CN110414719A - 一种基于多变量灰色模型时间序列的车流量预测方法 - Google Patents

一种基于多变量灰色模型时间序列的车流量预测方法 Download PDF

Info

Publication number
CN110414719A
CN110414719A CN201910604965.4A CN201910604965A CN110414719A CN 110414719 A CN110414719 A CN 110414719A CN 201910604965 A CN201910604965 A CN 201910604965A CN 110414719 A CN110414719 A CN 110414719A
Authority
CN
China
Prior art keywords
data
time series
prediction
model
vehicle flowrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910604965.4A
Other languages
English (en)
Other versions
CN110414719B (zh
Inventor
张凤荔
翟嘉伊
王瑞锦
刘崛雄
张雪岩
周世杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910604965.4A priority Critical patent/CN110414719B/zh
Publication of CN110414719A publication Critical patent/CN110414719A/zh
Application granted granted Critical
Publication of CN110414719B publication Critical patent/CN110414719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种基于多变量灰色模型时间序列的车流量预测方法,所述方法包括以下内容:输入采集的观测站车流量和相关外部变量数据以及观测站信息数据;对输入的数据进行数据预处理;将进行数据预处理后的数据输入到基于数据分解的多变量时间序列融合预测模型和基于结果加权的多变量时间序列融合预测模型中进行预测;将预测值与实际值进行对比,输出最终结果。通过多种多变量时间序列预测模型的融合对高速公路的车流量进行预测,提高了预测精度,通过对交通领域中高速公路上的应用实现,可以帮助交通管理部门提高智能化管理水平,降低运营成本;通过应用演示系统的展示,可以直观为管理人员提供数据支撑,以便及时做出相应的决策并予以实施。

Description

一种基于多变量灰色模型时间序列的车流量预测方法
技术领域
本发明涉及一种车流量预测方法,特别是涉及一种基于多变量灰 色模型时间序列的车流量预测方法。
背景技术
时间序列分析预测的主旨是对一定长度范围内的系统运行记录 建立数学模型,该模型可以较为准确地分析并拟合时间序列各项指标 中包含的动态依存关系,并利用它对系统未来的数值或行为进行预测。 时间序列的预测可以从不同角度和领域去研究,有建立在统计方法基 础之上的经典时间序列分析方法,也有针对序列中的不确定性进行研 究的灰色系统理论,还有基于计算智能技术的时间序列预测技术。
将时间序列分析预测方法应用到车流量预测上,旨在把理论应用 于实际,以解决生活中的真实问题。从车流量的数据特征来分析,它 的数据分布在长时间的范围内呈现出较为清晰的上下波动且具有一 定的规律性,属于典型的时间序列范畴,但由于其变化受多种外界因 素干扰,随机性较大,故需采用特定的时间序列建模方法才能进行准 确的预测。
在最初的时候,Ahmaed等人使用基本的ARIMA模型预测车流 量,将模型参数进行动态化设置,使其可以随时间的推移而变化,也 只能使得预测精度差强人意。后来,Okutani等人使用卡尔曼滤波对 短时车流量进行了预测,利用预测残差对模型进行调整,并结合实际 路段的具体情况,使得预测精度最高达到了91%。21世纪后, Stathopoulos等人使用状态空间模型对多变量情况下的城市交通车流 量预测进行了预测,输入数据集中除目标车流量外,还包括观测点上 游的车流量数据,通过实验分析得出结论为多变量的状态空间模型的 预测精度优于单变量的时间序列模型。但他同时也指出,城市流量、 速度和占有率数据的多元建模是一个相当复杂和繁琐的过程,来自不 同探测器的数据不仅需要相互高度相关,而且还要与当前具有较高频 率的短期波动的交通状况有关。另外,在极端条件下可能会因为无法 描述其交通特性而产生的数值上预测偏差,故有必要开发能够在边界 条件下捕捉交通行为的新方法。
短时车流量的变化也呈现出一定的非线性特征,故采用非线性预 测模型对车流量进行预测也是近年来的研究趋势,其具有预测灵活, 能够拟合复杂数据的特性。丁栋等人将交通网络中每个节点的交通流 处理为一个隐马尔科夫过程,则整个网络便成为多个隐马尔科夫过程 的交互,再使用影响模型对其建模,采用EM算法训练得出模型参数, 从而对短时交通流量进行预测。Huang等人突破性地使用了深度学习 模型对车流量进行预测,并利用多任务学习的方法预测了多个节点的 车流量,取得了较常见模型更好的预测准确度。Oh等人使用基于K 近邻(K-Nearest Neighbors,KNN)的搜索算法预测交通状态,这种新式的顺序搜索策略相比于传统的单级搜索方法,有着较高的预测准 确率、效率和稳定性。上述方法也存在着一定的局限性,例如他们对 历史数据需求量大,且对数据的训练和计算需消耗较多的时间,同时 在交通系统复杂的数据环境下,如何进行变量的选择,也是急需解决 的问题。
上述方法多应用于城市交通流量预测,在交通领域中,高速公路 车流量数据具有其专属的特性,城市流量预测模型多数难以满足其需 求。对于高速公路车流量的预测,Khalifa等人采用了随机森林、人 工神经网络等机器学习方法对摩洛哥高速公路的车流量进行了预测。 有人提出对于路段的车流量预测,需要考虑车速、天气恶劣程度、突 发事件、驾驶员对动态视野的感知程度四个外部因素对车流量的影响。 在节假日车流量预测上,有人采用经验模态分解的方法分离出噪声数 据并进行阈值去噪,使用网格寻优对支持向量机的回归参数进行参数 寻优,对节假日交通流量进行预测。其提出目前高速公路节假日的免 费政策实施时间不长,无法取得大量、充足的事例和样本,以及没有 对外部因素变量进行具体量化分析的问题。有人采用传统灰色模型 GM(1,1)结合马尔科夫过程进行残差修正,对节假日高速公路进行 流量预测。其中灰色模型可以很好的克服节假日车流量数据匮乏的问 题,但其采用的是单变量的灰色模型,没有考虑外部变量的因素。针 对多变量的灰色模型,目前已有将其应用于能源、经济、民生等领域 中,但还没有在车流量预测领域有所表现,既然单变量灰色模型可以 很好的预测节假日高速公路车流量,那么针对数据特点,如何对多变 量灰色模型进行改进后,应用到车流量预测领域以更好的提升车流量 预测精度,是目前需要解决的问题。
发明内容
本发明的目的在于克服现有技术的缺点,提供了一种基于多变量 灰色模型时间序列的车流量预测方法,通过将改进后的多变量灰色模 型应用到车流量领域,提高了车流量预测的精度。
本发明的目的通过以下技术方案来实现:一种基于多变量灰色模 型时间序列的车流量预测方法,所述方法包括以下内容:
S1、输入采集的观测站车流量和相关外部变量数据以及观测站信 息数据;
S2、对输入的数据进行数据预处理;
S3、将进行数据预处理后的数据输入到基于数据分解的多变量时 间序列融合预测模型和基于结果加权的多变量时间序列融合预测模 型中进行预测;
S4、将预测值与实际值进行对比,输出最终结果。
所述对输入的数据进行数据预处理的具体步骤如下:
S21、将输入的观测站车流量以及相关外部变量数据进行数据清 洗去重、去噪和填充的数据预处理;
S22、将预处理后的数据预观测站信息数据进行融合并输入到最 终结果。
所述将输入的观测站车流量以及相关外部变量数据进行数据清 洗去重、去噪和填充的数据预处理包括以下内容:
对于重复数据进行删除;
对于缺失数据:如果在某时间点存在缺失数据,则取前后两个时 间点的平均值进行填充;如果存在一段时间内的数据缺失,则取上一 周同期时间段与前一天和后一天同时间段的数据平均值进行填充;
对于异常数据:如果车流量低于数值0,则以0进行替换;如果 某时间点车流量与前后两个时间点的数据差异过大,则取前后两个时 间点的平均值进行替换。
在将进行数据预处理后的数据输入到基于数据分解的多变量时 间序列融合预测模型和基于结果加权的多变量时间序列融合预测模 型中进行预测之前还需要建立基于数据分解的多变量时间序列融合 预测模型和基于结果加权的多变量时间序列融合预测模型。
所述建立基于数据分解的多变量时间序列融合预测模型包括以 下内容:
将多变量时间序列中每个变量数据进行STL分解,得到每个变 量数据的趋势分量、季节分量及余项;
采用多元季节性时间序列分析模型预测多变量时间序列的季节 分量和余项;
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型预测 多变量时间序列的趋势分量;
通过加法模式对两个模型的预测结果进行集成,完成基于数据分 解的多变量时间序列融合预测模型的构建。
所述建立基于结果加权的多变量时间序列融合预测模型包括以 下内容:
采用梯度提升决策树算法对输入数据进行预测,得到预测结果和 权值系数;
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型对输 入数据进行预测,得到预测结果和权值系数;
根据两种模型的预测结果和权值系数构建基于结果加权的多变 量时间序列融合预测模型。
所述将进行数据预处理后的数据输入到基于数据分解的多变量 时间序列融合预测模型和基于结果加权的多变量时间序列融合预测 模型中进行预测的内容如下:
采用基于数据分解的多变量时间序列融合预测模型对采集的观 测站前一周数据进行训练和预测;
采用基于结果加权的多变量时间序列融合预测模型对采集的观 测站前一个月数据进行训练和预测;
将取两种模型的预测结果的平均值作为最终预测值。
建立所述人工鱼群算法优化后的带卷积积分的多变量灰色模型 包括以下步骤:
数据预处理生成多变量时间序列;
建立带卷积积分的多变量灰色模型GMC(1,n);
采用人工鱼群算法对带卷积积分的多变量灰色模型GMC(1,n) 进行优化;
得到优化后的灰色参数,构建工鱼群算法优化后的带卷积积分的 多变量灰色模型。
本发明具有以下优点:一种基于多变量灰色模型时间序列的车流 量预测方法,通过多种多变量时间序列预测模型的融合对高速公路的 车流量进行预测,提高了预测精度,通过对交通领域中高速公路上的 应用实现,可以帮助交通管理部门提高智能化管理水平,降低运营成 本;通过应用演示系统的展示,可以直观为管理人员提供数据支撑, 以便及时做出相应的决策并予以实施。
附图说明
图1为本发明方法的流程图;
图2为SARIMAX-AFSA-GMC(1,n)模型构建流程图;
图3为STL分解方法内循环流程图;
图4为AFSA-GMC(1,n)模型构建流程图;
图5为实施例各年度数据各序列对数值折线对比图;
图6为各年度春节车流量的AFSA-GMC(1,n)模型预测结果 对比图;
图7为月度短时车流量及相关外部变量时序图;
图8为SARIMAX-AFSA-GMC(1,n)模型训练结果图1;
图9为SARIMAX-AFSA-GMC(1,n)模型训练结果图2;
图10为GBDT模型训练结果图;
图11为AFSA-GMC(1,n)模型训练结果图。
具体实施方式
下面结合附图对本发明做进一步的描述,但本发明的保护范围不 局限于以下所述。
如图1所示,一种基于多变量灰色模型时间序列的车流量预测方 法,所述方法包括以下内容:
S1、输入采集的观测站车流量和相关外部变量数据以及观测站信 息数据;
S2、对输入的数据进行数据预处理;
S3、将进行数据预处理后的数据输入到基于数据分解的多变量时 间序列融合预测模型(SARIMAX-AFSA-GMC(1,n)模型)和基于 结果加权的多变量时间序列融合预测模型(GBDT-AFSA-GMC(1,n) 模型)中进行预测;
S4、将预测值与实际值进行对比,输出最终结果;在输出阶段, 将各个观测站一定时间范围内的预测值与实际值进行比对,并通过系 统界面进行展示。。
进一步地,相关外部变量数据包括民用汽车拥有量、常住人口和 GDP等等。
所述对输入的数据进行数据预处理的具体步骤如下:
S21、将输入的观测站车流量以及相关外部变量数据进行数据清 洗去重、去噪和填充的数据预处理;
S22、将预处理后的数据预观测站信息数据进行融合并输入到最 终结果。
所述将输入的观测站车流量以及相关外部变量数据进行数据清 洗去重、去噪和填充的数据预处理包括以下内容:
对于重复数据进行删除;
对于缺失数据:如果在某时间点存在缺失数据,则取前后两个时 间点的平均值进行填充;如果存在一段时间内的数据缺失,则取上一 周同期时间段与前一天和后一天同时间段的数据平均值进行填充;
对于异常数据:如果车流量低于数值0,则以0进行替换;如果 某时间点车流量与前后两个时间点的数据差异过大,则取前后两个时 间点的平均值进行替换。
在将进行数据预处理后的数据输入到基于数据分解的多变量时 间序列融合预测模型和基于结果加权的多变量时间序列融合预测模 型中进行预测之前还需要建立基于数据分解的多变量时间序列融合 预测模型和基于结果加权的多变量时间序列融合预测模型。
如图2所示,所述建立基于数据分解的多变量时间序列融合预测 模型包括以下内容:
将多变量时间序列中每个变量数据进行STL分解,得到每个变 量数据的趋势分量(T)、季节分量(S)及余项(R);
进一步地,STL分解包括内循环(Inner loop)和外循环(Outer loop),其中内循环主要进行趋势拟合与季节分量计算,假定Tt(k)、 St(k)分别为内循环中第k-1次计算结束时的趋势分量和季节分量,初 始时Tt(k)=0;外循环主要用于调节鲁棒性权重ρt;其中,n(i)为内层循环 数,n(o)为外层循环数,每个季节相同位置的样本点组成一个子序列,设子 序列共有n(p)个,n(s)、n(l)、n(t)均为LOESS平滑参数。
如图3所示,内循环主要包括去趋势、季节性子序列平滑处理、季节性子序列的低通量 过滤处理、去除平滑季节性子序列趋势、去季节性和趋势平滑处理步骤。
外循环用于增强算法的鲁棒性以应对数据中含噪声较大的情况, 特别地,若时序数据无明显噪音,使得算法在内循环结束时就以充分 收敛,则可将n(o)设为0。对于位置为t的数据点,其鲁棒性权值为:
ρt=B(|Rt|/h)
其中B函数为bisquare函数:
h为:h=6×median(|Rt|),median表示取序列的中位值。
采用多元季节性时间序列分析模型(SARIMAX模型)预测多变 量时间序列的季节分量和余项;
SARIMAX模型是在ARIMA模型(差分自回归移动平均模型) 的基础上增加了两项内容,一是S(Seasonal)表示对季节性因素的 预测,二是X(eXogenous)表示对外部变量的预测,其构造过程如 下:
在ARIMA模型的基础上加入季节性自回归、季节性移动平均和 季节差分算子转换为SARIMA(p,d,q)×(P,D,Q)s模型,其表达式为:
其中,Yt为在时刻t下待预测的时间序列观测值;S为季节周期长度 (如季度数据S=4,月度数据S=12);c为常量;∈t为残差序列;B表 示延迟或滞后算子,是原始时间序列观测值Xt滞后k个周期的符号化 体现,BkXt=Xt-k表示p阶自回归算子;θq(B)=1-θ1(B)-θ2(B2)-…-θq(Bq), 表示q阶移动平均算子;(1-B)d表示进行d阶差分以得到非季节平 稳序列;ΦP(BS)=1-Φ1(BS)-Φ2(B2S)-…-ΦP(BPS),表示P阶季节性自回归算子;ΘQ(BS)=1-Θ1(BS)-Θ2(B2S)-…- ΘQ(BQS),表示Q阶季节性移动平均算子;(1-BS)D表示进行D阶 季节差分以得到季节性平稳序列。
在SARIMA(p,d,q)×(P,D,Q)s模型的基础上加入外部变量信息, 可扩展为SARIMAX(p,d,q)×(P,D,Q)s模型,其表达式为:
其中X1,t,X2,t,…,Xk,t为与目标变量相关的外部变量观测值, β0,β1,…,βk为外部变量的回归系数。
SARIMAX建模可以分两步进行:(1)建立SARIMA模型,针 对目标变量序列建立其SARIMA模型,建模过程与ARIMA模型类 似,区别在于模型识别部分对参数的判断增加了季节性因素的参数识 别;(2)将SARIMA模型的预测序列作为目标变量,与其他外部变 量共同建立多元线性回归模型(MLR),以求得外部变量的回归系数, 最终得到序列预测值。
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型 (AFSA-GMC(1,n)模型)预测多变量时间序列的趋势分量;
通过加法模式Xt=Tt+St+Rt,对两个模型的预测结果进行集 成,完成基于数据分解的多变量时间序列融合预测模型的构建。
进一步地,所述建立基于结果加权的多变量时间序列融合预测模 型包括以下内容:
采用梯度提升决策树算法对输入数据进行预测,得到预测结果和 权值系数;
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型对输 入数据进行预测,得到预测结果和权值系数;
根据两种模型的预测结果和权值系数构建基于结果加权的多变 量时间序列融合预测模型。
进一步地,构建基于模型预测结果加权融合的 GBDT-AFSA-GMC(1,n)模型。其构建原理如下:
设GBDT算法预测结果为AFSA-GMC(1,n)算法的预测结果 为ωT和ωG分别为两种算法的权值系数,yi表示第i个时刻时间 序列的真实值,则GBDT-AFSA-GMC(1,n)模型的表达式为:
目标函数为最小化误差平方和,则其极值问题的表达式为:
将目标函数Z进行变换可得:
其中
代入上式中,可将 问题简化为:
据此,建立拉格朗日函数为:L=WTHW+λ(eTW-1)。
对变量求偏导可得:
加上约束条件ωTG=1,可求解式得: ωG=1-ωT
由此可得GBDT-AFSA-GMC(1,n)模型中的GBDT算法与 AFSA-GMC(1,n)算法的权重系数,预测样本中误差平方和较小的算 法权重较大,反之权重较小。由此可知,无论在数据量较大还是较小 的应用场景中,都可以根据模型的训练结果调整融合权值,以保证预 测的准确性和稳定性。
所述将进行数据预处理后的数据输入到基于数据分解的多变量 时间序列融合预测模型和基于结果加权的多变量时间序列融合预测 模型中进行预测的内容如下:
采用基于数据分解的多变量时间序列融合预测模型对采集的观 测站前一周数据进行训练和预测;
采用基于结果加权的多变量时间序列融合预测模型对采集的观 测站前一个月数据进行训练和预测;
将取两种模型的预测结果的平均值作为最终预测值。
如图4所示,建立所述人工鱼群算法优化后的带卷积积分的多变 量灰色模型包括以下步骤:
数据预处理生成多变量时间序列;
建立带卷积积分的多变量灰色模型GMC(1,n);
采用人工鱼群算法对带卷积积分的多变量灰色模型GMC(1,n) 进行优化;
得到优化后的灰色参数,构建工鱼群算法优化后的带卷积积分的 多变量灰色模型。
进一步地,所述建立带卷积积分的多变量灰色模型GMC(1,n) 的步骤如下:
对原始数据进行累加建立白化微分方程;
考虑有x1,x2,…,xn这n个变量,即:
xi (0)={xi (0)(1),xi (0)(2),…,xi (0)(m)},i=1,2,…,n 对xi (0)作累加生成AGO,得到新序列:
xi (1)={xi (1)(1),xi (1)(2),…,xi (1)(m)}
其中k=1,2,…,m,i=1,2,…,n,xi (1)序 列的一阶白化微分方程模型为:
其中b1,b2,…,bn和u为模型中待估算的参数,t=1,2,…,f,f为预 测项数。
对公式 两边在[k-1,k]区间积分并变换得到:
x1 (0)(k)+b1z1 (1)(k)=b2z2 (1)(k)+b3z3 (1)(k)+…+bnzn (1)(k)+u
其中
为模型背景值。
将公式x1 (0)(k)+b1z1 (1)(k)=b2z2 (1)(k)+b3z3 (1)(k)+…+ bnzn (1)(k)+u以矩阵形式表示为:
其中
使用最小二乘法对白化微分方程求解得到参数向量,完成带卷积 积分的多变量灰色模型GMC(1,n)的建立。
根据最小二乘法可得参数向量:
设初始条件则累加序列的预测为:
其中θ(k-1)为单位阶跃函数,k=1,2,…,f,f(i)=b2x2 (1)(i)+ b3x3 (1)(i)+…+bnxn (1)(i)+u。
最终通过累减还原,得到初始序列的预测值为:
进一步地,人工鱼模型的参数包括:人工鱼总数N;人工鱼个体 状态Xi=(x1,x2,…,xn),其中xi(i=1,…,n)为目标寻优变量;人工 鱼移动步长step;人工鱼视野visual;尝试次数try_number;拥挤度 因子δ;最大迭代次数MAXGEN;人工鱼个体i,j之间的距离 dij=||Xi-Xj||。人工鱼模型的主要函数包括:人工鱼当前所在位置 的食物浓度Y=f(X),其中Y为目标函数值;人工鱼的各类行为函数, 例如觅食行为prey()、聚群行为swarm()、追尾行为follow()、随机行 为move();行为评价函数evaluate()。其寻优的基本原理为:人工鱼 个体能够在视野范围内通过觅食行为像食物浓度高的地方按步长移 动,通过聚群行为、追尾行为和行为评价机制可以快速地确定全局极 值点,通过拥挤度因子、尝试次数等参数,防止鱼群陷入局部最优值 和提高收敛效率。
首先对带卷积积分的多变量灰色模型GMC(1,n)模型的参数向量 进行分析。式中,使用最小二乘法计算得到的参数 向量为其中的参数b1、bj,j=2,3,…,n和u有着不同的作用。b1和 u分别为发展系数和灰色控制参数,bj,j=2,3,…,n是外部变量序列 的相关系数,主要用于反映外部变量对目标变量的作用程度,它们和 累加外部变量序列两两相乘的结果即为预测目标变量所需的中间信 息。从对结果的影响上来说,bi,i=1,2,…,n作为变量的相关系数, 是影响预测结果的关键参数,而u的取值一般跟数据本身大小相关, 其变化范围与bi,i=1,2,…,n差异较大,小范围的变动对结果影响不大,故主要采用人工鱼群算法对bi,i=1,2,…,n进行优化。
所述采用人工鱼群算法对带卷积积分的多变量灰色模型GMC(1, n)进行优化的具体步骤如下:
初始化设置,对参数和鱼群进行初始化设置,并设定目标函数;
参数初始化设置,包括:人工鱼的个体数d,人工鱼移动的最大 步长step,人工鱼的视野visual,尝试次数try_number,拥挤度因子 delta等。
初始化鱼群,设每条人工鱼个体状态为bi=(bi1,bi2,…,bin), i=1,2,…,d。鱼群初始值即为GMC(1,n)模型使用最小二乘法计算得 到的参数值,此时每条鱼的个体状态相同。
设定目标函数,文本采用平均相对误差为目标函数,通过人工鱼 的行为寻找其极小值:
其中为预测序列在k时间点上的预测值,x1 (0)(k)为其真 实值,m为序列项数。
人工鱼移动及评价,更新全局最优人工鱼状态;
让每条人工鱼模拟觅食、聚群、追尾和随机四种行为,通过评价 函数选择最优的行为执行;
对比不同人工鱼的个体状态在目标函数上的值,记录最优人工鱼 的状态以及当前食物浓度。
判断是否达到最大迭代次数,如果达到则寻优结束,否则继续进 行人工鱼移动及评价步骤。
在建立好AFSA-GMC(1,n)预测模型后需要对预测模型进行检验 和评估,判断模型是否可以进行实际的预测应用。
如果AFSA-GMC(1,n)预测模型检验和评估判断不通过,则继续 进行所述对参数和鱼群进行初始化设置,并设定目标函数的步骤,直 到AFSA-GMC(1,n)预测模型检验和评估通过为止。
进一步地,模型的改进可以提高预测的精度,数据的处理同样至 关重要。对于多变量时间序列来说,在外部变量较多的情况下,如果 所有变量不经处理和筛选就加入模型,会导致计算量增加,预测效果 下降,只有通过归一化处理并选取与目标变量关联度较高的外部变量 进行建模,才能保证模型的预测精度。
灰色关联度是事物之间或因素之间关联性大小的量度指标,使事 物或因素之间相互变化的情况能够直观地反映出来。如果其变化状态 或趋势基本一致,则说明它们之间的关联度较大,反之则较小。
所述数据预处理生成多变量时间序列包括以下步骤:
对各序列进行归一化处理;其是为了消除变量间由于计量单位不 同造成的数据量级上的差异,使得灰色关联度能够更准确地表现出来。 以初值化为例:
计算序列各项的距离关联度;
处理后的目标变量序列为Y1 (0),外部变量序列为Yi (0),i= 2,3,…,n,则各外部变量序列中的每一项与目标变量序列中对应的项 的关联系数为:
其中ρ∈(0,1),k=1,2,…,m(m为序列项数),i=2,3,…,n(n为 变量个数),Δi(k)=|Y1 (0)(k)-Yi (0)(k)|,Δ(max)=maxi maxkΔi(k), Δ(min)=mini minkΔi(k)。ρ为分辩系数,用来削弱Δ(max)过大而使 关联系数失真的影响。该系数由人为确定,以提高关联系数之间的差 异显著性,一般取0.5。
由外部变量序列中各项的关联系数可获得每个外部变量与目标 变量的关联度:
灰色关联度的取值在0到1之间,其值越接近1,表示两个变量 关联度越高。关联度高的外部变量数量决定了多变量灰色模型中n的 取值。
计算序列各项的方向关联度;
将方向因素加入到距离关联度计算中,具体为: 令,Δyi(k)=|Yi (0)(k+1)-Yi (0)(k)|,i=1,2,…,n,k= 1,2,…,m-1为序列曲线中各个线段间的斜率的绝对值,两个序列间 Δyi(k)的差值可以很好地体现两者在方向上的相似性,由此可以定义 方向关联度为:
上式中采用二范数表示序列间的斜率差值,可以达到一定的精度 和收敛要求,充分地体现了差值越小,序列方向趋势越接近的变化规 律。
将方向关联度和距离关联度进行加权融合,得到综合灰色关联度。
即:ζi=θδi+(1-θ)γi,i=2,3,…,n,其中θ∈(0,1),θ一般取值为0.5, 可根据具体数据变化趋势进行适当的调整。
实施例
如表1所示,车流量序列为2013年-2017年春节期间的四川省高 速公路路网车流量(数据来源于四川省交通运输厅和国家统计局官方 发布的统计信息),相关的外部变量序列为四川省当年的民用汽车拥 有量、常住人口和国内生产总值GDP。
表1节假日年度车流量及相关外部变量数据
短时车流量及相关外部数据基于项目中四川高速公路的实际数 据,经脱敏等加工处理后形成本论文数据集。数据采集频率为30分 钟,一天即可产生48条数据,一周乃至一月的数据量更大。以2018 年某天某路段部分数据为例,如表2所示,外部数据包括平均车速、 时间占有率、车头间距和跟车百分比。
表2短时车流量及相关外部变量数据
如图5所示,使用AFSA-GMC(1,n)模型对年度数据进行预测, 首先计算灰色综合关联度,可得:民用汽车拥有量、常住人口、GDP 与车流量的综合关联度分别为0.77654,0.64230,0.73149,从计算结果 上可以看出春节的车流量数据与民用汽车拥有量和GDP因素有着较 高的关联性,再对四个序列的取对数进行比对,可以验证序列间关联 性的正确性,故可建立AFSA-GMC(1,3)模型。
经过建模得到的预测结果如表3所示,第一个时间点由于无信息 可进行预测,故直接设定为与初值相同,接着的两个时间点由于信息 量少,故预测的误差较大,但从2016年起模型可以较为准确地进行 预测,可见收敛速度较快。2016年与2017年车流量预测值的相对误 差仅为0.0263和0.0194。
表3春节年度车流量模型训练结果
2018年的车流量预测值为1941.4万辆,与实际值1979万辆的相 对误差为0.0190,2019年的车流量预测值为2152.5,与实际值2111.24 万辆的相对误差为0.0195,2020年的车流量预测值为2292.1。
如图6所示,每年春节节假日的车流量基本呈线性增加,这也是 由于国民经济的不断发展,带动了交通出行的增长,同时高速公路的 不断建设和发展,也为经济增长提供了基础设施支撑,两者相辅相成, 共同促进着经济社会快速发展。
灰色模型具有预测未来多个时间点的特性,但预测的时间点据当 前时间越远,产生的偏差可能越大。通过实验可以看到, AFSA-GMC(1,3)模型使用前五个时间点预测后三个时间点,对已有比 较值的2018年和2019年来说,相对误差不大。将该实验结果与未经 过计算综合灰色关联度来筛选外部变量的AFSA-GMC(1,4)模型、未 经过人工鱼群算法优化的GMC(1,3)模型、传统的多变量灰色模型 GM(1,3)以及单变量灰色模型GM(1,1)四种算法的预测能力进行对 比,结果如表4所示。从表中可知,由综合灰色关联度筛选后的 AFSA-GMC(1,n)模型对数据量较少的节假日年度车流量来说,预测表 现优异,说明本文提出模型不仅对传统多变量灰色模型进行了改进, 并提高了预测精度,同时也打破了多变量灰色模型在车流量预测应用 上的空白。
表4各模型预测结果对照表
如图7所示,使用SARIMAX-AFSA-GMC(1,n)模型对成都绕城 江安北观测站数据集中一个星期的短时数据进行预测,首先对原始序 列分布及变化趋势进行分析,图中由上到下五个变量分别为:车流量、 平均车速、跟车百分比、车头间距和时间占有率。根据图中显示可知, 一周的短时数据具有极强的季节性。
依照SARIMAX-AFSA-GMC(1,n)模型的建模过程,首先对序列 进行综合关联度分析,可得关联度分别为:平均车速0.8126,跟车百 分比0.3980,车头间距0.4074,时间占有率0.5236,由此可知应选用 平均车速作为外部变量,建立SARIMAX-AFSA-GMC(1,2)模型。
如图8和图9所示,以车流量序列为目标变量,平均车速序列为 外部变量,分别对其进行STL分解,得到其趋势分量、季节分量及 余项,使用AFSA-GMC(1,2)模型对趋势分量进行预测,另一方面, 使用SARIMAX模型对季节分量及余项进行预测,经平稳性检验和参数评估,确定目标序列的预测模型为SARIMA(1,0,0)×(0,1,1)48,而 后建立的多元回归模型的回归系数为0.4212和-5.1103,再将各自预 测结果集成,训练模型的平均相对误差为4.95%,将模型用于未来时 间的预测。
图中显示的是从2018-01-07 20:00—2018-01-08 0:20的车流量, 其中后三个时间点为预测值,与实际值进行对比,每个点的相对误差 如表5所示,表中同时列举出其他算法对未来时间预测结果,包括单 独的SARIMAX模型和AFSA-GMC(1,2)模型以及以自适应参数寻优 方式实现短期车流量预测的动态随机过程模型。
表5模型预测结果对照表
从表中可以看出,AFSA-GMC(1,2)模型的预测效果最差,这是 由于季节性过强且数据量较多不符合模型应用场景导致的; SARIMAX模型的预测效果较SARIMAX-AFSA-GMC(1,2)模型来说 更优,这是由于实验数据量较大,且季节性较强,虽然进行了数据分 解,但分解后的趋势分量并没有十分平滑,导致AFSA-GMC(1,2)模 型不能充分发挥其优势;动态随机过程模型较好地模拟了车流量的随 机性,但缺乏对外部变量与季节性的分析,故效果不如本文提出的融 合方法。
根据上述实验结果及其分析得知,SARIMAX-AFSA-GMC(1,n) 模型在车流量预测上仍有不足,其原因在于融合的两种算法对时间序 列长短有着不同适应程度,要解决上述问题,需将AFSA-GMC(1,n) 模型对趋势部分的预测从原来的按整个数据集时间区间进行模型训 练,改为使用当前时间点前的一段时间内的数据集进行模型训练,就 能一定程度地提高预测精度。
本发明通过实验进一步说明不同的算法应选取多长的历史时间 序列进行预测,实验设定SARIMAX模型可取的时间范围有三种, AFSA-GMC(1,n)模型有两种,具体取值和对应的数据量如表6所示, 其中时间范围指历史时间序列的长度,数据量指该时间范围内包含的 数据条数。两种模型的时间范围可形成6种组合情况,通过标识将每 种情况进行表示分别为:S1G1,S2G1,S3G1,S1G2,S2G2,S3G2。 实验通过预测未来3个时间点的平均相对误差来判断模型预测能力, 通过预测耗时来判断模型预测性能,实验结果如表7所示。
表6模型预测时间范围与数据量设定
表7模型预测时间范围与数据量实验结果
通过实验得出改变模型中不同算法的训练数据长度确实能够提 高预测精度,进一步对每种组合的实验结果分析发现,在 AFSA-GMC(1,n)模型时间范围固定时,数据量过小,则缺乏季节性 因素,在对目标序列建模时SARIMA模型将退化为ARIMA模型, 使得预测精度较差;数据量逐步增大时,预测精度也随之提升,但数 据量超过一定范围后,预测精度提升有限同时耗时增加,使得算法性 能下降。另一方面,当SARIMAX模型时间范围固定时,数据量过大 不满足AFSA-GMC(1,n)模型需求,使得精度和耗时表现不佳。故从 整体上综合分析可得出结论:当SARIMAX模型预测的时间范围在一 周左右,同时AFSA-GMC(1,n)模型预测的时间范围在10小时左右, 在预测精度和耗时上都有着较好的表现,可以充分的发挥算法各自的 性能优势。
使用GBDT-AFSA-GMC(1,n)模型对绕城江安北观测站一个月的 短时数据进行预测,根据SARIMAX-AFSA-GMC(1,n)模型的实验结 果和分析,通过使用GBDT模型对数据整体的分布规律进行拟合, 寻找内在规律和数据特征,得到训练模型;使用AFSA-GMC(1,n)模型对预测时间点前短期内的数据进行训练,以对细节变化进行把控, 最终以短期内的残差序列为准计算两者权重系数,再将两者的预测结 果进行加权融合,得到最后的预测结果。
如图10和图11所示,计算两者权值系数为ωT=0.8754, ωG=0.1246,最终对未来三个时间点进行预测。
表8模型预测结果对照表
表8中同时还列举出了其他两种算法的预测结果,包括随机森林 RF算法以及长短期记忆网络LSTM模型与单变量灰色模型GM(1,1) 加权集成的LSTM-GM(1,1)模型。可以看到在实际应用中集成模型的 预测效果也比单项预测算法的效果好,另一方面,本发明提出的GBDT-AFSA-GMC(1,n)模型与LSTM-GM(1,1)模型预测精度十分接 近,这说明GBDT-AFSA-GMC(1,n)模型与基于循环神经网络的模型, 都能够很好的进行短时车流量的预测。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限 于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各 种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述 教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动 和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的 保护范围内。

Claims (8)

1.一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述方法包括以下内容:
S1、输入采集的观测站车流量和相关外部变量数据以及观测站信息数据;
S2、对输入的数据进行数据预处理;
S3、将进行数据预处理后的数据输入到基于数据分解的多变量时间序列融合预测模型和基于结果加权的多变量时间序列融合预测模型中进行预测;
S4、将预测值与实际值进行对比,输出最终结果。
2.根据权利要求1所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述对输入的数据进行数据预处理的具体步骤如下:
S21、将输入的观测站车流量以及相关外部变量数据进行数据清洗去重、去噪和填充的数据预处理;
S22、将预处理后的数据预观测站信息数据进行融合并输入到最终结果。
3.根据权利要求2所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述将输入的观测站车流量以及相关外部变量数据进行数据清洗去重、去噪和填充的数据预处理包括以下内容:
对于重复数据进行删除;
对于缺失数据:如果在某时间点存在缺失数据,则取前后两个时间点的平均值进行填充;如果存在一段时间内的数据缺失,则取上一周同期时间段与前一天和后一天同时间段的数据平均值进行填充;
对于异常数据:如果车流量低于数值0,则以0进行替换;如果某时间点车流量与前后两个时间点的数据差异过大,则取前后两个时间点的平均值进行替换。
4.根据权利要求1所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:在将进行数据预处理后的数据输入到基于数据分解的多变量时间序列融合预测模型和基于结果加权的多变量时间序列融合预测模型中进行预测之前还需要建立基于数据分解的多变量时间序列融合预测模型和基于结果加权的多变量时间序列融合预测模型。
5.根据权利要求4所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述建立基于数据分解的多变量时间序列融合预测模型包括以下内容:
将多变量时间序列中每个变量数据进行STL分解,得到每个变量数据的趋势分量、季节分量及余项;
采用多元季节性时间序列分析模型预测多变量时间序列的季节分量和余项;
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型预测多变量时间序列的趋势分量;
通过加法模式对两个模型的预测结果进行集成,完成基于数据分解的多变量时间序列融合预测模型的构建。
6.根据权利要求4所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述建立基于结果加权的多变量时间序列融合预测模型包括以下内容:
采用梯度提升决策树算法对输入数据进行预测,得到预测结果和权值系数;
采用人工鱼群算法优化后的带卷积积分的多变量灰色模型对输入数据进行预测,得到预测结果和权值系数;
根据两种模型的预测结果和权值系数构建基于结果加权的多变量时间序列融合预测模型。
7.根据权利要求1所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:所述将进行数据预处理后的数据输入到基于数据分解的多变量时间序列融合预测模型和基于结果加权的多变量时间序列融合预测模型中进行预测的内容如下:
采用基于数据分解的多变量时间序列融合预测模型对采集的观测站前一周数据进行训练和预测;
采用基于结果加权的多变量时间序列融合预测模型对采集的观测站前一个月数据进行训练和预测;
将取两种模型的预测结果的平均值作为最终预测值。
8.根据权利要求5或6所述的一种基于多变量灰色模型时间序列的车流量预测方法,其特征在于:建立所述人工鱼群算法优化后的带卷积积分的多变量灰色模型包括以下步骤:
数据预处理生成多变量时间序列;
建立带卷积积分的多变量灰色模型GMC(1,n);
采用人工鱼群算法对带卷积积分的多变量灰色模型GMC(1,n)进行优化;
得到优化后的灰色参数,构建工鱼群算法优化后的带卷积积分的多变量灰色模型。
CN201910604965.4A 2019-07-05 2019-07-05 一种基于多变量灰色模型时间序列的车流量预测方法 Active CN110414719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910604965.4A CN110414719B (zh) 2019-07-05 2019-07-05 一种基于多变量灰色模型时间序列的车流量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910604965.4A CN110414719B (zh) 2019-07-05 2019-07-05 一种基于多变量灰色模型时间序列的车流量预测方法

Publications (2)

Publication Number Publication Date
CN110414719A true CN110414719A (zh) 2019-11-05
CN110414719B CN110414719B (zh) 2023-02-21

Family

ID=68360439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910604965.4A Active CN110414719B (zh) 2019-07-05 2019-07-05 一种基于多变量灰色模型时间序列的车流量预测方法

Country Status (1)

Country Link
CN (1) CN110414719B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991698A (zh) * 2019-11-07 2020-04-10 南通大学 基于混合处理的季节性交通流灰色预测方法
CN110992685A (zh) * 2019-11-20 2020-04-10 安徽百诚慧通科技有限公司 一种基于高速公路交通流突变的交通安全预警方法
CN111161538A (zh) * 2020-01-06 2020-05-15 东南大学 一种基于时间序列分解的短时交通流预测方法
CN111179595A (zh) * 2020-01-06 2020-05-19 东南大学 一种交通流时间序列分解方法
CN111404193A (zh) * 2019-12-05 2020-07-10 杭州电子科技大学 一种基于数据驱动的微电网随机鲁棒优化调度方法
CN111597705A (zh) * 2020-05-13 2020-08-28 中车长江车辆有限公司 一种轴承裂纹预测模型的构建方法及装置
CN111696369A (zh) * 2020-04-10 2020-09-22 北京数城未来科技有限公司 一种基于多源地理空间大数据的全市道路分时分车型交通流预测方法
CN112529333A (zh) * 2020-12-25 2021-03-19 上海云角信息技术有限公司 酒店客房超售数的预测方法、装置、设备及存储介质
CN112598904A (zh) * 2020-12-10 2021-04-02 南通大学 一种基于线性灰色卷积模型的城市路网交通流预测方法
CN112784906A (zh) * 2021-01-26 2021-05-11 中国科学院半导体研究所 基于多条件时间序列的农机监测数据清洗方法与装置
CN112801327A (zh) * 2019-11-14 2021-05-14 顺丰科技有限公司 预测物流件量与其建模的方法、装置、设备及存储介质
WO2021212866A1 (zh) * 2020-04-21 2021-10-28 长安大学 一种车辆出行量预测模型构建方法及预测方法和系统
CN113793502A (zh) * 2021-09-15 2021-12-14 国网电动汽车服务(天津)有限公司 无信号灯控制下的行人过街预测方法
CN114550454A (zh) * 2022-02-24 2022-05-27 南京感动科技有限公司 一种基于交通流矩阵组合模型的交通流量预测方法
CN114549930A (zh) * 2022-02-21 2022-05-27 合肥工业大学 一种基于轨迹数据的快速路短时车头间距预测方法
CN114707560A (zh) * 2022-05-19 2022-07-05 北京闪马智建科技有限公司 数据信号的处理方法及装置、存储介质、电子装置
CN115035715A (zh) * 2022-05-26 2022-09-09 浙江省机电设计研究院有限公司 基于决策树和多元辅助信息的高速公路流量预测方法
CN115909748A (zh) * 2023-01-07 2023-04-04 深圳市城市交通规划设计研究中心股份有限公司 节假日公路交通量预测方法、电子设备及存储介质
CN116913105A (zh) * 2023-07-24 2023-10-20 重庆邮电大学 一种基于循环神经灰色模型的短时交通流预测方法
CN117829380A (zh) * 2024-03-05 2024-04-05 国网山东省电力公司信息通信公司 一种电力使用长期预测方法、系统、设备及介质
CN117994986A (zh) * 2024-04-07 2024-05-07 岳正检测认证技术有限公司 一种基于智能优化算法的交通车流量预测优化方法
