CN110428185B - 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法 - Google Patents

基于伪量测模型的电-热互联综合能源系统抗差状态估计方法 Download PDF

Info

Publication number
CN110428185B
CN110428185B CN201910729159.XA CN201910729159A CN110428185B CN 110428185 B CN110428185 B CN 110428185B CN 201910729159 A CN201910729159 A CN 201910729159A CN 110428185 B CN110428185 B CN 110428185B
Authority
CN
China
Prior art keywords
power
heat
node
measurement
supply network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910729159.XA
Other languages
English (en)
Other versions
CN110428185A (zh
Inventor
臧海祥
耿明昊
卫志农
孙国强
黄蔓云
陈�胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910729159.XA priority Critical patent/CN110428185B/zh
Publication of CN110428185A publication Critical patent/CN110428185A/zh
Application granted granted Critical
Publication of CN110428185B publication Critical patent/CN110428185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Educational Administration (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种基于伪量测模型的电‑热互联综合能源系统抗差状态估计方法,包括:(1)获取电‑热互联综合能源系统信息信息;(2)建立计及等式约束的电‑热互联综合能源系统状态估计模型;(3)建立基于BP神经网络的热负荷功率伪量测模型,并进行训练;(4)将上一时刻热网状态变量的滤波值和热网实时量测向量进行相关性分析,将分析结果输入训练好的热负荷功率伪量测模型,得到热负荷节点的功率伪量测数据;(5)采用基于原对偶内点法的加权最小绝对值方法对状态估计模型进行求解,得到状态变量估计值。本发明对系统中的坏数据具有有效的抗差性,且明显降低了系统中关键量测的数目,保证了系统的可观测性。

Description

基于伪量测模型的电-热互联综合能源系统抗差状态估计 方法
技术领域
本发明涉及电力系统监测、分析和控制领域,尤其涉及一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法。
背景技术
电-热互联综合能源系统在满足最常见的用户能源需求的同时,提高了能源系统的经济效益和环境效益,也有利于平抑间歇性新能源的出力波动,促进了可再生能源的发展。而系统的在线调度、控制和优化策略依赖于完整可靠的实时数据支持,由于经济和技术原因,现有的量测数据不可避免的存在噪声且测点有限。因此,状态估计技术作为能量管理系统的核心功能之一,致力于解决基础模型和数据中存在的问题,为实现综合能源系统的协同优化控制提供全局、自洽的网络实时状态。
已有专家对电-热综合能源系统建立了综合潮流模型,并将基于加权最小二乘(weighted least squares,WLS)的状态估计方法应用到电-热综合能源系统中。该方法虽然简单、快速,但估计结果易受不良数据影响,从而导致WLS估计失去其优良特性。然而由于工作环境和自动化水平,热网中的不良数据出现的频率要高于电网,因此,电-热互联综合能源系统迫切要求状态估计程序具有优秀的鲁棒性能,以获取系统全面、准确的运行状态。而且,在实际量测系统中缺少对热功率的量测,这造成了在状态估计模型中存在许多关键量测,一旦关键量测数据传输失败,系统将不可观测。
发明内容
发明目的:本发明针对现有技术存在的问题,提供一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,通过基于神经网络的热负荷伪量测模型,保证系统的可观测性,以在坏数据存在的情况下获取系统准确的运行状态,具有有效的抗差性。
技术方案:本发明所述的基于伪量测模型的电-热互联综合能源系统抗差状态估计方法包括以下步骤:
(1)分别获取电-热互联综合能源系统的电网信息和热网信息;
(2)根据电网信息和热网信息建立计及等式约束的电-热互联综合能源系统状态估计模型;
(3)建立基于BP神经网络的热负荷功率伪量测模型,并进行训练,训练所采用的数据为对全年负荷数据通过电热网潮流计算生成的全网不同时段的状态变量数据和实时量测数据;
(4)将上一时刻热网状态变量的滤波值和热网实时量测向量进行相关性分析,将分析结果输入训练好的热负荷功率伪量测模型,输出即为热负荷节点的功率伪量测数据;
(5)根据热负荷节点的功率伪量测数据与电网、热网实时量测数据,采用基于原对偶内点法的加权最小绝对值方法对步骤(2)构建的状态估计模型进行求解,得到电网和热网中的状态变量估计值。
进一步的,步骤(1)中获取的电网信息为:电网拓扑、支路参数信息、发电机参数信息;热网信息为:各管道长度、直径、粗糙度、阻抗系数,耦合元件的热电比。
进一步的,步骤(2)中建立的计及等式约束的电-热互联综合能源系统状态估计模型具体为:
Figure GDA0002650400470000021
s.t.εe=ze-hx(xe)
εh=zh-hh(xh)
c(x)=0
式中,x=[xe,xh],xe和xh分别为电网和热网中的状态变量,we、wh分别为电网、热网中量测误差的权重列向量,c(x)为系统中的约束方程,ze、zh分别为电网、热网中的量测量,εe、εh分别为电网、热网中的量测误差,he(xe)、hh(xh)分别为电网、热网中的量测方程,且具体为:
电网量测方程
Figure GDA0002650400470000022
水力量测方程
Figure GDA0002650400470000023
热网量测方程
Figure GDA0002650400470000024
式中下标i、j表示节点i、j的对应值,下标ij表示节点i和节点j之间的线路或支路的对应值,下标k表示管道k的对应值,下标l表示热网节点l的对应值,V、θ为节点电压幅值和相角,Pi为节点注入有功功率,Qi为节点注入无功功率,Pij为支路有功功率,Qij为支路无功功率,G、D为导纳矩阵的实部和虚部,g、b为线路电导和电纳,yc为对地导纳;m为管道流量,mq为节点注入流量,hf为压强损失,T为节点温度,A为热网节点-支路关联矩阵,K为管道阻力系数,Φsource为热源功率,fh(·)为管道温降降方程,Ts为负荷节点供水温度,Tr为负荷节点回水温度,Tr_source,p为热源节点回水温度;
约束方程c(x)具体为:
Figure GDA0002650400470000031
式中,Y为电网节点导纳矩阵,上标*表示复数的共轭,real{}表示复数的实部,imag{}表示复数的虚部,Ts'表示节点供水温度与环境温度的差值,Ap表示零注入功率节点的节点-支路关联矩阵,Psource表示耦合元件功率,(As,bs,Ar,br)为温度系数,B为支路-回路关联矩阵,Φ为节点热功率,ζ为耦合系数。
进一步的,步骤(3)中所述基于BP神经网络的热负荷功率伪量测模型具体为三层BP神经网络,包括依次连接的输入层、隐藏层和输出层,隐含层采用sigmoid传递函数,输出层采用线性传递函数;对该模型进行训练时,将数据分为训练集和测试集,将占样本总数10%的噪声集添加到训练集中,每个噪声集随机添加5%坏数据来模拟存在坏数据的数据情况。
进一步的,步骤(5)具体包括:
(5-1)将所述电-热互联综合能源系统状态估计模型简写为:
Figure GDA0002650400470000032
式中,w=[we,wh],l和u表示松弛变量,且l+u=|ε|,ε=[εeh]T,z=[ze,zh]T,h(x)=[hx(xe),hh(xh)]T
(5-2)获取上述模型的拉格朗日函数L:
L=wT(l+u)-ηT[z-h(x)+l-u]-αTl-βTu
式中,α、β和η为拉格朗日乘子,该函数KKT条件为:
Figure GDA0002650400470000041
式中,A,B,L,U都是对角阵,其对角元素的取值分别为α,β,l,u,μ为扰动因子,e为单位列向量;
(5-3)读入热负荷节点的功率伪量测数据与电网、热网实时量测数据;
(5-4)计算对偶间隙Ggap
Ggap=αTl+βTu
(5-5)判断对偶间隙Ggap是否小于门限值,如果是,则将此时状态变量x的值作为状态变量估计值
Figure GDA0002650400470000042
进行输出,如果否,则执行(5-6);
(5-6)采用下式计算得到dx和dη:
Figure GDA0002650400470000043
式中,
Figure GDA0002650400470000044
为海森矩阵,
Figure GDA0002650400470000045
(5-7)采用下式计算得到dα、dβ、dl和du:
Figure GDA0002650400470000046
(5-8)按照下式计算原对偶的迭代步长pp和pd
Figure GDA0002650400470000051
Figure GDA0002650400470000052
式中,i=1,…,M,M为量测量的维度,αi、βi、li、ui分别为α、β、l、u第i个元素;
(5-9)根据迭代步长pp和pd更新原对偶变量x,l,u,η,α,β,并返回执行步骤(5-4)
Figure GDA0002650400470000053
有益效果:针对电-热互联综合能源系统状态估计方法中现存的问题,本发明提出了一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,首先建立了计及等式约束的电热耦合网络状态估计模型,使估计结果严格满足两系统约束和耦合约束;然后通过基于BP神经网络的热负荷功率伪量测模型,减少了系统中关键量测的数量,保证了系统的可观测性,提高了估计精度;经过由IEEE-33节点和巴厘岛算例构成的电-热互联综合能源系统测试结果表明,本发明提出方法的精度、效率满足工程需求,对不良数据具有优秀的鲁棒性能。
附图说明
图1是本发明的实施流程示意图;
图2是IEEE-33节点与巴厘岛系统构成的电-热互联综合能源系统图;
图3是本发明抗差测试仿真结果图。
具体实施方式
本实施例提供了一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,如图1所示,包括以下步骤:
(1)分别获取电-热互联综合能源系统的电网信息和热网信息。
其中,获取的电网信息为:电网拓扑、支路参数信息、发电机参数信息;热网信息为:各管道长度、直径、粗糙度、阻抗系数,耦合元件的热电比等数据。
(2)根据电网信息和热网信息建立计及等式约束的电-热互联综合能源系统状态估计模型。
其中,建立的计及等式约束的电-热互联综合能源系统状态估计模型具体为:
Figure GDA0002650400470000061
s.t.εe=ze-hx(xe)
εh=zh-hh(xh)
c(x)=0
式中,x=[xe,xh],xe和xh分别为电网和热网中的状态变量,we、wh分别为电网、热网中量测误差的权重列向量,c(x)为系统中的约束方程,ze、zh分别为电网、热网中的量测量,εe、εh分别为电网、热网中的量测误差,he(xe)、hh(xh)分别为电网、热网中的量测方程,且具体为:
电网量测方程
Figure GDA0002650400470000062
水力量测方程
Figure GDA0002650400470000063
热网量测方程
Figure GDA0002650400470000064
式中量测方程等号左边是量测值,右边是用系统状态量表示量测值,下标i、j表示节点i、j的对应值,下标ij表示节点i和节点j之间的线路或支路的对应值,下标k表示管道k的对应值,下标l表示热网节点l的对应值,V、θ为节点电压幅值和相角,Pi为节点注入有功功率,Qi为节点注入无功功率,Pij为支路有功功率,Qij为支路无功功率,G、D为导纳矩阵的实部和虚部,g、b为线路电导和电纳,yc为对地导纳;m为管道流量,mq为节点注入流量,hf为压强损失,T为节点温度,A为热网节点-支路关联矩阵,K为管道阻力系数,Φsource为热源功率,fh(·)为管道温降方程,Ts为负荷节点供水温度,Tr为负荷节点回水温度,Tr_source,p为热源节点回水温度;
约束方程c(x)具体为:
Figure GDA0002650400470000071
式中,Y为电网节点导纳矩阵,上标*表示复数的共轭,real{}表示复数的实部,imag{}表示复数的虚部,Ts'表示供水温度与环境温度的差值,Ap表示零注入功率节点的节点-支路关联矩阵,Psource表示耦合元件功率,(As,bs,Ar,br)为温度系数,B为支路-回路关联矩阵,Φ为节点热功率,ζ为耦合系数。
(3)建立基于BP神经网络的热负荷功率伪量测模型,并进行训练,训练所采用的数据为对全年负荷数据通过电热网潮流计算生成的全网不同时段的状态变量数据和实时量测数据。
热功率预测不能用一个包含所有相关因素的显式公式来表示。因此本发明利用人工神经网络对负荷节点热功率进行伪测量建模。本发明采用三层BP神经网络,包括依次连接的输入层、隐藏层和输出层,隐含层采用sigmoid传递函数,输出层采用线性传递函数;对该模型进行训练时,所采用的数据为对全年负荷数据通过电热网潮流计算生成的全网不同时段的状态变量数据和实时量测数据,将数据分为训练集和测试集,将占样本总数10%的噪声集添加到训练集中,每个噪声集随机添加5%坏数据来模拟存在坏数据的数据情况。
为了提高网络训练的效率,利用互信息减少了神经网络输入的维数。定义离散随机变量X与Y之间的互信息为:
Figure GDA0002650400470000072
式中,n和m分别为随机变量X和Y的样本数。互信息值越大,表明变量之间相关性越强。
隐含层节点数通过实验比较网络的训练时间和精度来确定。为了防止神经网络的过拟合,随机选取不同的测试集对网络误差进行测试,从而保证当新的测量数据作为输入时不会产生较大的误差。
神经网络的训练过程包括以下步骤:
I综合全年负荷数据,通过电热网潮流计算,生成全网不同时段的状态变量数据;
II将状态信息和实时测量结合到训练样本和测试样本的输入中,在训练样本中加入噪声集样本;
III通过互信息减少ANN(人工神经网络,Artificial Neural Network)输入的维数;
IV将负荷数据作为ANN的目标输出;
V对网络进行训练,根据误差和训练时间调整参数;
VI保存ANN目标输出与实际输出之间的误差,以备后续处理。
(4)将上一时刻热网状态变量的滤波值和热网实时量测向量输入训练好的热负荷功率伪量测模型,输出即为热负荷节点的功率伪量测数据。
(5)根据热负荷节点的功率伪量测数据与电网、热网实时量测数据,采用基于原对偶内点法(Primal-Dual IPM,PDIPM)的加权最小绝对值方法(Weighted LeastAbsoluteValue,WLAV)对步骤(2)构建的状态估计模型进行求解,得到电网和热网中的状态变量估计值。
该步骤具体包括:
(5-1)将所述电-热互联综合能源系统状态估计模型简写为:
Figure GDA0002650400470000081
式中,w=[we,wh],l和u表示松弛变量,且l+u=|ε|,ε=[εeh]T,z=[ze,zh]T,h(x)=[hx(xe),hh(xh)]T
(5-2)获取上述模型的拉格朗日函数L:
L=wT(l+u)-ηT[z-h(x)+l-u]-αTl-βTu
式中,α、β和η为拉格朗日乘子,该函数KKT条件为:
Figure GDA0002650400470000091
式中,A,B,L,U都是对角阵,其对角元素的取值分别为α,β,l,u,μ为扰动因子,e为单位列向量;
(5-3)读入热负荷节点的功率伪量测数据与电网、热网实时量测数据;
(5-4)计算对偶间隙Ggap
Ggap=αTl+βTu
(5-5)判断对偶间隙Ggap是否小于门限值,如果是,则将此时状态变量x的值作为状态变量估计值
Figure GDA0002650400470000092
进行输出,如果否,则执行(5-6);
(5-6)采用下式计算得到dx和dη:
Figure GDA0002650400470000093
式中,
Figure GDA0002650400470000094
为海森矩阵,
Figure GDA0002650400470000095
(5-7)采用下式计算得到dα、dβ、dl和du:
Figure GDA0002650400470000096
该公式和步骤(5-6)中公式的获取过程为:
对KKT条件进行泰勒展开,得到如下公式:
Figure GDA0002650400470000097
-dη-dα=-Ll
dη-dβ=-Lu
Figure GDA0002650400470000098
Figure GDA0002650400470000101
Figure GDA0002650400470000102
取初值η=0,α=β=w,则Ll=Lu=0,带入泰勒展开式即可得到本步骤公式。再将本步骤公式带入即可得到步骤(5-6)中公式。
(5-8)按照下式计算原对偶的迭代步长pp和pd
Figure GDA0002650400470000103
Figure GDA0002650400470000104
式中,i=1,…,M,M为量测量的维度,αi、βi、li、ui分别为α、β、l、u的第i个元素;
(5-9)根据迭代步长pp和pd更新原对偶变量x,l,u,η,α,β,并返回执行步骤(5-4)
Figure GDA0002650400470000105
下面对本发明进行仿真测试:
本发明测试的算例如图2所示,由IEEE-33节点和巴厘岛系统构成的电-热互联综合能源系统。
(1)伪量测模型精度测试:表1给出了本发明中伪量测模型的预测精度统计,由表1可知,通过计及实时量测的神经网络预测,误差能够控制在5%以内,远小于传统负荷预测的误差(10%-30%)。其中:
Figure GDA0002650400470000106
式中,n为试验样本个数,Φp,i为ANN的输出,Φtrue,i为负荷节点热功率的真实值。
表1巴厘岛算例预测精度统计
Figure GDA0002650400470000107
(2)状态估计滤波效果测试:滤波效果由估计误差统计值SH与测量误差统计值SM之比来评价:
Figure GDA0002650400470000111
Figure GDA0002650400470000112
其中T为试验数,m为被测数,zi,t由每次试验中添加标准差为0.01-0.05的高斯噪声的真值生成,σi为高斯噪声的标准差,hi,t(xse)为每次试验的估计值。SH/SM比例越小,状态估计的滤波的效果越好。表2给出了在较为理想的量测配置1下两种方法的比较结果,假设在电网所有节点和支路配置节点注入功率、支路功率和电压幅值量测,在热网所有节点和支路处配置热功率量测、压强量测、流量量测和温度量测。表3给出了当热网负荷节点处缺少热功率量测时,本发明状态估计器是否配备伪量测的比较结果。通过两表可知,在没有坏数局的情况下,WLAV的估计精度接近于WLS,且伪量测模型提高了状态估计的精度,降低了关键量测的数目,从而保证了系统的可观测性。
表2量测配置1下WLS与WLAV的估计统计结果对比
Figure GDA0002650400470000113
表3量测配置2下是否配置伪量测时的估计统计结果对比
Figure GDA0002650400470000114
(3)抗差性测试:为了测试WLAV在电-热互联综合能源系统中的抗差性能,我们添加了占总测量数目0%到10%的错误数据。不良数据中在电网和热网中随机设置,设置为真实测量值的130%。对于每个比例的坏数据,随机构建2000个样本组。引入平均估计误差和最大估计误差来评价算法的鲁棒性。
Figure GDA0002650400470000115
Figure GDA0002650400470000116
统计结果如图3所示。由图可知,本发明中的方法可以将平均估计误差控制在10-3数量级以内,当坏数据增加时,估计误差的最大值也很小。但由于水力模型量测精度较低,质量流量的估计误差略大。此外,由于质量流量在水力模型中相关性较强,因此更容易受到不良数据的影响。尽管如此,随着不良数据数量的增加,该方法仍然具有较强的鲁棒性,非常适合作为电-热互联综合能源系统的状态估计器。
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (3)

1.一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,其特征在于,包括以下步骤:
(1)分别获取电-热互联综合能源系统的电网信息和热网信息;
(2)根据电网信息和热网信息建立计及等式约束的电-热互联综合能源系统状态估计模型,具体为:
Figure FDA0002650400460000011
s.t.εe=ze-hx(xe)
εh=zh-hh(xh)
c(x)=0
式中,x=[xe,xh],xe和xh分别为电网和热网中的状态变量,we、wh分别为电网、热网中量测误差的权重列向量,c(x)为系统中的约束方程,ze、zh分别为电网、热网中的量测值,εe、εh分别为电网、热网中的量测误差,he(xe)、hh(xh)分别为电网、热网中的量测方程,且具体为:
电网量测方程
Figure FDA0002650400460000012
水力量测方程
Figure FDA0002650400460000013
热网量测方程
Figure FDA0002650400460000014
式中下标i、j表示节点i、j的对应值,下标ij表示节点i和节点j之间的线路或支路的对应值,下标k表示管道k的对应值,下标l表示热网节点l的对应值,V、θ为节点电压幅值和相角,Pi为节点注入有功功率,Qi为节点注入无功功率,Pij为支路有功功率,Qij为支路无功功率,G、D为导纳矩阵的实部和虚部,g、b为线路电导和电纳,yc为对地导纳;m为管道流量,mq为节点注入流量,hf为压强损失,T为节点温度,A为热网节点-支路关联矩阵,K为管道阻力系数,Φsource为热源功率,fh(·)为管道温降方程,Ts为负荷节点供水温度,Tr为负荷节点回水温度,Tr_source,p为热源节点的回水温度;
约束方程c(x)具体为:
Figure FDA0002650400460000021
式中,Y为电网节点导纳矩阵,上标*表示复数的共轭,real{}表示复数的实部,imag{}表示复数虚部,Ts'表示节点供水温度与环境温度的差值,Ap表示零注入功率节点的节点-支路关联矩阵,Psource表示耦合元件功率,(As,bs,Ar,br)为温度系数,B为支路-回路关联矩阵,Φ为节点热功率,ζ为耦合系数;
(3)建立基于BP神经网络的热负荷功率伪量测模型,并进行训练,训练所采用的数据为对全年负荷数据通过电热网潮流计算生成的全网不同时段的状态变量数据和实时量测数据;所述基于BP神经网络的热负荷功率伪量测模型具体为三层BP神经网络,包括依次连接的输入层、隐藏层和输出层,隐含层采用sigmoid传递函数,输出层采用线性传递函数;对该模型进行训练时,将数据分为训练集和测试集,将占样本总数10%的噪声集添加到训练集中,每个噪声集随机添加5%坏数据来模拟存在坏数据的数据情况;
(4)将上一时刻热网状态变量的滤波值和热网实时量测向量进行相关性分析,将分析结果输入训练好的热负荷功率伪量测模型,输出即为热负荷节点的功率伪量测数据;
(5)根据热负荷节点的功率伪量测数据与电网、热网实时量测数据,采用基于原对偶内点法的加权最小绝对值方法对步骤(2)构建的状态估计模型进行求解,得到电网和热网中的状态变量估计值。
2.根据权利要求1所述的一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,其特征在于:步骤(1)中获取的
电网信息为:电网拓扑、支路参数信息、发电机参数信息;
热网信息为:各管道长度、直径、粗糙度、阻抗系数,耦合元件的热电比。
3.根据权利要求1所述的一种基于伪量测模型的电-热互联综合能源系统抗差状态估计方法,其特征在于:步骤(5)具体包括:
(5-1)将所述电-热互联综合能源系统状态估计模型简写为:
Figure FDA0002650400460000031
式中,w=[we,wh],l和u表示松弛变量,且l+u=|ε|,ε=[εeh]T,z=[ze,zh]T,h(x)=[hx(xe),hh(xh)]T
(5-2)获取上述模型的拉格朗日函数L:
L=wT(l+u)-ηT[z-h(x)+l-u]-αTl-βTu
式中,α、β和η为拉格朗日乘子,该函数KKT条件为:
Figure FDA0002650400460000032
式中,A,B,L,U都是对角阵,其对角元素的取值分别为α,β,l,u,μ为扰动因子,e为单位列向量;
(5-3)读入热负荷节点的功率伪量测数据与电网、热网实时量测数据;
(5-4)计算对偶间隙Ggap
Ggap=αTl+βTu
(5-5)判断对偶间隙Ggap是否小于门限值,如果是,则将此时状态变量x的值作为状态变量估计值
Figure FDA0002650400460000033
进行输出,如果否,则执行(5-6);
(5-6)采用下式计算得到dx和dη:
Figure FDA0002650400460000041
式中,
Figure FDA0002650400460000042
为海森矩阵,
Figure FDA0002650400460000043
(5-7)采用下式计算得到dα、dβ、dl和du:
Figure FDA0002650400460000044
(5-8)按照下式计算原对偶的迭代步长pp和pd
Figure FDA0002650400460000045
Figure FDA0002650400460000046
式中,i=1,…,M,M为量测值的维度,αi、βi、li、ui分别为α、β、l、u的第i个元素;
(5-9)根据迭代步长pp和pd更新原对偶变量x,l,u,η,α,β,并返回执行步骤(5-4)
Figure FDA0002650400460000047
CN201910729159.XA 2019-08-08 2019-08-08 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法 Active CN110428185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910729159.XA CN110428185B (zh) 2019-08-08 2019-08-08 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910729159.XA CN110428185B (zh) 2019-08-08 2019-08-08 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法

Publications (2)

Publication Number Publication Date
CN110428185A CN110428185A (zh) 2019-11-08
CN110428185B true CN110428185B (zh) 2020-11-03

Family

ID=68415011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910729159.XA Active CN110428185B (zh) 2019-08-08 2019-08-08 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法

Country Status (1)

Country Link
CN (1) CN110428185B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082417A (zh) * 2019-12-01 2020-04-28 国网辽宁省电力有限公司经济技术研究院 一种基于综合能源系统电气热联合网络的状态估计方法
CN112529391B (zh) * 2020-12-02 2023-07-21 清华大学 一种适用于极寒自然灾害下的热电耦合系统状态估计方法
CN112906220B (zh) * 2021-02-10 2023-04-07 海南省电力学校(海南省电力技工学校) 综合能源微网园区系统状态的估计方法
CN115049098B (zh) * 2022-04-13 2024-06-07 重庆大学 基于数据驱动的电-水联合系统最优能流随机优化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383511B (zh) * 2008-10-10 2010-08-04 清华大学 基于数据采集系统量测数据的电力系统状态估计方法
CN103413053B (zh) * 2013-08-21 2016-09-14 国家电网公司 一种基于内点法的电力系统抗差状态估计方法
CN103886193B (zh) * 2014-03-13 2017-05-24 河海大学 一种电力系统模糊自适应抗差估计方法
CN105279355B (zh) * 2014-07-03 2017-12-29 中国科学院上海高等研究院 一种园区型多能源互补分布式能源系统的能源调度实现方法
CN105046369B (zh) * 2015-08-13 2019-04-30 河海大学 一种基于能源中心的电气混联系统建模和优化调度方法
CN106022624B (zh) * 2016-05-27 2019-07-26 清华大学 一种电-热耦合多能流网络状态估计方法
CN108960503B (zh) * 2018-07-02 2021-08-31 河海大学 基于内点法的综合能源系统多场景优化分析方法
CN109726483B (zh) * 2018-12-29 2022-08-23 国网江苏省电力有限公司南京供电分公司 一种电热互联综合能源系统辐射状热网模型及其系统

Also Published As

Publication number Publication date
CN110428185A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN110428185B (zh) 基于伪量测模型的电-热互联综合能源系统抗差状态估计方法
CN108155648A (zh) 基于自适应h无穷扩展卡尔曼滤波的状态估计方法
CN112818595B (zh) 一种火电厂蒸发区的数字孪生模型数据的修正方法及系统
CN103983453A (zh) 一种航空发动机的执行机构和传感器故障诊断的区分方法
Zhou et al. Dynamic simulation of natural gas pipeline network based on interpretable machine learning model
CN110443724B (zh) 一种基于深度学习的电力系统快速状态估计方法
CN107451392A (zh) 一种含有多个相关退化过程的剩余寿命预测方法
Abudu et al. Modeling of daily pan evaporation using partial least squares regression
CN112465124A (zh) 孪生深度时空神经网络模型获取/故障诊断方法、装置
CN115510904B (zh) 基于时序预测的锅炉受热面积灰监测方法
CN110750575B (zh) 基于拉格朗日状态估计的电热互联系统坏数据辨识方法
CN117216703A (zh) 一种输水管网运行数据异常检测及校正方法
CN112348158A (zh) 基于多参数深度分布学习的工业设备状态评估方法
CN112232570A (zh) 一种正向有功总电量预测方法、装置及可读存储介质
CN113783186B (zh) 一种考虑配电网拓扑结构变化的电压预测方法
CN115048857A (zh) 一种基于cnn的暂稳极限传输功率的确定方法
CN112670997B (zh) 考虑光伏不确定性的电热能源系统时序概率潮流计算方法
CN114020809A (zh) 一种基于dnn的电热综合能源系统快速状态估计方法及介质
CN103258144B (zh) 基于故障录波器数据的在线静态负荷建模方法
CN111695082A (zh) 智能配电网抗差动态状态估计方法
CN104933301A (zh) 一种计算风电场有效容量的计算方法
CN105305441B (zh) 一种状态与参数联合追踪方法
CN104037756A (zh) 一种含复杂电力设备模型的电力系统稳定评估方法
CN115800269B (zh) 配电网量测数据驱动的电压功率灵敏度拓扑约束估计方法
CN112417759B (zh) 一种基于动态神经网络的导热反问题求解方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant