 Werner Meskens Wireless remote device for a hearing prosthesis
AU2011305508B2 (en) 2010-09-21 2015-07-09 The Johns Hopkins University Method and apparatus for cochlear implant surgery
US8613767B2 (en) 2010-12-13 2013-12-24 Wisconsin Alumni Research Foundation Laryngeal implant for treating glottic insufficiency
US20140358174A1 (en) 2012-01-25 2014-12-04 Chuladatta Thenuwara Intraneural Implant
EP2825244A4 (en) 2012-03-15 2016-07-27 Med El Elektromed Geraete Gmbh ACCESSORY DEVICE FOR THE DELIVERY OF MEDICAMENT TO THE INTERNAL EAR
US9020613B2 (en) 2012-05-01 2015-04-28 The Johns Hopkins University Method and apparatus for robotically assisted cochlear implant surgery
DE102012207707A1 (de) * 2012-05-09 2013-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Minimalinvasives Instrument für die robotische Chirurgie
EP2858714B1 (en) 2012-06-08 2019-08-21 MED-EL Elektromedizinische Geräte GmbH Electrode with movable insertion stopper
US9226796B2 (en) * 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
US9486209B2 (en) * 2012-12-13 2016-11-08 Ethicon Endo-Surgery, Llc Transmission for driving circular needle
US9675446B2 (en) 2013-03-04 2017-06-13 University of Pittsburgh—of the Commonwealth System of Higher Education Prosthetic implant for medialization thyroplasty
US10376672B2 (en) 2013-03-15 2019-08-13 Auris Health, Inc. Catheter insertion system and method of fabrication
JP5738913B2 (ja) * 2013-03-25 2015-06-24 トヨタ自動車株式会社 粉体供給装置および電極製造装置
US20140350640A1 (en) 2013-05-22 2014-11-27 Jim Patrick Implantable Medical Device and Tool Sensors
EP3024536A4 (en) 2013-07-26 2017-03-01 MED-EL Elektromedizinische Geräte GmbH Cochlear implant electrode insertion support device
EP3024537B1 (en) 2013-07-26 2018-10-10 MED-EL Elektromedizinische Geräte GmbH Cochlear implant electrode insertion bridge
CN105636561B (zh) 2013-10-15 2017-07-04 Med-El电气医疗器械有限公司 可展开和多段听觉植入电极
US9333361B2 (en) * 2013-10-31 2016-05-10 Boston Scientific Neuromodulation Corporation System and method to automatically incorporate lead information from medical image into programmable user interface
US9433340B2 (en) 2014-05-30 2016-09-06 Endoscopic Innovations LLC System and method for rapid shuttling of tools through endoscopes
US9700408B1 (en) 2014-06-04 2017-07-11 Robert T. Sataloff Thyroplasty implant
EP3180074B1 (en) 2014-08-11 2018-07-04 Medtronic, Inc. Mechanical feedthroughs for implantable medical device
DE102015101482B3 (de) 2015-02-02 2016-05-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektroakustisches Implantat
WO2017048342A1 (en) 2015-09-14 2017-03-23 University Of Iowa Research Foundation Controlled position electrode array
CN111437062B (zh) 2016-04-08 2022-12-13 阿普力特医疗股份有限公司 用于治疗患者声门闭合不全的植入系统
WO2017204314A1 (ja) * 2016-05-26 2017-11-30 MakeWay合同会社 内視鏡及び処置具駆動モジュール
CH712611A1 (de) 2016-06-28 2017-12-29 Med Karl Pieper Dr Gerät zum gesteuerten Befördern eines Katheters, Lichtleiters oder Kabels.
WO2019173107A1 (en) 2018-03-09 2019-09-12 Iotamotion, Inc. Dynamically controlled soft tissue manipulator
CN116712667A (zh) 2017-02-14 2023-09-08 约塔莫绅有限公司 模块化植入物输送和定位系统
US10945761B2 (en) 2017-02-14 2021-03-16 Iotamotion, Inc. Modular implant delivery and positioning system
US20180242967A1 (en) 2017-02-26 2018-08-30 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US10292698B2 (en) 2017-07-27 2019-05-21 Endoevolution, Llc Apparatus and method for minimally invasive suturing
JP6777694B2 (ja) 2018-08-28 2020-10-28 株式会社メディカロイド 内視鏡アダプタ
US20200329950A1 (en) 2019-04-19 2020-10-22 William Shear Endoscope Instrumentation Drive System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383532A (en) * 1980-10-14 1983-05-17 Medtronic, Inc. Epidural lead advancer
US4637404A (en) * 1983-10-20 1987-01-20 Gessman Lawrence J Method and apparatus for converting a catheter to a cardiac pacing electrode
CN101460219A (zh) * 2006-06-09 2009-06-17 Med-El电气医疗器械有限公司 用于人工耳蜗的扣式处理器
EP2113283A1 (en) * 2008-04-30 2009-11-04 Medizinische Hochschule Hannover System for insertion of an implant

Also Published As

Publication number Publication date
US11167137B2 (en) 2021-11-09
EP4249042A2 (en) 2023-09-27
EP3582849B1 (en) 2023-08-30
US20200046978A1 (en) 2020-02-13
WO2018152203A2 (en) 2018-08-23
EP3582849A2 (en) 2019-12-25
WO2018152203A3 (en) 2018-10-18
CN110430918A (zh) 2019-11-08
EP4249042A3 (en) 2023-11-29
US10987513B2 (en) 2021-04-27
US20210187295A1 (en) 2021-06-24
CN116712667A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN110430918B (zh) 模块化植入物输送和定位系统
US12042173B2 (en) Modular implant delivery and positioning system
AU2019231573B2 (en) Dynamically controlled soft tissue manipulator
US12011594B2 (en) Modular implant delivery and positioning system
US8594799B2 (en) Cochlear electrode insertion
US8068910B2 (en) Flexible tube sensor for sensing urinary sphincter pressure
US7328070B2 (en) Multi-tube sensor for sensing urinary sphincter and urethral pressure
US7610093B2 (en) Implantable optical pressure sensor for sensing urinary sphincter pressure
AU2022204856B2 (en) Modular implant position manipulator system
CN111565789B (zh) 用于神经调节的系统
WO2024229133A1 (en) Modular implant delivery and positioning system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40015998

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant