CN110428975A - A kind of overload-resistant impact sensing capacitor based on elastomer - Google Patents

A kind of overload-resistant impact sensing capacitor based on elastomer Download PDF

Info

Publication number
CN110428975A
CN110428975A CN201910599758.4A CN201910599758A CN110428975A CN 110428975 A CN110428975 A CN 110428975A CN 201910599758 A CN201910599758 A CN 201910599758A CN 110428975 A CN110428975 A CN 110428975A
Authority
CN
China
Prior art keywords
metal collector
inactive metal
elastomer
inactive
overload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910599758.4A
Other languages
Chinese (zh)
Inventor
王晓峰
周雷臻
李滨
戴伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua Research Institute Of Pearl River Delta
Guangzhou Guanghua Fine Energy Technology Co Ltd
Original Assignee
Tsinghua Research Institute Of Pearl River Delta
Guangzhou Guanghua Fine Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua Research Institute Of Pearl River Delta, Guangzhou Guanghua Fine Energy Technology Co Ltd filed Critical Tsinghua Research Institute Of Pearl River Delta
Priority to CN201910599758.4A priority Critical patent/CN110428975A/en
Publication of CN110428975A publication Critical patent/CN110428975A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The invention discloses a kind of overload-resistant impact sensing capacitor based on elastomer, including capacitor core and shell, in the shell by high-intensity resin encapsulating, the material of shell is hard metal material to capacitor core;Capacitor core includes: that the first inactive metal collector, the first elastic support, vacuum liquid-absorbing module, the second elastic support and the second inactive metal collector pass sequentially through stacked in layers and connect to obtain laminated structure;Elastic support includes elastomer and energy-storage module, and energy-storage module is filled in inside elastomer, and energy-storage module includes that the first elastic piezoresistive electrodes, PTFE diaphragm and the second elastic piezoresistive electrodes pass sequentially through stacked in layers and obtain laminated structure;Vacuum liquid-absorbing module includes that the inactive metal collector of third, the 4th inactive metal collector pass sequentially through stacked in layers with the 5th inactive metal collector and connect to obtain laminated structure.

