CN110411617A - A kind of energy storage sensor that is pressurized based on elastomer - Google Patents

A kind of energy storage sensor that is pressurized based on elastomer Download PDF

Info

Publication number
CN110411617A
CN110411617A CN201910599750.8A CN201910599750A CN110411617A CN 110411617 A CN110411617 A CN 110411617A CN 201910599750 A CN201910599750 A CN 201910599750A CN 110411617 A CN110411617 A CN 110411617A
Authority
CN
China
Prior art keywords
metal oxide
elastomer
collector
oxide collector
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910599750.8A
Other languages
Chinese (zh)
Inventor
王晓峰
周雷臻
李滨
戴伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua Research Institute Of Pearl River Delta
Guangzhou Guanghua Fine Energy Technology Co Ltd
Original Assignee
Tsinghua Research Institute Of Pearl River Delta
Guangzhou Guanghua Fine Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua Research Institute Of Pearl River Delta, Guangzhou Guanghua Fine Energy Technology Co Ltd filed Critical Tsinghua Research Institute Of Pearl River Delta
Priority to CN201910599750.8A priority Critical patent/CN110411617A/en
Publication of CN110411617A publication Critical patent/CN110411617A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2218Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being of the column type, e.g. cylindric, adapted for measuring a force along a single direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The invention discloses a kind of energy storage sensor that is pressurized based on elastomer, comprising: the first metal oxide collector, the first elastic support, vacuum liquid-absorbing module, the second elastic support and the second metal oxide collector pass sequentially through stacked in layers and connect to obtain laminated structure;Elastic support includes elastomer and energy-storage module, energy-storage module is filled in inside elastomer, energy-storage module includes the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode, and the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode pass sequentially through stacked in layers and connect to obtain laminated structure;Vacuum liquid-absorbing module includes third, the 4th and fifth metal oxide collector, and third metal oxide collector, the 4th metal oxide collector pass sequentially through stacked in layers with fifth metal oxide collector and connect to obtain laminated structure.

Description

A kind of energy storage sensor that is pressurized based on elastomer
Technical field
The present invention relates to new material and field of new energy technologies more particularly to a kind of energy storage that is pressurized based on elastomer Sensor.
Background technique
Current most popular four kinds of sensors, comprising: 1. piezoelectric transducers are fixed by PVDF diaphragm by certain It is internal just to generate polarization when the effect of direction external force, while the opposite charge of symbol, shape are generated on certain two surface At certain potential difference, cause voltage change, realizes sensing function;2. capacitance type sensor, by between change capacitor plate Spacing, cause the variation of condenser capacity, achieve the purpose that voltage change, realize sensing function;3. electrochemical transducer[sensor, Inertia mass is used an electrolyte as, when being impacted, is formed about convection current in electrode, causes ion concentration near electrode Variation, and then voltage change is formed, realize sensing function.
Above-mentioned three kinds of sensors only have sensing function, without having energy storage capacity and power capability, are needing simultaneously In the case where having energy storage and sensing function, generallys use traditional sensors part and energize the shared mode of device, this method It will lead to that system bulk is larger, be unfavorable for whole miniaturization, and this sensor with sensing function is being pressed The sensitive responsiveness of sensing response can decline in the case where power, directly result in sensing failure.
Therefore, need at present it is a kind of with energy storage and power capability can energy storage sensor, realize that sensor is provided simultaneously with Sensitive responsiveness is improved in the case where energy storage and sensing function.
Summary of the invention
The present invention provides a kind of energy storage sensor that is pressurized based on elastomer, does not have to solve existing sensor Standby energy storage capacity and power capability, and the technical issues of sensitive responsiveness is declined by pressure, thus can be same by constructing one kind Shi Shixian energy storage and sensing function without external battery can energy storage sensor, and using elastomer as the branch that is pressurized Support body, realize can energy storage sensor the sensitive responsiveness of sensing is kept in the case where being under pressure.
In order to solve the above-mentioned technical problem, the energy storage biography that is pressurized based on elastomer that the embodiment of the invention provides a kind of Sensor, comprising: the first metal oxide collector, the first elastic support, vacuum liquid-absorbing module, the second elastic support and Two metal oxide collectors;
The first metal oxide collector, first elastic support, the vacuum liquid-absorbing module, described second Elastic support passes sequentially through stacked in layers with the second metal oxide collector and connects to obtain laminated structure;
The elastic support includes elastomer and energy-storage module, and the energy-storage module is filled in the elastomer Portion, the energy-storage module include the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode, The first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode pass sequentially through Stacked in layers obtains laminated structure;
The vacuum liquid-absorbing module includes third metal oxide collector, the 4th metal oxide collector and hardware Belong to oxide collector, the third metal oxide collector, the 4th metal oxide collector and the hardware Category oxide collector passes sequentially through stacked in layers and connects to obtain laminated structure.
Preferably, between the first metal oxide collector and first elastic support, described Between one elastic support and the vacuum liquid-absorbing module, between the vacuum liquid-absorbing module and second elastic support, And between second elastic support and the second metal oxide collector, bonding formation is carried out by adhesive Point glue-line.
Preferably, between the third metal oxide collector and the 4th metal oxide collector, Between the 4th metal oxide collector and the fifth metal oxide collector, bonding shape is carried out by adhesive At a glue-line.
Preferably, between the third metal oxide collector and the 4th metal oxide collector The second dispensing between first glue-line and the 4th metal oxide collector and the fifth metal oxide collector Layer, all has notch.
Preferably, the notch on first glue-line and the direction of the gap position on the second point glue-line one It causes.
Preferably, the third metal oxide collector and the fifth metal oxide collector are ring Shape structure;The 4th metal oxide collector is laminated structure.
Preferably, the elastomer is ring structure.
Preferably, the shape of the supercapacitor includes round, rectangular, triangle or various metamers.
Preferably, the elastic support and the vacuum liquid-absorbing module by the increase of internal series-connection quantity and It reduces, the operating voltage and capacitance of control device, sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be fitted For more application scenarios.
Compared with the prior art, the embodiment of the present invention has the following beneficial effects:
The present invention by construct it is a kind of can be achieved at the same time energy storage and sensing function without external battery can energy storage Sensor, and solve existing sensor as compression supporter using elastomer and do not have energy storage capacity and power capability, And the technical issues of sensitive responsiveness is declined by pressure, thus realize can energy storage sensor protected in the case where being under pressure Hold sensing response sensitivity.
Detailed description of the invention
Fig. 1: for the energy storage sensor overall structure diagram that is pressurized in the embodiment of the present invention;
Fig. 2: for the structural schematic diagram of the vacuum liquid-absorbing module in the embodiment of the present invention;
Fig. 3: for the schematic illustration of the realization sensing effect in the embodiment of the present invention.
Specific embodiment
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
Fig. 1 is please referred to, the preferred embodiment of the present invention provides a kind of energy storage sensor that is pressurized based on elastomer, packet It includes: the first metal oxide collector, the first elastic support, vacuum liquid-absorbing module, the second elastic support and the second metal Oxide collector;
The first metal oxide collector, first elastic support, the vacuum liquid-absorbing module, described second Elastic support passes sequentially through stacked in layers with the second metal oxide collector and connects to obtain laminated structure;
In the present embodiment, between the first metal oxide collector and first elastic support, described Between one elastic support and the vacuum liquid-absorbing module, between the vacuum liquid-absorbing module and second elastic support, And between second elastic support and the second metal oxide collector, bonding formation is carried out by adhesive Point glue-line.
Device using laminated structure design, by metal oxide collector, elastic support and vacuum liquid-absorbing module into Row stacked in layers, interlayer are bonded using adhesive, the specific structure such as following figure, and top layer is that the titanium of surface sintering oxidation ruthenium film closes Golden collector, it is electric double layer pellet electrode and plating inside ring-shaped rubber that as a pole of device, next layer, which is annular elastomer, Silver-colored PVDF diaphragm, then lower layer are vacuum liquid-absorbing module, then lower layer is annular elastomer, and lowest level is metal oxide collector As another pole of device, adhesive bonding is all made of between each layer.
The elastic support includes elastomer and energy-storage module, and the energy-storage module is filled in the elastomer Portion, the energy-storage module include the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode, The first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode pass sequentially through Stacked in layers connects to obtain laminated structure;
In the present embodiment, the elastomer is ring structure.
It fixes and seals by annular resilient supporter outside energy-storage module, inside uses laminated construction, is always divided into Three layers, upper layer is elastic electric double layer pellet electrode, and middle layer is silver-plated PVDF diaphragm, and lower layer is also elastic electric double layer pellet electrode, Energy-storage module is being had inside elastic support made from elastomer with this structure filling, double electric layers supercapacitor is provided Energy storage capacity and piezoelectric transducer and piezoresistive transducer sensing capability.
The vacuum liquid-absorbing module includes third metal oxide collector, the 4th metal oxide collector and hardware Belong to oxide collector, the third metal oxide collector, the 4th metal oxide collector and the hardware Category oxide collector passes sequentially through stacked in layers and connects to obtain laminated structure.
In the present embodiment, between the third metal oxide collector and the 4th metal oxide collector, Between the 4th metal oxide collector and the fifth metal oxide collector, bonding shape is carried out by adhesive At a glue-line.
In the present embodiment, between the third metal oxide collector and the 4th metal oxide collector The second dispensing between first glue-line and the 4th metal oxide collector and the fifth metal oxide collector Layer, all has notch.
In the present embodiment, the notch on first glue-line and the direction of the gap position on the second point glue-line one It causes.
In the present embodiment, the third metal oxide collector and the fifth metal oxide collector are ring Shape structure;The 4th metal oxide collector is laminated structure.
Referring to figure 2., vacuum liquid-absorbing inside modules structure: top layer is closed using the titanium of annular surface sintering oxidation ruthenium film Golden collector, middle layer use sheet collector, and upper layer and middle layer are bonded using hot melt adhesive dispensing mode, and when dispensing sets One section of notch is counted out as vacuum liquid-absorbing mouth, lowest level also uses the titanium alloy collector of annular surface sintering oxidation ruthenium film, Interlayer is also bonded using jaggy glue-line, and notch direction is consistent with upper layer dispensing break mouth direction.
In the present embodiment, the shape of the supercapacitor includes round, rectangular, triangle or various metamers.Device Part can be made by using titanium alloy collector of different shapes, elastomer elastic support, round, rectangular, triangle Equal various shapes realize the shape customization of device.
In the present embodiment, the elastic support and the vacuum liquid-absorbing module by the increase of internal series-connection quantity and It reduces, the operating voltage and capacitance of control device, sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be fitted For more application scenarios.
To adapt to different application scenarios, need to produce the device that can be used under the conditions of different voltages, the present invention Can by way of controlling internal series-connection module number control device operating voltage and capacitance, and increase can be passed through Or reduce control of the concatenated module realization to sensing measurement range.
As described in Figure 3, using device when being impacted, the voltage jump of generation reaches sensing effect.In discharge process In, device is impacted, after device is impacted, whole deformation occurs, causes piezoelectricity, pressure drag, capacitor, electric chemical formula sensing principle Response forms voltage jump, reaches sensing effect.
Supercapacitor of the present invention realize energy storage device from sensing function, by supercapacitor using activity Charcoal electric double layer pellet electrode and silver-plated PVDF diaphragm realize piezoelectric type sensing function, and when being impacted using elastic support The internal flow of change in shape and electrolyte realize condenser type and electric chemical formula sensing function;
Supercapacitor of the present invention also achieves the self-powered function of senser element, by inside using activated carbon electrodes Laminated structure realizes the energy storage of double electric layers supercapacitor, there is the RuO of oxidation ruthenium film by using surface2/H2SO4Body System and inside realize the energy storage of fake capacitance supercapacitor from concatenated laminated construction.
Supercapacitor of the present invention also achieves the continuous sensitive response to the impact of high frequency high overload;It realizes and passes through pole piece The different selections of diaphragm, using different energy storage or sensing principle;The shape for realizing device special-shaped can customize, using not similar shape Device can be made into different shape by the metal oxide collector and rubber washer of shape, be applicable in different application scenarios and environment; Freely adjusting for the voltage of device is realized, the requirement under multiple power sources environment is met, by being gone here and there certainly inside control device The flexible modulation for using device voltage and capacitance may be implemented in the amount of monomer of connection;Realize oneself of sensing measurement range By adjusting, meeting plurality of application scenes, being surveyed by, from concatenated amount of monomer, may be implemented to sense device inside control device Measure the flexible modulation of range;Using modularization assembling technology and continuous productive process, the small lot production of device is realized, batch is made Make resilient support body portion, vacuum liquid-absorbing module, energy-storage module, then is successively assembled the producing efficiency, it can be achieved that high, and And it can guarantee preferable stability and consistency.
Traditional sensors usually require external power supply, to maintain the energy supply of sensor and to the record of heat transfer agent and anti- Feedback, and sensor can not preferably cope with the impact signal of high frequency, may result in signal can not accurately record, " energy storage-biography The integrated supercapacitor of sense " combines the advantage of a variety of sensor mechanisms, and precision is high, and induction range is wide, and the response time is exceedingly fast, institute There is accurate, sensitive counting response ability under the conditions of high-frequency percussion with device.
Common supercapacitor or sensor are easy to send out because each section impact resistance is poor under high overload impact condition Raw failure, " energy storage-sensing " integration supercapacitor using high duty metal as support, using hard metal shell and Situations such as high-intensity resin dosing technology, leakage caused by having prevented because of impact, deformation, impacts during also achieving in high overload Under the conditions of normal, stable operation.
Flexible package technology: the flexible package method being sealed using annular elastomer circle is made using ring-shaped rubber For sealing ring, body rubber will be supported to bond and seal with collector metal using binder, so that device is in impact condition lower edge There is certain compressible ability, after removing external force, rubber rebound, device can restore to the original state, and realize device on thickness direction The capacitive sensing function of part;
Vacuum liquid-absorbing technology: using perforated metal pole piece and metal pole piece, vacuum liquid-absorbing mould is made in lamination in the way of dispensing Block, design dispensing notch realize monomer cavity intercommunication as vacuum liquid-absorbing mouth, and pole piece is fixed shares collector etc. between mould group Multiple functions;
Overload-resistant impact encapsulation technology: metal shell, in the shell with high-intensity resin encapsulating by device, Ke Yi great are used The impact resistance of width promotion device entirety;
Modularization assembling technology: device is divided into energy-storage module using the different function and usage in device part, vacuum is inhaled Liquid module and sensing module assemble by each functional module of batch making, then by each functional module, realize device Small lot is hand-made.
Metal pole piece in the present invention uses metal oxide pole piece, and the activity of metal oxide pole piece is strong, by using Metal oxide pole piece, application be fake capacitance supercapacitor energy storage principle;Elastic electrode in the present invention uses double electricity Lamellar electrode, electric double layer pellet electrode apply double electric layers supercapacitor energy storage principle, pass through the voltage between electric double layer Realize sensing;Metal diaphragm in the present invention uses silver-plated PVDF diaphragm, and PVDF (Kynoar) has most in fluoroplastics The features such as obdurability, low-friction coefficient, corrosion resistance be strong, resistance to ag(e)ing, weatherability, and radiation-resistant property is good.
The present invention produces a kind of novel micro- energy device, firstly, the device is integrated with the energy-storage function of supercapacitor With the sensing function of piezoelectric transducer, piezoresistive transducer, capacitance type sensor and electrochemical transducer[sensor, combine super The energy storage principle of capacitor and the sensing principle of sensor, by using RuO2/H2SO4Fake capacitance super capacitor system, and Active carbon/H2SO4Double electric layers supercapacitor system, to meet the application demand of device energy storage and power supply;Using silver-plated PVDF diaphragm realizes the piezoelectric sensing effect under shock environment, can polarize when the diaphragm is impacted, electronics is assembled In in the side of diaphragm, to form potential difference, lead to voltage change, realize piezoelectric sensing function;Device uses H2SO4As Electrolyte, electrolyte can be moved when being impacted along impact direction, to form certain concentration difference, device in device inside The distribution of charges that the concentration difference variation of part inside partial electrolysis liquid will lead to device inside each section is uneven, in device inside shape At potential difference, lead to voltage change, to realize the electrochemical sensing function of device;Using titanium alloy as the collector of device, Using rubber as elastic support between metal oxide current collector layers, when being impacted, resilient support, which is known from experience, to be compressed, Reduce the spacing between two collectors, causes the capacitance variation of capacitor, cause device voltage to change, realize the electricity of device Appearance formula sensing.
The invention enables the dual functions that single device realizes energy storage and sensing, reduce sensing system to a certain extent The volume of system;Second, the present invention using inside the laminated type based on titanium alloy and elastomer from concatenated design method, this Kind structure farthest reduces the redundant space of device inside, and not extra gap structure avoids in impact process The mechanical failures such as solder joint failure, structural break caused by local stress is excessive, and also avoid high impact loads lower outer portion and lead Line and the possibility of circuit element failure;Third, laminated type expandable structure make device can with flexibly adjustment sensing scope and Voltage has expanded the use scope and application scenarios of device;4th, using metal shell, and high-intensity resin encapsulating is used, resisted Impact capacity is extremely strong, and the reliability of device greatly improved.
The present invention develops a novel micro- energy device, changes traditional sensors and needs by external energy supply and overload-resistant The disadvantage of impact capacity difference realizes device itself energy storage and energy supply, and improve traditional sensors not rushing in high frequency high overload Sensitive response and accurate metering problem under the conditions of hitting realize sensitive response under the conditions of the impact of high frequency high overload and accurate It counts.
Particular embodiments described above has carried out further the purpose of the present invention, technical scheme and beneficial effects It is described in detail, it should be understood that the above is only a specific embodiment of the present invention, the protection being not intended to limit the present invention Range.It particularly points out, to those skilled in the art, all within the spirits and principles of the present invention, that is done any repairs Change, equivalent replacement, improvement etc., should all be included in the protection scope of the present invention.

Claims (9)

1. a kind of energy storage sensor that is pressurized based on elastomer characterized by comprising the first metal oxide afflux Body, the first elastic support, vacuum liquid-absorbing module, the second elastic support and the second metal oxide collector;
The first metal oxide collector, first elastic support, the vacuum liquid-absorbing module, second elasticity Supporter passes sequentially through stacked in layers with the second metal oxide collector and connects to obtain laminated structure;
The elastic support includes elastomer and energy-storage module, and the energy-storage module is filled in inside the elastomer, The energy-storage module includes the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode, institute It states the first electric double layer pellet electrode, nano silver spraying PVDF diaphragm and the second electric double layer pellet electrode and passes sequentially through layer Shape stacks to obtain laminated structure;
The vacuum liquid-absorbing module includes third metal oxide collector, the 4th metal oxide collector and fifth metal oxygen Compound collector, the third metal oxide collector, the 4th metal oxide collector and the fifth metal oxygen Compound collector passes sequentially through stacked in layers and connects to obtain laminated structure.
2. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that first metal Between oxide collector and first elastic support, first elastic support and the vacuum liquid-absorbing module it Between, between the vacuum liquid-absorbing module and second elastic support and second elastic support and described second Between metal oxide collector, bonding is carried out by adhesive and forms point glue-line.
3. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that the third metal Between oxide collector and the 4th metal oxide collector, the 4th metal oxide collector and the described 5th Between metal oxide collector, bonding is carried out by adhesive and forms point glue-line.
4. the energy storage sensor that is pressurized based on elastomer as claimed in claim 3, which is characterized in that the third metal First glue-line and the 4th metal oxide collection between oxide collector and the 4th metal oxide collector Second point glue-line between fluid and the fifth metal oxide collector, all has notch.
5. the energy storage sensor that is pressurized based on elastomer as claimed in claim 4, which is characterized in that first dispensing The gap position on notch and the second point glue-line on layer is towards unanimously.
6. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that the third metal Oxide collector and the fifth metal oxide collector are ring structure;The 4th metal oxide collector is Laminated structure.
7. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that the elastomer For ring structure.
8. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that the super capacitor The shape of device includes round, rectangular, triangle or various metamers.
9. the energy storage sensor that is pressurized based on elastomer as described in claim 1, which is characterized in that the resilient support Body and the vacuum liquid-absorbing module increasing and decreasing by internal series-connection quantity, the operating voltage and capacitance of control device, Sensing scope and sensitivity can also be changed by changing internal series-connection quantity, be suitable for more application scenarios.
CN201910599750.8A 2019-07-04 2019-07-04 A kind of energy storage sensor that is pressurized based on elastomer Pending CN110411617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910599750.8A CN110411617A (en) 2019-07-04 2019-07-04 A kind of energy storage sensor that is pressurized based on elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910599750.8A CN110411617A (en) 2019-07-04 2019-07-04 A kind of energy storage sensor that is pressurized based on elastomer

Publications (1)

Publication Number Publication Date
CN110411617A true CN110411617A (en) 2019-11-05

Family

ID=68360442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910599750.8A Pending CN110411617A (en) 2019-07-04 2019-07-04 A kind of energy storage sensor that is pressurized based on elastomer

Country Status (1)

Country Link
CN (1) CN110411617A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217166A (en) * 2000-01-31 2001-08-10 Kyocera Corp Electric double-layer capacitor and determination method for service life of electric double-layer capacitor
CN103828002A (en) * 2011-09-23 2014-05-28 康宁股份有限公司 High voltage electro-chemical double layer capacitor
CN106872727A (en) * 2017-01-18 2017-06-20 清华大学 A kind of self-powered acceleration transducer and its manufacture method based on piezoresistive effect
CN109346336A (en) * 2018-11-13 2019-02-15 清华大学 A kind of flexible package method of laminated construction supercapacitor
CN109659163A (en) * 2018-12-18 2019-04-19 清华大学 Laminated structure supercapacitor and preparation method with resistance to high acceleration shock
CN109904517A (en) * 2019-03-06 2019-06-18 沁新集团(天津)新能源技术研究院有限公司 Lithium ion battery and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217166A (en) * 2000-01-31 2001-08-10 Kyocera Corp Electric double-layer capacitor and determination method for service life of electric double-layer capacitor
CN103828002A (en) * 2011-09-23 2014-05-28 康宁股份有限公司 High voltage electro-chemical double layer capacitor
CN106872727A (en) * 2017-01-18 2017-06-20 清华大学 A kind of self-powered acceleration transducer and its manufacture method based on piezoresistive effect
CN109346336A (en) * 2018-11-13 2019-02-15 清华大学 A kind of flexible package method of laminated construction supercapacitor
CN109659163A (en) * 2018-12-18 2019-04-19 清华大学 Laminated structure supercapacitor and preparation method with resistance to high acceleration shock
CN109904517A (en) * 2019-03-06 2019-06-18 沁新集团(天津)新能源技术研究院有限公司 Lithium ion battery and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIONG PU: "Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices", 《REVIER》 *
戴可人等: "Theoretical study and applications of self-sensing supercapacitors under extreme mechanical effects", 《EXTREME MECHANICS LETTERS》 *

Similar Documents

Publication Publication Date Title
TW571457B (en) Bipolar electrochemical battery of stacked wafer cells
JP2012524980A (en) Energy storage device with unipolar and bipolar cells electrically coupled in series and parallel
CN109346336B (en) Flexible packaging method for super capacitor with laminated structure
US11676775B2 (en) Chip form ultracapacitor
US9537153B2 (en) Current collector for a lithium battery
US6181546B1 (en) Double layer capacitor
CN106953002B (en) A kind of electrochemistry self-powered acceleration transducer and its manufacturing method
CN107346816B (en) Battery pack and battery unit thereof
CN105229838B (en) The electrode stack of bending and the battery cell including the electrode stack
CN208208836U (en) A kind of Soft Roll disc Li-ion batteries piles
CN110415998A (en) A kind of overload-resistant impact can energy storage sensor
JP2010508668A (en) Electrochemical cell for smart cards
CN101694400A (en) Electronic human scale with self-powered function
CN110415982A (en) A kind of sensing capacitor that is pressurized based on elastomer
CN110411617A (en) A kind of energy storage sensor that is pressurized based on elastomer
CN110246701B (en) Super capacitor with impact sensor function and application
CN203710011U (en) Vibration sensor
CN102664234B (en) Piezoelectric ceramic actuation element and manufacturing method thereof
CN110415981A (en) A kind of overload-resistant impact can sensing capacitor
CN110411619A (en) A kind of overload-resistant impact energy storage sensor based on elastomer
CN110428975A (en) A kind of overload-resistant impact sensing capacitor based on elastomer
CN203423635U (en) Self-sustaining cymbal piezoelectric generating apparatus
CN110415983A (en) A kind of energy storage and sensing integrated supercapacitor with sensing capabilities
CN110299248B (en) Super capacitor with double-shaft impact sensing
CN210223796U (en) Energy storage and sensing integrated super capacitor capable of resisting overload impact

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105

RJ01 Rejection of invention patent application after publication