CN110419735A - 一种南极磷虾油微胶囊的制备方法 - Google Patents

一种南极磷虾油微胶囊的制备方法 Download PDF

Info

Publication number
CN110419735A
CN110419735A CN201910756836.7A CN201910756836A CN110419735A CN 110419735 A CN110419735 A CN 110419735A CN 201910756836 A CN201910756836 A CN 201910756836A CN 110419735 A CN110419735 A CN 110419735A
Authority
CN
China
Prior art keywords
krill oil
preparation
wall material
antarctic krill
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910756836.7A
Other languages
English (en)
Inventor
宋亮
张晶
付晶晶
白长军
邵振文
周大勇
姜鹏飞
朱蓓薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Polytechnic University
Original Assignee
Dalian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Polytechnic University filed Critical Dalian Polytechnic University
Priority to CN201910756836.7A priority Critical patent/CN110419735A/zh
Publication of CN110419735A publication Critical patent/CN110419735A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/045Organic compounds containing nitrogen as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/05Organic compounds containing phosphorus as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种南极磷虾油微胶囊制备方法,属于脂质的加工技术领域。本发明以南极磷虾油为芯材,首先采用单甘脂作为乳化剂,利用高速匀浆机协同超声波细胞粉碎仪进行一次乳化包埋芯材,再次以酪蛋白、乳清蛋白、葡萄糖浆为壁材,利用动态高压微射流进行二次乳化包埋;最后采用喷雾干燥制备得到南极磷虾油微胶囊。本发明采用的二次乳化及喷雾干燥法制备南极磷虾油微胶囊,取得了良好的包埋效果,提高了南极磷虾油微胶囊的稳定性,且掩盖了南极磷虾油的不良风味,同时提高了南极磷虾油活性物质(虾青素、DHA、EPA)的生物可给率,在食品工业具有较好的应用前景。

Description

一种南极磷虾油微胶囊的制备方法
技术领域
本发明涉及脂质的加工技术领域,具体地说,涉及一种生物可给率高的南极磷虾油微胶囊的制备方法。
背景技术
南极磷虾油富含ω-3多不饱和脂肪酸、虾青素,以及多种维生素和氨基酸等活性物质。研究表明南极磷虾油中的ω-3多不饱和脂肪酸与其磷脂结合,是一种具有较强抗氧化功能的天然活性分子,且其磷脂与人体细胞的磷脂接近,易于人体的吸收和利用。国家卫计委2013年第16号公告,已批准南极磷虾油成为国家新食品原料。
南极磷虾油富含抗氧化物质,暴露于空气、光照和高温境下极易发生氧化,生成醛、酮等有害物质。变质的南极磷虾油颜色深暗,且有难闻的气味,还会因其酸败而失去原有的营养和保健价值。目前,脂质微囊化技术被认为是用于保护脂质氧化稳定的有效方法,延长脂质货架期。
但现有南极磷虾油微胶囊制备方法,大多存在以下瓶颈问题:(1)表面油高,微囊酸败加速,导致高酸价和过氧化值;(2)制备过程中蒸发温度高,且暴露在有机溶剂/空气中,导致活性物质易失活;(3)水分的去除速率不稳定,导致囊壁上易有缝隙,致密性差;(4)微胶囊的磷虾特有腥味特征较为明显;(5)微胶囊的溶解性和消化可控性较差。这些都限制了南极磷虾油微胶囊的应用。
发明专利申请CN201611081521.X《一种具有抗氧化作用的磷虾油微胶囊及其制备工艺》公开了一种南极磷虾油微胶囊制备方法。该方法使用了油相抗氧剂、水相抗氧剂、乳化剂、分散剂等多种复合添加剂,又经过了冷冻干燥制备微胶囊粉末,其工艺复杂,成本高,难以实现工业化生产。
发明专利申请CN201710630820.2《一种水溶性南极磷虾油微胶囊粉制备方法》公开了一种南极磷虾油微胶囊粉的制备方法。该方法使用了喷雾干燥包埋后再经淀粉流化床包埋,即依靠淀粉外层包裹,成品需过筛,颗粒不均匀,应用范围较窄。
发明内容
为解决现有技术存在的不足,本发明提供了一种生物可给率高的南极磷虾油微胶囊制备方法,本发明制备的南极磷虾油微胶囊包埋率高,稳定性好,且掩盖了南极磷虾油的不良风味,同时大大提高了南极磷虾油活性物质的生物可给率,并且能工业化生产,应用于食品药品中具有良好的营养保健功效。
本发明的技术方案为:
一种南极磷虾油微胶囊的制备方法,包括如下步骤:
S1、一次乳化液制备:取南极磷虾油加入单甘脂,匀浆、超声分散,使单甘脂均匀分散在所述南极磷虾油中,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50∶1~20∶1;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,匀浆、动态高压微射流均质,使一次乳化液均匀分散在壁材水溶液中,得二次乳化液;所述一次乳化液和壁材水溶液的重量比为7~9∶100;所述壁材水溶液中壁材和水的重量比为1∶2~2.5,所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40∶20~30∶40~30组成,将所述壁材溶于水制得壁材水溶液;其中所述二次乳化液中可溶性固形物含量为33%~38%;
S3、微胶囊制备:将步骤S2所述二次乳化液进行喷雾干燥,得到南极磷虾油微胶囊。
优选方式下,步骤S1所述一次乳化液制备具体为:将南极磷虾油加热至40~50℃,增加其流动性,再加入单甘脂,进行匀浆、超声分散,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50∶1~20∶1;所述匀浆、超声分散具体为:首先以8000~10000rpm的转速进行匀浆30~50s,然后以20~25KHz的工作频率进行超声3~5s;所述匀浆和超声分散作为整体分散步骤,交替进行,共重复进行3~5次。
优选方式下,步骤S2所述匀浆具体为:采用高速匀浆机20000rpm、匀浆分散15~30s,重复3~5次,匀浆温度为40~55℃;所述动态高压微射流均质的参数为:9000~12000psi,均质次数为3~5次。
优选方式下,步骤S3所述喷雾干燥参数为:进风温度为115~130℃,出风温度为85~95℃。
优选方式下,所述南极磷虾油微胶囊的制备方法,包括如下步骤:
S1、一次乳化液制备:取南极磷虾油,将南极磷虾油加热至40~50℃,增加其流动性,再加入单甘脂,进行匀浆、超声分散,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50∶1~20∶1;所述匀浆、超声分散具体为:首先以8000~10000rpm的转速进行匀浆30~50s,然后以20~25KHz的工作频率进行超声3~5s;所述匀浆和超声分散作为整体分散步骤,交替进行,共重复进行3~5次;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,采用高速匀浆机20000rpm、匀浆分散15~30s,重复3~5次,匀浆温度为40~55℃;再使用高压微射流9000~12000psi、均质3~5次使一次乳化液均匀分散在壁材水溶液中,得二次乳化液;所述一次乳化液和壁材水溶液的重量比为1∶12~14;所述壁材水溶液中壁材和水的重量比为1∶2~2.5,所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40∶20~30∶40~30组成;其中所述二次乳化液中可溶性固形物含量为33%~38%;
S3、微胶囊制备:将步骤S2所述二次乳化液进行喷雾干燥,进风温度为115~130℃,出风温度为85~95℃,得到南极磷虾油微胶囊。
优选方式下,所述南极磷虾油微胶囊制备方法,包括步骤:
S1、一次乳化液制备:将南极磷虾油加热到45℃,增加其流动性,加入单甘脂进行混合,所述南极磷虾油与单甘脂的重量比为40∶1;使用高速匀浆机8000rpm快速分散匀浆30s,采用超声波细胞粉碎仪,以22KHz的频率超声3s;使用高速匀浆机9000rpm快速分散匀浆40s,采用超声波细胞粉碎仪,以22KHz的频率超声4s;使用高速匀浆机10000rpm快速分散匀浆50s,采用超声波细胞粉碎仪以22KHz的频率超声5s;室温下得到分散均匀的磷虾油一次乳化液;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,使用高速匀浆机20000rpm快速分散20s,重复4次,温度控制在50℃;然后在10000psi动态高压微射流下均质5次,得到分散均匀的磷虾油二次乳化液;其中,所述一次乳化液和壁材水溶液的重量比为8∶100;所述壁材水溶液中壁材和水按重量比45∶100,将所述壁材溶于水,制备成壁材水溶液;所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40∶25∶35组成,所述二次乳化液中可溶性固形物含量为35%;
S3、微胶囊制备:将步骤S2制得的磷虾油二次乳化液进行喷雾干燥,进风温度为120℃,出风温度为90℃;得到南极磷虾油微胶囊。
所述南极磷虾油可以选用符合辽渔南极磷虾科技发展有限公司企业标准Q/LNK0001S-2016的南极磷虾油,也可以根据实际生产需要选用其他DHA藻油、金枪鱼油等。
相对比与现有技术,本发明的有益效果为:
本发明首先采用具有抗氧化作用的单甘脂乳化剂包埋芯材南极磷虾油,再利用具有乳化性的酪蛋白、乳清蛋白及具有肠溶性的葡萄糖浆进一步包埋单甘脂-南极磷虾油乳液,获得一种生物可给率高的南极磷虾油微胶囊。工艺采用了二次乳化过程,并采用动态高压微射流技术微化乳液,解决了乳液粒径大、稳定性差等技术难题;生产出的乳液分散均匀、稳定性强;在此基础上,采用喷雾干燥技术制备了南极磷虾油微胶囊,显著提高南极磷虾油的热稳定性,有效地掩盖了南极磷虾不良风味,使产品具有较高的营养价值,可用于制备功能性食品及特医食品等,为南极磷虾油的应用提供了新的思路。本发明具有工艺简单、操作安全等特点,在食品行业上的应用具有广阔的发展前景。
迄今为止,在公开的文件中,未见经二次乳化、喷雾干燥制备的南极磷虾油微胶囊,所述生物可给率高是指南极磷虾油制备成微胶囊成品,通过胃肠道消化使其在胃内有效保护,而在小肠内有效释放,在提高南极磷虾油(尤其是其EPA、DHA和虾青素)稳定性的同时,最大程度的保留其生物可给率。
附图说明
图1为实施例1制备的南极磷虾油微胶囊扫描电镜图(500倍);
图2为实施例1制备的南极磷虾油微胶囊扫描电镜图(1500倍);
图3为南极磷虾油及实施例1制备的南极磷虾油微胶囊电子鼻风味检测雷达响应图;
图4为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的平均粒径;
图5为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的zeta电位图;
图6为实施例1制备的南极磷虾油微胶囊体外模拟消化过程的初始乳液油相分布;
图7为实施例1制备的南极磷虾油微胶囊体外模拟消化过程的口腔消化样品的油相分布;
图8为实施例1制备的南极磷虾油微胶囊体外模拟消化过程的胃消化样品的油相分布;
图9为实施例1制备的南极磷虾油微胶囊体外模拟消化过程的小肠消化样品的油相分布;
图10为南极磷虾油体外模拟消化过程的初始乳液的油相分布;
图11为南极磷虾油体外模拟消化过程的口腔消化样品的油相分布;
图12为南极磷虾油体外模拟消化过程的胃消化样品的油相分布;
图13为南极磷虾油体外模拟消化过程的小肠消化样品的油相分布;
图14为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的EPA含量变化;
图15为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的DHA含量变化;
图16为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的虾青素含量变化;
图17为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的FFA释放率;
图18为南极磷虾油及实施例1制备的南极磷虾油微胶囊体外模拟消化过程的EPA、DHA及虾青素生物可给率。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
S1、一次乳化液制备:将南极磷虾油加热,再加入单甘脂进行混合;搅拌、分散;室温下得到南极磷虾油一次乳化液;
优选方式下,将南极磷虾油加热到40~50℃,增加其流动性,加入单甘脂进行混合,其中磷虾油与单甘脂的质量比为50∶1~20∶1;先以高速匀浆机8000~10000rpm快速分散30~50s;再以超声波细胞粉碎仪超声3~5s;共重复3~5次;室温下得到分散均匀的磷虾油一次乳化液;
S2、二次乳化液制备:将S1制得的一次乳化液分散到含有酪蛋白、乳清蛋白、葡萄糖浆的水溶液;分散、均质;得到南极磷虾油二次乳化液;
优选方式下,将S1制得的一次乳化液分散到含有酪蛋白、乳清蛋白、葡萄糖浆的水溶液(其壁材与水的重量比为1∶2~2.5);其中酪蛋白、乳清蛋白和葡萄糖浆的重量比为40∶20~30∶40~30;将分散体系采用高速匀浆机20000rpm快速分散15~30s,重复3~5次,温度控制在40~55℃;然后在9000~12000psi动态高压微射流下均质3~5次;得到分散均匀的磷虾油二次乳化液,其中可溶性固形物含量为33~38%;
S3、微胶囊制备:将S2制得的二次乳化液进行喷雾干燥,得到南极磷虾油微胶囊。
优选方式下,将S2制得的磷虾油二次乳化液进行喷雾干燥,进风温度为115~130℃,出风温度为85~95℃;得到南极磷虾油微胶囊。
实施例1:
一种南极磷虾油微胶囊制备方法,经过下列工艺步骤:
S1、一次乳化液制备:将南极磷虾油(辽渔南极磷虾科技发展有限公司,商品号S90°)加热到45℃,增加其流动性,加入单甘脂(南京化学试剂股份有限公司,CAS No.123-94-4)进行混合,所述南极磷虾油与单甘脂的重量比为40∶1;使用高速匀浆机8000rpm快速分散匀浆30s,采用超声波细胞粉碎仪,以22KHz的频率超声3s;使用高速匀浆机9000rpm快速分散匀浆40s,采用超声波细胞粉碎仪,以22KHz的频率超声4s;使用高速匀浆机10000rpm快速分散匀浆50s,采用超声波细胞粉碎仪,以22KHz的频率超声5s;室温下得到分散均匀的磷虾油一次乳化液;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,使用高速匀浆机20000rpm快速分散20s,重复4次,温度控制在50℃;然后在10000psi动态高压微射流下均质5次,得到分散均匀的磷虾油二次乳化液;其中,所述一次乳化液和壁材水溶液的重量比为8∶100;所述壁材水溶液中壁材和水按重量比45∶100,将所述壁材溶于水,制备成壁材水溶液;所述壁材由酪蛋白(上海吉至生化科技有限公司,CAS No.9005-46-3)、乳清蛋白(上海吉至生化科技有限公司,CAS No.9014-01-1)、葡萄糖浆(上海吉至生化科技有限公司,CAS No.492-62-6)按重量比40∶25∶35组成,所述二次乳化液中可溶性固形物含量为35%;参照GB 5009.3-2016食品安全国家标准-食品中水分的测定计算得到所述二次乳化液中水分含量(%),所述可溶性固形物的含量(%)=1-水分含量(%);
S3、微胶囊制备:将步骤S2制得的磷虾油二次乳化液进行喷雾干燥,进风温度为120℃,出风温度为90℃;得到南极磷虾油微胶囊。
对本发明实施例1制备的南极磷虾油微胶囊的微观形貌,风味特征,体外模拟消化过程的平均粒径及zeta电位,油相分布,EPA、DHA和虾青素在胃中的保留量,EPA、DHA和虾青素在小肠中的释放量,FFA(游离脂肪酸)释放率、以及EPA生物可给率,DHA生物可给率和虾青素生物可给率进行测定:以未经微囊化处理的南极磷虾油为对照组,取适量南极磷虾油微胶囊,采用扫描电镜进行微观形貌的检测;采用电子鼻和固相微萃取-气相色谱质谱联用仪进行风味物质的检测;基于体外模拟消化模型,采用激光粒度仪进行乳液消化过程中的粒径分布及Zeta电位的检测;采用激光共聚焦显微镜进行乳液消化过程中的油相分布的检测;采用气相色谱质谱联用仪进行乳液消化过程中的脂肪酸分析的检测;采用棒状薄层色谱分析仪进行乳液消化过程中的脂质组成的检测。
所述乳液样品的制备方法:(1)对照组,即乳化南极磷虾油乳液(初始乳液):0.8g南极磷虾油、0.4g单甘脂与10mL水(62℃)搅拌混匀,得到乳化南极磷虾油乳液(初始乳液);(2)实验组,即南极磷虾油微胶囊复水乳液:5g南极磷虾油微胶囊溶于10mL水中(62℃),搅拌均匀得到南极磷虾油微胶囊复水乳液。
所述体外模拟消化检测方法:
(1)模拟口腔阶段(simulated saliva fluid,SSF):取10mL乳液样品(所述乳液为对照组的乳化南极磷虾油和实验组的南极磷虾油微胶囊复水乳液)与10mL人工唾液(上海源叶生物科技有限公司,ISO/TR10271,中性)混合,然后将混合物调节至pH6.8并在恒温振荡器连续摇动10min,温度为37℃,转速100rpm/min,得口腔消化样品;
(2)模拟胃阶段(simulated gastric fluid,SGF):配制1L的模拟胃液(取2gNaCl、3.2g胃蛋白酶和7.0ml盐酸,以去离子水定容至1000ml即得,其中胃蛋白酶活力为每mg中含800~1500个活度单位),将经过模拟口腔消化10min后样品20mL(即所述口腔消化样品)中加入20mL模拟胃液,然后用1.0M的NaOH将溶液pH值调至2.5,稳定温度在37℃,在100rpm/min下消化2h,得胃消化样品;
(3)模拟小肠阶段(simulated intestinal fluid,SIF):取30mL所述胃消化样品,加入干净烧杯中,用1mol/L NaOH溶液调节pH值至7.0,混合液加入模拟小肠液(所述模拟小肠液包括3.5mL 187.5mg/mL胆汁盐和1.5mL 75mg/ml CaCl2溶液),混合后使用0.5mol/LNaOH溶液调节pH值至7.0,迅速加入2.5mL胰脂肪酶(4.8mg/mL,胰脂肪酶活力为500~1200个活度单位)在37℃下、转速100rpm/min孵育2h,得小肠消化样品;用pH计检测所述孵育过程中pH值的变化,用0.05mol/L NaOH溶液滴定使其始终保持在pH7.0,记录所述孵育过程中使用的0.05mol/L NaOH溶液的总体积。
所述FFA释放率的计算方法:根据模拟小肠阶段孵育过程中消耗的0.05mol/LNaOH溶液的总体积,按下述公式计算样品的游离脂肪酸(free fatty acids,FFA)释放率。
式中:V(NaOH)为滴定所用0.05mol/L NaOH溶液体积/L;c(NaOH)为NaOH溶液的浓度/(mol/L),即0.05mol/L;M南极磷虾油为南极磷虾油的平均摩尔质量/(g/mol);m南极磷虾油为油相的质量/g;其中,本发明实施例1所述南极磷虾油的平均摩尔质为832g/mol。
所述生物可给率的计算方法:在消化后,将所述小肠阶段的消化样品,收集并离心(8000rpm/min),在25℃下保持10min。离心后的乳液样品,底层是不透明的沉积相,中间是胶束相,顶层是油相。采用BD法,分别对胶束层中的虾青素含量、胶束层中的DHA含量、胶束层中的EPA含量及初始乳液中的虾青素含量、初始乳液中的DHA含量、初始乳液中的EPA含量进行检测。
检测指标具体分析及理论依据如下:
图1、2为本发明实施例1制备的南极磷虾油微胶囊扫描电镜图。南极磷虾油微胶囊的微观形态在Cryo-SEM的500×和1500×放大倍数下进行观察,结果可知,在500×下,磷虾油微胶囊呈球形,表面相对光滑,囊壁比较完整,分布均匀,无聚集现象;在1500×下能明显观察到,外壁囊壳结构(二次乳化液的壁材水相)包裹了一次乳化液(单甘脂-南极磷虾油)。上述结果表明,本发明的南极磷虾油经二次乳化、喷雾干燥处理后,被成功地封装到囊壳中。
图3为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊电子鼻风味检测雷达响应图。南极磷虾油在传感器W1S响应值最大,为11.90,在W3S响应值最小,为0.10。而南极磷虾油微胶囊响应值最大为1.43。南极磷虾油在WIC、W5S、W1S、W1W、W2S、W2W响应值均显著大于南极磷虾油微胶囊,即南极磷虾油具有极性大的芳香成分气味。通过传感器雷达图可以直观地显示出,南极磷虾油和南极磷虾油微胶囊风味在传感器上的响应差异。结果表明,磷虾油经微胶囊化后,南极磷虾油挥发性成分减少,特征风味减弱,明显改善了南极磷虾油产品的不良气味。
表1为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊风味物质分析检测。采用GC-MS技术对南极磷虾油及其微胶囊风味化学成分对比分析,分别鉴定出10种和1种化合物。由表可知,南极磷虾油主要风味化学成分是烯类、醇类、醛类、酮类、酯类等,而虾油微胶囊的主要风味化学成分仅有酯类,且含量为0.17μg/g,显著低于南极磷虾油酯类含量。这说明微胶囊显著掩盖了南极磷虾油不良风味,上述结果表明,本发明的南极磷虾油被很好的包裹在囊壳中。
图4、图5为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊体外模拟消化过程的平均粒径及zeta电位图。南极磷虾油微胶囊复水乳液在消化之前粒径小,维持稳定状态,无聚集现象。在经过体外模拟消化过程平均粒径变化如粒径图所示。将模拟唾液添加到南极磷虾油微胶囊复水乳液中其平均液滴尺寸无显著变化。其原因是在口腔中短暂的停留时间没有引起微胶囊破坏而造成粒径很大变化。经过模拟胃液消化时,胃消化样品的液滴粒径显著变大。这可能是由于许多物理化学现象造成的,首先,模拟胃液中的pH值降低,离子强度增加,这可能改变了液滴之间的静电相互作用引起液滴絮凝。其次,模拟胃液中含有胃蛋白酶,胃蛋白酶是一种可以水解蛋白质的消化酶吸附在脂肪液滴表面上的蛋白质的水解可能降低了它们对聚集的稳定性,从而促进了液滴的絮凝和聚集。经过模拟小肠阶段后,小肠消化样品显示出平均粒径相比于未经消化的南极磷虾油微胶囊复水乳液样品增加,而相比于胃阶段的胃消化样品降低。此结果可能是由于吸附在脂滴的胰脂肪酶将南极磷虾油脂解释放长链脂肪酸和单酰基甘油,这也可能降低聚结稳定性而导致粒径增加。而对于乳化的南极磷虾油乳液(对照组)本身来说,初始粒径就显著高于南极磷虾油微胶囊复水乳液(实验组),在经过体外消化过程平均粒径处于波动状态,这结果说明乳化南极磷虾油在模拟消化的整个过程都处于液滴聚集和絮凝的状态。从Zeta电位图中可知,南极磷虾油微胶囊复水乳液带有相对较高的负电荷,这可归因于壁材水溶液pH为7,远高于所述三种壁材的等电点。经过模拟口腔相,其负电荷减少,这可能是由于模拟唾液中矿物离子引起的离子强度增加而改变了它们的电荷特性。经过模拟胃条件后,乳液中的负电荷量明显减少。乳液中液滴负电荷减少可能是由于有一些蛋白质置换和吸附负电荷底物导致表面电荷减少。此外,在模拟胃液的酸性条件下,H+与COO-结合变为中性COOH,NH2变为阳性带电NH3+。因此也导致乳液负电荷减少。在经过小肠消化阶段,Zeta电位值显示出与初始,口腔和胃消化过程都有显著差异。其原因是阴离子被胆汁盐取代。此外,从脂质消化中释放的FFA可以吸附到油-水界面,因此在液滴上产生负电荷。在中性条件下,水中的阴离子(如OH-)也可能吸附到油-水界面并导致负电荷产生。因此负电荷高于胃消化过程的胃消化样品液滴。
图6~图13为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊体外模拟消化过程的油相分布。本发明采用激光共聚焦显微镜进行检测消化过程中油相分布。所述检测方法:经0.2mg/mL尼罗红溶液对消化样品中的油脂进行染色,2mg/mL FITC对消化样品中的壁材进行染色;所述染色过程为:取1mL消化后样品,加入50μL FITC染料和50μL尼罗红溶液,室温避光静置10min,涂片,63倍油镜观察,FITC激发波长为488nm,尼罗红激发波长为543nm。对于南极磷虾油微胶囊复水乳液,口腔消化阶段显示口腔消化样品的液滴无明显变化;在胃消化过程中,胃消化样品的颗粒尺寸增加,但并未有大量油滴释放,其原因可能由于吸附在油滴表面上的蛋白质分子的水解,蛋白质稳定的乳液更易于聚集而导致粒径变大,并未破坏南极磷虾油微胶囊的囊壳结构;在暴露于小肠条件下,小肠消化样品有大量红色油滴释放,可能是由于酶的作用使南极磷虾油囊壳结构破坏导致南极磷虾油释放并且通过脂解作用释放长链脂肪酸。对于南极磷虾油而言,在经过口腔消化阶段,口腔消化样品的油滴变大,说明在口腔中液滴不稳定;在胃消化过程中,从胃消化样品油滴状态观察到更大程度的去稳定化;在小肠消化阶段,小肠消化样品的液滴都处于聚集状态,此结果说明南极磷虾油在整个消化过程都是不稳定的,更容易被消化系统的环境所破坏。以上结果说明,本发明的南极磷虾油微胶囊能够在胃中有效地保护南极磷虾油,并在小肠中大量的释放。
图14~图16为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊体外模拟消化过程的EPA、DHA及虾青素在胃消化阶段的保留率及其在小肠消化阶段的释放率。本发明的南极磷虾油微胶囊复水乳液和乳化南极磷虾油乳液,经过SSF(模拟口腔消化)-SGF(模拟胃消化)-SIF(模拟小肠消化),这一连续动态模拟消化过程,各消化阶段释放的油脂中EPA、DHA和虾青素含量变化如图14~图16所示。从图中可知,南极磷虾油微胶囊复水乳液在胃消化阶段,EPA、DHA和虾青素的保留率分别为74.78%、77.93%和97.75%。而乳化南极磷虾油乳液在胃消化阶段,EPA、DHA和虾青素的保留率分别为63.54%、65.10%,和32.46%。所述胃消化阶段的保留率,是指经胃消化后,胃消化样品中胶束层EPA、DHA和虾青素含量与初始乳液样品中EPA、DHA和虾青素含量的百分比。结果表明,南极磷虾油微胶囊复水乳液在模拟胃消化阶段的油脂保留率显著高于乳化南极磷虾油乳液,其原因可归因于乳化虾油乳液没有外层囊壁的保护,在胃的酸性环境破坏了南极磷虾油稳定性,进而导致南极磷虾油脂质的降解释放。而南极磷虾油微胶囊复水乳液由于有良好壁材网络分散在界面起到保护的作用,其阻止了一定程度的脂质降解。经过SIF消化后,南极磷虾油微胶囊复水乳液胶束层的EPA、DHA和虾青素的释放率明显高于乳化南极磷虾油乳液。所述的小肠消化阶段的释放率,是指经小肠消化后,初始乳液样品中EPA、DHA和虾青素含量与小肠消化样品中胶束层EPA、DHA和虾青素含量的差值,与初始乳液样品中EPA、DHA和虾青素含量的百分比。其原因是由于南极磷虾油微胶囊复水乳液存在相对较大的表面相互作用区域。小尺寸液滴的乳液(复水乳液)相对于大尺寸液滴的乳液(乳化乳液),可提供更大的比表面积,消化过程中消化酶可完全作用于小尺寸的脂质乳液。以上结果说明,本发明的南极磷虾油微胶囊具有良好的消化特性。
图17为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊体外模拟消化过程的FFA(游离脂肪酸)释放率。如图所示,南极磷虾油微胶囊复水乳液和乳化南极磷虾油乳液经过连续体外模拟消化后,FFA释放率随着消化时间的增加而增加,当消化时间为100min时,FFA释放率不再升高。南极磷虾油微胶囊复水乳液的FFA释放率为80.72%,乳化南极磷虾油乳液的FFA释放率为67.41%。南极磷虾油微胶囊复水乳液的FFA释放率显著高于其乳化南极磷虾油乳液,一方面由于乳化南极磷虾油乳液在整个消化过程中并未受到保护而发生了水解,另一方面由于大的油滴尺寸减少了消化酶的反应区域。上述结果表明,本发明的微胶囊工艺可以显著地影响脂质消化释放率。
图18为南极磷虾油及本发明实施例1制备的南极磷虾油微胶囊体外模拟消化过程的EPA、DHA及虾青素的生物可给率。乳化南极磷虾油乳液及南极磷虾油微胶囊复水乳液经过体外模拟消化后,在小肠消化阶段,将获得的消化样品离心,分离得到胶束相。通过测定胶束相中EPA、DHA和虾青素含量及其初始乳液中EPA、DHA和虾青素浓度含量,计算得到相应的生物可给率。数据如图18所示,南极磷虾油微胶囊复水乳液经消化后,其EPA、DHA和虾青素的生物可给率分别为48.46%、60.14%、86.51%;而乳化南极磷虾油乳液经消化后,其EPA、DHA和虾青素的生物可给率分别为35.67%、35.45%、25.46%。结果发现,南极磷虾油微胶囊复水乳液的生物可给率显著高于对照组(乳化南极磷虾油乳液)。对照组较低的生物可给率,可归因于乳化南极磷虾油乳液经消化后,大部分油脂结构被破坏,不能水解成游离的脂肪酸和虾青素,进而导致仅有少量的EPA、DHA和虾青素溶解于胶束相中。南极磷虾油微胶囊复水乳液的生物可给率高,则是由于其乳液的液滴粒径小,其消化利用度随着液滴尺寸的减小而增加。上述结果表明,本发明的南极磷虾油微胶囊可用作提高南极磷虾油生物可给率的递送载体。
由此可见,南极磷虾油微胶囊因其较好地掩盖南极磷虾不良风味和较高地提高生物可给率,可广泛应用于工业生产中,以提高南极磷虾油生物活性物质的稳定性和消化吸收利用度。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种南极磷虾油微胶囊的制备方法,其特征在于,包括如下步骤:
S1、一次乳化液制备:取南极磷虾油加入单甘脂,匀浆、超声分散,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50:1~20:1;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,匀浆、动态高压微射流均质,得二次乳化液;所述一次乳化液和壁材水溶液的重量比为7~9:100;所述壁材水溶液中壁材和水的重量比为1:2~2.5;所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40:20~30:40~30组成;其中所述二次乳化液中可溶性固形物含量为33%~38%;
S3、微胶囊制备:将步骤S2所述二次乳化液进行喷雾干燥,得到南极磷虾油微胶囊。
2.根据权利要求1所述南极磷虾油微胶囊的制备方法,其特征在于,步骤S1所述一次乳化液制备具体为:将南极磷虾油加热至40~50℃,加入单甘脂,匀浆、超声分散,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50:1~20:1;所述匀浆、超声分散具体为:首先以8000~10000rpm的转速匀浆30~50s,然后以20~25KHz的频率超声3~5s;所述匀浆和超声分散作为整体分散步骤,共重复进行3~5次。
3.根据权利要求1所述南极磷虾油微胶囊的制备方法,其特征在于,步骤S2所述匀浆具体为:20000rpm、匀浆15~30s,重复3~5次,匀浆温度为40~55℃。
4.根据权利要求1所述南极磷虾油微胶囊的制备方法,其特征在于,步骤S2所述动态高压微射流均质的参数为:9000~12000psi,均质次数为3~5次。
5.根据权利要求1所述南极磷虾油微胶囊的制备方法,其特征在于,步骤S3所述喷雾干燥参数为:进风温度为115~130℃,出风温度为85~95℃。
6.根据权利要求1-5任一所述南极磷虾油微胶囊的制备方法,其特征在于,包括如下步骤:
S1、一次乳化液制备:取南极磷虾油,将南极磷虾油加热至40~50℃,加入单甘脂,进行匀浆、超声分散,得南极磷虾油一次乳化液;所述南极磷虾油和单甘脂的重量比为50:1~20:1;所述匀浆、超声分散具体为:首先以8000~10000rpm的转速进行匀浆30~50s,然后以20~25KHz的工作频率进行超声3~5s;所述匀浆和超声分散作为整体,共重复进行3~5次;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,20000rpm、匀浆15~30s,重复3~5次,匀浆温度为40~55℃;再使用高压微射流9000~12000psi、均质3~5次,得二次乳化液;所述一次乳化液和壁材水溶液的重量比为1:12~14;所述壁材水溶液中壁材和水的重量比为1:2~2.5,所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40:20~30:40~30组成;其中所述二次乳化液中可溶性固形物含量为33%~38%;
S3、微胶囊制备:将步骤S2所述二次乳化液进行喷雾干燥,进风温度为115~130℃,出风温度为85~95℃,得到南极磷虾油微胶囊。
7.根据权利要求6所述南极磷虾油微胶囊制备方法,其特征在于,包括步骤:
S1、一次乳化液制备:将南极磷虾油加热到45℃,加入单甘脂,使用匀浆机8000rpm匀浆30s,采用超声波细胞粉碎仪,以22KHz的频率超声3s;使用匀浆机9000rpm匀浆40s,采用超声波细胞粉碎仪,以22KHz的频率超声4s;使用匀浆机10000rpm匀浆50s,采用超声波细胞粉碎仪,以22KHz的频率超声5s;得一次乳化液;所述南极磷虾油与单甘脂的重量比为40:1;
S2、二次乳化液制备:将步骤S1所述一次乳化液和壁材水溶液混合,使用匀浆机20000rpm分散20s,重复4次,温度控制在50℃;然后在10000psi动态高压微射流下均质5次,得二次乳化液;其中,所述一次乳化液和壁材水溶液的重量比为8:100;所述壁材水溶液中壁材和水按重量比45:100;所述壁材由酪蛋白、乳清蛋白、葡萄糖浆按重量比40:25:35组成,所述二次乳化液中可溶性固形物含量为35%;
S3、微胶囊制备:将步骤S2所述二次乳化液进行喷雾干燥,进风温度为120℃,出风温度为90℃;得到南极磷虾油微胶囊。
CN201910756836.7A 2019-08-15 2019-08-15 一种南极磷虾油微胶囊的制备方法 Pending CN110419735A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910756836.7A CN110419735A (zh) 2019-08-15 2019-08-15 一种南极磷虾油微胶囊的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910756836.7A CN110419735A (zh) 2019-08-15 2019-08-15 一种南极磷虾油微胶囊的制备方法

Publications (1)

Publication Number Publication Date
CN110419735A true CN110419735A (zh) 2019-11-08

Family

ID=68414928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910756836.7A Pending CN110419735A (zh) 2019-08-15 2019-08-15 一种南极磷虾油微胶囊的制备方法

Country Status (1)

Country Link
CN (1) CN110419735A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112402404A (zh) * 2020-12-17 2021-02-26 日照职业技术学院 一种虾青素酯纳米复合物颗粒的制备方法
CN112868817A (zh) * 2021-02-04 2021-06-01 中南民族大学 一种蛋白质为关键的南极磷虾油可食用产品
CN113287750A (zh) * 2021-04-08 2021-08-24 日照职业技术学院 一种南极磷虾油纳米颗粒及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860506A (zh) * 2012-08-08 2013-01-09 辽宁省大连海洋渔业集团公司 磷虾油微囊粉及其制备方法
CN104799278A (zh) * 2015-03-31 2015-07-29 武汉天天好生物制品有限公司 一种增强降血脂作用的磷虾油微胶囊及其制备方法
CN107232636A (zh) * 2017-07-28 2017-10-10 美泰科技(青岛)股份有限公司 一种水溶性南极磷虾油微胶囊粉的制备方法
US20180071224A1 (en) * 2015-06-03 2018-03-15 Anabio Technologies Limited Microencapsulates containing stabilised lipid, and methods for the production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860506A (zh) * 2012-08-08 2013-01-09 辽宁省大连海洋渔业集团公司 磷虾油微囊粉及其制备方法
CN104799278A (zh) * 2015-03-31 2015-07-29 武汉天天好生物制品有限公司 一种增强降血脂作用的磷虾油微胶囊及其制备方法
US20180071224A1 (en) * 2015-06-03 2018-03-15 Anabio Technologies Limited Microencapsulates containing stabilised lipid, and methods for the production thereof
CN107232636A (zh) * 2017-07-28 2017-10-10 美泰科技(青岛)股份有限公司 一种水溶性南极磷虾油微胶囊粉的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112402404A (zh) * 2020-12-17 2021-02-26 日照职业技术学院 一种虾青素酯纳米复合物颗粒的制备方法
CN112868817A (zh) * 2021-02-04 2021-06-01 中南民族大学 一种蛋白质为关键的南极磷虾油可食用产品
CN112868817B (zh) * 2021-02-04 2022-05-17 中南民族大学 一种蛋白质为关键的南极磷虾油可食用产品
CN113287750A (zh) * 2021-04-08 2021-08-24 日照职业技术学院 一种南极磷虾油纳米颗粒及其制备方法

Similar Documents

Publication Publication Date Title
Fu et al. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility
Zhou et al. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate
Yan et al. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility
CN110419735A (zh) 一种南极磷虾油微胶囊的制备方法
JP5175415B2 (ja) マイクロカプセル封入方法
Timilsena et al. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates
Ifeduba et al. Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability
US20070160674A1 (en) Method for producing calcium component powder containing oil-soluble substance
Beltrán et al. In-vitro digestion of high-oleic palm oil nanoliposomes prepared with unpurified soy lecithin: Physical stability and nano-liposome digestibility
CN104799278A (zh) 一种增强降血脂作用的磷虾油微胶囊及其制备方法
Zhou et al. The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified plant-based milks
Pham et al. In-vitro digestion of flaxseed oil encapsulated in phenolic compound adducted flaxseed protein isolate-flaxseed gum complex coacervates
CN107836716A (zh) 一种藻油微胶囊及其制备方法和应用
Mackenzie et al. Pollen and spore shells—Nature’s microcapsules
Liu et al. Effects of pretreatment on the yield of peanut oil and protein extracted by aqueous enzymatic extraction and the characteristics of the emulsion
Hu et al. Exploring in vitro release and digestion of commercial DHA microcapsules from algae oil and tuna oil with whey protein and casein as wall materials
Li et al. Effect of soybean lipophilic protein–methyl cellulose complex on the stability and digestive properties of water–in–oil–in–water emulsion containing vitamin B12
Yang et al. Encapsulation of fish oil by complex coacervation and freeze drying with modified starch aid
CN108741080A (zh) 一种微藻dha-花青素双相纳米脂质体及其制备方法
Sun et al. Effects of coating layers chitosan/pectin on lipid stability and in vitro digestion of astaxanthin-loaded multilayer emulsions
Liu et al. The physicochemical properties and stability of flaxseed oil emulsions: effects of emulsification methods and the ratio of soybean protein isolate to soy lecithin
Ingrassia et al. Physicochemical and mechanical properties of a new cold-set emulsion gel system and the effect of quinoa protein fortification
Wang et al. Encapsulation of DHA oil with heat-denatured whey protein in Pickering emulsion improves its bioaccessibility
CA2543697C (en) Oil-in-water emulsified food product
CN108576778A (zh) 一种食品级赋形剂纳米乳液及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191108