Description

A kind of overload-resistant impact sensing capacitor based on elastomer
Technical field
The present invention relates to new material and field of new energy technologies more particularly to a kind of overload-resistant impacts based on elastomer Sensing capacitor.
Background technique
The double electric layers supercapacitor of one of current most popular supercapacitor: when to electrode charge, positive negative electricity Pole surface charge will attract the counter ions in surrounding electrolyte solution, keep these ionic adsorptions double electric in being formed on electrode surface Lotus layer, constitutes electric double layer super capacitor, to realize energy storage;
Above-mentioned capacitor only there is energy-storage function to need to be provided simultaneously with energy storage and sensing without having sensing function In the case where function, generallys use traditional sensors part and energize the shared mode of device, this method will lead to system bulk It is larger, it is unfavorable for whole miniaturization, and be easy to occur because each section impact resistance is poor under high overload impact condition Energy storage failure.
Therefore, need at present it is a kind of with energy storage and power capability can sensing capacitor, realize energy storage and sensing function In the case where improve response sensitivity, and improve impact resistance.
Summary of the invention
The present invention provides a kind of overload-resistant impact sensing capacitor based on elastomer, to solve existing capacitor Do not have sensing capability, and the technical issues of energy storage is failed occurs for high overload, so that storage can be achieved at the same time by constructing one kind Can and sensing function without external sensor part can sensing capacitor, and using elastomer as compression supporter, And use hard metal shell and high-intensity resin encapsulating, realize can sensing capacitor enhance in the case where being under pressure Impact resistance.
In order to solve the above-mentioned technical problem, the embodiment of the invention provides a kind of, and the overload-resistant impact based on elastomer passes Inductance capacitor, including capacitor core and shell, the capacitor core pass through high-intensity resin encapsulating in the housing, described outer The material of shell is hard metal material;
The capacitor core includes: the first inactive metal collector, the first elastic support, vacuum liquid-absorbing module, Two elastic supports and the second inactive metal collector;The first inactive metal collector, first resilient support Body, the vacuum liquid-absorbing module, second elastic support and the second inactive metal collector pass sequentially through stratiform It stacks connection and obtains laminated structure;The elastic support includes elastomer and energy-storage module, the energy-storage module filling Inside the elastomer, the energy-storage module includes the first elastic piezoresistive electrodes, PTFE diaphragm and the second elastic pressure drag electricity Pole, the described first elastic piezoresistive electrodes, the PTFE diaphragm and the second elastic piezoresistive electrodes pass sequentially through stacked in layers and obtain To laminated structure;The vacuum liquid-absorbing module include the inactive metal collector of third, the 4th inactive metal collector and 5th inactive metal collector, the inactive metal collector of the third, the 4th inactive metal collector and described 5th inactive metal collector passes sequentially through stacked in layers and connects to obtain laminated structure.
Preferably, between the described first inactive metal collector and first elastic support, described Between one elastic support and the vacuum liquid-absorbing module, between the vacuum liquid-absorbing module and second elastic support, And between second elastic support and the second inactive metal collector, bonding formation is carried out by adhesive Point glue-line.
Preferably, between the inactive metal collector of the third and the 4th inactive metal collector, Between the 4th inactive metal collector and the 5th inactive metal collector, bonding shape is carried out by adhesive At a glue-line.
Preferably, between the inactive metal collector of the third and the 4th inactive metal collector The second dispensing between first glue-line and the 4th inactive metal collector and the 5th inactive metal collector Layer, all has notch.
Preferably, the notch on first glue-line and the direction of the gap position on the second point glue-line one It causes.
Preferably, the inactive metal collector of the third and the 5th inactive metal collector are ring Shape structure;The 4th inactive metal collector is laminated structure.
Preferably, the elastomer is ring structure.
Preferably, the shape of the supercapacitor includes round, rectangular, triangle or various obform bodies.
Preferably, the elastic support and the vacuum liquid-absorbing module by the increase of internal series-connection quantity and It reduces, the operating voltage and capacitance of control device, sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be fitted For more application scenarios.
Compared with the prior art, the embodiment of the present invention has the following beneficial effects:
By constructing a kind of energy storage and sensing function passing without external sensor part can be achieved at the same time in the present invention Inductance capacitor, and using elastomer as compression supporter, and hard metal shell and high-intensity resin encapsulating are used, solution Certainly existing capacitor does not have sensing capability, and the skill that energy storage is failed is occurred by pressure decline and high overload for response sensitivity Art problem, thus realize can sensing capacitor kept in the case where being under pressure energy storage response sensitivity and enhancing shock resistance Ability.
Detailed description of the invention
Fig. 1: for the overload-resistant impact sensing capacitor overall structure diagram in the embodiment of the present invention;
Fig. 2: for the structural schematic diagram of the vacuum liquid-absorbing module in the embodiment of the present invention;
Fig. 3: for the schematic illustration of the realization sensing effect in the embodiment of the present invention.
Specific embodiment
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
Fig. 1 is please referred to, the preferred embodiment of the present invention provides a kind of overload-resistant impact sensing capacitance based on elastomer Device, including capacitor core and shell, the capacitor core pass through high-intensity resin encapsulating in the housing, the material of the shell Matter is hard metal material;
The capacitor core includes: the first inactive metal collector, the first elastic support, vacuum liquid-absorbing module, Two elastic supports and the second inactive metal collector;The first inactive metal collector, first resilient support Body, the vacuum liquid-absorbing module, second elastic support and the second inactive metal collector pass sequentially through stratiform It stacks connection and obtains laminated structure;The elastic support includes elastomer and energy-storage module, the energy-storage module filling Inside the elastomer, the energy-storage module includes the first elastic piezoresistive electrodes, PTFE diaphragm and the second elastic pressure drag electricity Pole, the described first elastic piezoresistive electrodes, the PTFE diaphragm and the second elastic piezoresistive electrodes pass sequentially through stacked in layers and obtain To laminated structure;The vacuum liquid-absorbing module include the inactive metal collector of third, the 4th inactive metal collector and 5th inactive metal collector, the inactive metal collector of the third, the 4th inactive metal collector and described 5th inactive metal collector passes sequentially through stacked in layers and connects to obtain laminated structure.
In the present embodiment, between the described first inactive metal collector and first elastic support, described Between one elastic support and the vacuum liquid-absorbing module, between the vacuum liquid-absorbing module and second elastic support, And between second elastic support and the second inactive metal collector, bonding formation is carried out by adhesive Point glue-line.
Device using laminated structure design, by inactive metal collector, elastic support and vacuum liquid-absorbing module into Row stacked in layers, interlayer are bonded using adhesive, the specific structure such as following figure, and top layer is that surface is sintered inactive metal afflux Body, as a pole of device, next layer is annular elastomer, is piezoresistive electrodes and PTFE diaphragm inside ring-shaped rubber, then under Layer is vacuum liquid-absorbing module, then lower layer is annular elastomer, and lowest level is inactive metal collector as the another of device Pole is all made of adhesive bonding between each layer.
In the present embodiment, the elastomer is ring structure.
It fixes and seals by annular resilient supporter outside energy-storage module, inside uses laminated construction, is always divided into Three layers, upper layer is elastic piezoresistive electrodes, and middle layer is PTFE diaphragm, and lower layer is also elastic piezoresistive electrodes, by energy-storage module with this Structure filling is having inside elastic support made from elastomer, provides the energy storage capacity and pressure of double electric layers supercapacitor The sensing capability of electric-type sensor and piezoresistive transducer.
In the present embodiment, between the inactive metal collector of the third and the 4th inactive metal collector, Between the 4th inactive metal collector and the 5th inactive metal collector, bonding shape is carried out by adhesive At a glue-line.
In the present embodiment, between the inactive metal collector of the third and the 4th inactive metal collector The second dispensing between first glue-line and the 4th inactive metal collector and the 5th inactive metal collector Layer, all has notch.
In the present embodiment, the notch on first glue-line and the direction of the gap position on the second point glue-line one It causes.
In the present embodiment, the inactive metal collector of the third and the 5th inactive metal collector are ring Shape structure;The 4th inactive metal collector is laminated structure.
Referring to figure 2., vacuum liquid-absorbing inside modules structure: top layer is sintered inactive metal afflux using annular surface Body, middle layer use sheet collector, and upper layer and middle layer are bonded using hot melt adhesive dispensing mode, and when dispensing designs one For section notch as vacuum liquid-absorbing mouth, lowest level also uses annular surface to be sintered inactive metal collector, and interlayer is also scarce using having The point glue-line of mouth is bonded, and notch direction is consistent with upper layer dispensing break mouth direction.
In the present embodiment, the shape of the supercapacitor includes round, rectangular, triangle or various obform bodies.Device Part can be made by using titanium alloy collector of different shapes, elastomer elastic support, round, rectangular, triangle Equal various shapes realize the shape customization of device.
In the present embodiment, the elastic support and the vacuum liquid-absorbing module by the increase of internal series-connection quantity and It reduces, the operating voltage and capacitance of control device, sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be fitted For more application scenarios.
To adapt to different application scenarios, need to produce the device that can be used under the conditions of different voltages, the present invention Can by way of controlling internal series-connection module number control device operating voltage and capacitance, and increase can be passed through Or reduce control of the concatenated module realization to sensing measurement range
As described in Figure 3, using device when being impacted, the voltage jump of generation reaches sensing effect.In discharge process In, device is impacted, after device is impacted, whole deformation occurs, causes piezoelectricity, pressure drag, capacitor, electric chemical formula sensing principle Response forms voltage jump, reaches sensing effect.
Supercapacitor of the present invention realize energy storage device from sensing function, by using pressure drag in supercapacitor Formula active carbon elasticity piezoresistive electrodes and PTFE diaphragm realize pressure drag function, and shape when being impacted using elastic support Variation and the internal flow of electrolyte realize condenser type and electric chemical formula sensing function;
Supercapacitor of the present invention also achieves the self-powered function of senser element, by inside using activated carbon electrodes Laminated structure realizes the energy storage of double electric layers supercapacitor, by using the inactive metal system in surface and internal string certainly The laminated construction of connection realizes the energy storage of electric double layer capacitance supercapacitor.
Supercapacitor of the present invention also achieves the continuous sensitive response to the impact of high frequency high overload;It realizes and passes through pole piece The different selections of diaphragm, using different energy storage or sensing principle;The shape for realizing device special-shaped can customize, using not similar shape Device can be made into different shape by the inactive metal collector and rubber washer of shape, be applicable in different application scenarios and environment; Freely adjusting for the voltage of device is realized, the requirement under multiple power sources environment is met, by being gone here and there certainly inside control device The flexible modulation for using device voltage and capacitance may be implemented in the amount of monomer of connection;Realize oneself of sensing measurement range By adjusting, meeting plurality of application scenes, being surveyed by, from concatenated amount of monomer, may be implemented to sense device inside control device Measure the flexible modulation of range;Using modularization assembling technology and continuous productive process, the small lot production of device is realized, batch is made Make resilient support body portion, vacuum liquid-absorbing module, energy-storage module, then is successively assembled the producing efficiency, it can be achieved that high, and And it can guarantee preferable stability and consistency.
Traditional sensors usually require external power supply, to maintain the energy supply of sensor and to the record of heat transfer agent and anti- Feedback, and sensor can not preferably cope with the impact signal of high frequency, may result in signal can not accurately record, " energy storage-biography The integrated supercapacitor of sense " combines the advantage of a variety of sensor mechanisms, and precision is high, and induction range is wide, and the response time is extremely short, institute There is accurate, sensitive counting response ability under the conditions of high-frequency percussion with device.
Common supercapacitor or sensor are easy to send out because each section impact resistance is poor under high overload impact condition Raw failure, " energy storage-sensing " integration supercapacitor using high duty metal as support, using hard metal shell and Situations such as high-intensity resin dosing technology, leakage caused by having prevented because of impact, deformation, impacts during also achieving in high overload Under the conditions of normal, stable operation.
Flexible package technology: the flexible package method being sealed using annular elastomer circle is made using ring-shaped rubber For sealing ring, body rubber will be supported to bond and seal with collector metal using binder, so that device is in impact condition lower edge There is certain compressible ability, after removing external force, rubber rebound, device can restore to the original state, and realize device on thickness direction The capacitive sensing function of part;
Vacuum liquid-absorbing technology: using perforated metal pole piece and metal pole piece, vacuum liquid-absorbing mould is made in lamination in the way of dispensing Block, design dispensing notch realize monomer cavity intercommunication as vacuum liquid-absorbing mouth, and pole piece is fixed shares collector etc. between mould group Multiple functions;
Overload-resistant impact encapsulation technology: metal shell, in the shell with high-intensity resin encapsulating by device, Ke Yi great are used The impact resistance of width promotion device entirety;
Modularization assembling technology: device is divided into energy-storage module using the different function and usage in device part, vacuum is inhaled Liquid module and sensing module assemble by each functional module of batch making, then by each functional module, realize device Small lot is hand-made.
Metal pole piece in the present invention uses inactive species metal pole piece, and inactive species metal pole piece is inactive, no React, using inactive species metal pole piece, application be double electric layers supercapacitor energy storage principle;In the present invention Elastic electrode uses piezoresistive electrodes, is sensed using piezoresistive electrodes by being pressurized using the sensing principle that pressure drag senses.
The present invention produces a kind of novel micro- energy device, firstly, the device is integrated with the energy-storage function of supercapacitor With the sensing function of piezoresistive transducer, capacitance type sensor and electrochemical transducer[sensor, the energy storage of supercapacitor is combined The sensing principle of principle and sensor, by using active carbon/H2SO4Double electric layers supercapacitor system, to meet device The application demand of energy storage and power supply;The elastic piezoresistive electrodes produced using rubber and activated carbon electrodes are as piezoresistive transducer Funtion part, when being impacted, piezoresistive electrodes can generate deformation, and the resistance value that deformation will lead to piezoresistive electrodes changes, Voltage fluctuation is generated in charge and discharge process, realizes pressure drag sensing function, while the activated carbon electrodes also can be used as electric double layer and surpass The pole piece of grade capacitor carries out energy storage, and activated carbon electrodes can adsorb the zwitterion in electrolyte, be formed in the two sides of diaphragm Potential difference, to realize energy storage;Device uses H2SO4As electrolyte, electrolyte can be moved when being impacted along impact direction Dynamic, to form certain concentration difference in device inside, the concentration difference variation of device inside partial electrolysis liquid be will lead in device The distribution of charges of portion's each section is uneven, forms potential difference in device inside, leads to voltage change, to realize the electrification of device Learn sensing function;Using titanium alloy as the collector of device, inactive metal collector interlayer is using rubber as resilient support Body, when being impacted, resilient support, which is known from experience, to be compressed, and is reduced the spacing between two collectors, is caused the capacitance of capacitor Variation, causes device voltage to change, realizes the capacitive sensing of device.
The invention enables the dual functions that single device realizes energy storage and sensing, reduce sensing system to a certain extent The volume of system;Second, the present invention using inside the laminated type based on titanium alloy and elastomer from concatenated design method, this Kind structure farthest reduces the redundant space of device inside, and not extra gap structure avoids in impact process The mechanical failures such as solder joint failure, structural break caused by local stress is excessive, and also avoid high impact loads lower outer portion and lead Line and the possibility of circuit element failure;Third, laminated type expandable structure make device can with flexibly adjustment sensing scope and Voltage has expanded the use scope and application scenarios of device;4th, using metal shell, and high-intensity resin encapsulating is used, resisted Impact capacity is extremely strong, and the reliability of device greatly improved.
The present invention develops a novel micro- energy device, changes traditional sensors and needs by external energy supply and overload-resistant The disadvantage of impact capacity difference realizes device itself energy storage and energy supply, and improve traditional sensors not rushing in high frequency high overload Sensitive response and accurate metering problem under the conditions of hitting realize sensitive response under the conditions of the impact of high frequency high overload and accurate It counts.
Particular embodiments described above has carried out further the purpose of the present invention, technical scheme and beneficial effects It is described in detail, it should be understood that the above is only a specific embodiment of the present invention, the protection being not intended to limit the present invention Range.It particularly points out, to those skilled in the art, all within the spirits and principles of the present invention, that is done any repairs Change, equivalent replacement, improvement etc., should all be included in the protection scope of the present invention.

Claims (9)

1. a kind of overload-resistant impact sensing capacitor based on elastomer, which is characterized in that including capacitor core and shell, institute It states capacitor core and passes through high-intensity resin encapsulating in the housing, the material of the shell is hard metal material;
The capacitor core includes: the first inactive metal collector, the first elastic support, vacuum liquid-absorbing module, the second bullet Property supporter and the second inactive metal collector;The first inactive metal collector, first elastic support, institute It states vacuum liquid-absorbing module, second elastic support and the second inactive metal collector and passes sequentially through stacked in layers company It connects to obtain laminated structure;The elastic support includes elastomer and energy-storage module, and the energy-storage module is filled in described Inside elastomer, the energy-storage module includes the first elastic piezoresistive electrodes, PTFE diaphragm and the second elastic piezoresistive electrodes, described First elastic piezoresistive electrodes, the PTFE diaphragm and the second elastic piezoresistive electrodes pass sequentially through stacked in layers and obtain laminated type Structure;The vacuum liquid-absorbing module includes the inactive metal collector of third, the 4th inactive metal collector and the 5th without work Property metal collector, the inactive metal collector of the third, the 4th inactive metal collector and the described 5th are without work Property metal collector passes sequentially through stacked in layers and connects to obtain laminated structure.
2. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that described first Between inactive metal collector and first elastic support, first elastic support and the vacuum liquid-absorbing module Between, between the vacuum liquid-absorbing module and second elastic support and second elastic support and described the Between two inactive metal collectors, bonding is carried out by adhesive and forms point glue-line.
3. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that the third Between inactive metal collector and the 4th inactive metal collector, the 4th inactive metal collector with it is described Between 5th inactive metal collector, bonding is carried out by adhesive and forms point glue-line.
4. the overload-resistant impact sensing capacitor based on elastomer as claimed in claim 3, which is characterized in that the third First glue-line and the 4th inactive gold between inactive metal collector and the 4th inactive metal collector Belong to the second point glue-line between collector and the 5th inactive metal collector, all has notch.
5. the overload-resistant impact sensing capacitor based on elastomer as claimed in claim 4, which is characterized in that described first The gap position on notch and the second point glue-line on point glue-line is towards unanimously.
6. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that the third Inactive metal collector and the 5th inactive metal collector are ring structure;The 4th inactive metal afflux Body is laminated structure.
7. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that described high-elastic Rubber is ring structure.
8. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that described super The shape of capacitor includes round, rectangular, triangle or various obform bodies.
9. the overload-resistant impact sensing capacitor based on elastomer as described in claim 1, which is characterized in that the elasticity Supporter and the vacuum liquid-absorbing module increasing and decreasing by internal series-connection quantity, the operating voltage and capacitor of control device Amount, sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be suitable for more application scenarios.
CN201910599758.4A 2019-07-04 2019-07-04 A kind of overload-resistant impact sensing capacitor based on elastomer Pending CN110428975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910599758.4A CN110428975A (en) 2019-07-04 2019-07-04 A kind of overload-resistant impact sensing capacitor based on elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910599758.4A CN110428975A (en) 2019-07-04 2019-07-04 A kind of overload-resistant impact sensing capacitor based on elastomer

Publications (1)

Publication Number Publication Date
CN110428975A true CN110428975A (en) 2019-11-08

Family

ID=68408951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910599758.4A Pending CN110428975A (en) 2019-07-04 2019-07-04 A kind of overload-resistant impact sensing capacitor based on elastomer

Country Status (1)

Country Link
CN (1) CN110428975A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963966A (en) * 2006-11-29 2007-05-16 大连理工大学 A mixed super capacitor
CN106872727A (en) * 2017-01-18 2017-06-20 清华大学 A kind of self-powered acceleration transducer and its manufacture method based on piezoresistive effect
CN109346336A (en) * 2018-11-13 2019-02-15 清华大学 A kind of flexible package method of laminated construction supercapacitor
CN109659163A (en) * 2018-12-18 2019-04-19 清华大学 Laminated structure supercapacitor and preparation method with resistance to high acceleration shock
CN109904517A (en) * 2019-03-06 2019-06-18 沁新集团(天津)新能源技术研究院有限公司 Lithium ion battery and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1963966A (en) * 2006-11-29 2007-05-16 大连理工大学 A mixed super capacitor
CN106872727A (en) * 2017-01-18 2017-06-20 清华大学 A kind of self-powered acceleration transducer and its manufacture method based on piezoresistive effect
CN109346336A (en) * 2018-11-13 2019-02-15 清华大学 A kind of flexible package method of laminated construction supercapacitor
CN109659163A (en) * 2018-12-18 2019-04-19 清华大学 Laminated structure supercapacitor and preparation method with resistance to high acceleration shock
CN109904517A (en) * 2019-03-06 2019-06-18 沁新集团(天津)新能源技术研究院有限公司 Lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110415982A (en) A kind of sensing capacitor that is pressurized based on elastomer
CN105229838B (en) The electrode stack of bending and the battery cell including the electrode stack
CN109346336A (en) A kind of flexible package method of laminated construction supercapacitor
CN106953002B (en) A kind of electrochemistry self-powered acceleration transducer and its manufacturing method
TW201429036A (en) Electrochemical cell
CN107346816B (en) Battery pack and battery unit thereof
CN110415983A (en) A kind of energy storage and sensing integrated supercapacitor with sensing capabilities
CN110415998A (en) A kind of overload-resistant impact can energy storage sensor
CN101694400A (en) Electronic human scale with self-powered function
CN110428975A (en) A kind of overload-resistant impact sensing capacitor based on elastomer
CN110415981A (en) A kind of overload-resistant impact can sensing capacitor
CN110411619A (en) A kind of overload-resistant impact energy storage sensor based on elastomer
CN110411617A (en) A kind of energy storage sensor that is pressurized based on elastomer
CN110246701B (en) Super capacitor with impact sensor function and application
JP2010020921A (en) Power storage cell, and power storage cell module
CN210223796U (en) Energy storage and sensing integrated super capacitor capable of resisting overload impact
US8295031B2 (en) Electric double layer capacitor and method of manufacturing the same
CN102142319A (en) Electric double layer capacitor and method of manufacturing the same
CN111473724A (en) Capacitive flexible strain sensor and preparation method thereof
CN107230796B (en) Battery pack and method of assembling the same
CN211125803U (en) Power storage device and power storage device group structure
CN207441882U (en) A kind of stacked solid battery
CN201946434U (en) Capacitor with multiple electrode plates
CN107346804B (en) Battery pack
CN107230797A (en) Battery pack and method of assembling the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191108

RJ01 Rejection of invention patent application after publication