CN118015857A (zh) * 2024-04-08 2024-05-10 北京悦知未来科技有限公司 一种道路交通规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008922A1 (en) * 2000-07-21 2002-01-31 Trafficcast.Com, Inc. A method of providing travel time predictions
CN106779198A (zh) * 2016-12-06 2017-05-31 广州市科恩电脑有限公司 一种道路拥堵情况分析方法
CN108417034A (zh) * 2018-03-23 2018-08-17 四川高路交通信息工程有限公司 一种基于多变量灰色模型的高速公路节假日车流量预测方法
CN108898851A (zh) * 2018-06-20 2018-11-27 东南大学 城市道路断面交通量组合预测方法
CN109785618A (zh) * 2019-01-11 2019-05-21 西安电子科技大学 一种基于组合逻辑的短时交通流预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008922A1 (en) * 2000-07-21 2002-01-31 Trafficcast.Com, Inc. A method of providing travel time predictions
CN106779198A (zh) * 2016-12-06 2017-05-31 广州市科恩电脑有限公司 一种道路拥堵情况分析方法
CN108417034A (zh) * 2018-03-23 2018-08-17 四川高路交通信息工程有限公司 一种基于多变量灰色模型的高速公路节假日车流量预测方法
CN108898851A (zh) * 2018-06-20 2018-11-27 东南大学 城市道路断面交通量组合预测方法
CN109785618A (zh) * 2019-01-11 2019-05-21 西安电子科技大学 一种基于组合逻辑的短时交通流预测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘静: "基于AFSA-LSSVM的短时交通流量预测", 《计算机工程与应用》 *
杨志勇: "基于灰色系统和神经网络的实时交通量预测组合模型研究", 《公路》 *
王凤琴等: "自适应参数寻优短期车流量预测", 《计算机应用与软件》 *
谈苗苗等: "基于ARIMA和灰色模型加权组合的短期交通流预测", 《计算机技术与发展》 *
马浩: "基于人工鱼群算法的网络流量预测方法", 《现代电子技术》 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991698B (zh) * 2019-11-07 2023-09-22 南通大学 基于混合处理的季节性交通流灰色预测方法
CN110991698A (zh) * 2019-11-07 2020-04-10 南通大学 基于混合处理的季节性交通流灰色预测方法
CN112801327A (zh) * 2019-11-14 2021-05-14 顺丰科技有限公司 预测物流件量与其建模的方法、装置、设备及存储介质
CN110992685A (zh) * 2019-11-20 2020-04-10 安徽百诚慧通科技有限公司 一种基于高速公路交通流突变的交通安全预警方法
CN111404193B (zh) * 2019-12-05 2022-01-04 杭州电子科技大学 一种基于数据驱动的微电网随机鲁棒优化调度方法
CN111404193A (zh) * 2019-12-05 2020-07-10 杭州电子科技大学 一种基于数据驱动的微电网随机鲁棒优化调度方法
CN111161538A (zh) * 2020-01-06 2020-05-15 东南大学 一种基于时间序列分解的短时交通流预测方法
CN111179595A (zh) * 2020-01-06 2020-05-19 东南大学 一种交通流时间序列分解方法
CN111696369A (zh) * 2020-04-10 2020-09-22 北京数城未来科技有限公司 一种基于多源地理空间大数据的全市道路分时分车型交通流预测方法
WO2021212866A1 (zh) * 2020-04-21 2021-10-28 长安大学 一种车辆出行量预测模型构建方法及预测方法和系统
CN111597705A (zh) * 2020-05-13 2020-08-28 中车长江车辆有限公司 一种轴承裂纹预测模型的构建方法及装置
CN111597705B (zh) * 2020-05-13 2023-06-16 中车长江车辆有限公司 一种轴承裂纹预测模型的构建方法及装置
CN112598904A (zh) * 2020-12-10 2021-04-02 南通大学 一种基于线性灰色卷积模型的城市路网交通流预测方法
CN112529333A (zh) * 2020-12-25 2021-03-19 上海云角信息技术有限公司 酒店客房超售数的预测方法、装置、设备及存储介质
CN112784906B (zh) * 2021-01-26 2024-02-02 中国科学院半导体研究所 基于多条件时间序列的农机监测数据清洗方法与装置
CN112784906A (zh) * 2021-01-26 2021-05-11 中国科学院半导体研究所 基于多条件时间序列的农机监测数据清洗方法与装置
CN113793502B (zh) * 2021-09-15 2022-08-09 国网电动汽车服务(天津)有限公司 无信号灯控制下的行人过街预测方法
CN113793502A (zh) * 2021-09-15 2021-12-14 国网电动汽车服务(天津)有限公司 无信号灯控制下的行人过街预测方法
CN114549930A (zh) * 2022-02-21 2022-05-27 合肥工业大学 一种基于轨迹数据的快速路短时车头间距预测方法
CN114549930B (zh) * 2022-02-21 2023-01-10 合肥工业大学 一种基于轨迹数据的快速路短时车头间距预测方法
CN114550454A (zh) * 2022-02-24 2022-05-27 南京感动科技有限公司 一种基于交通流矩阵组合模型的交通流量预测方法
CN114550454B (zh) * 2022-02-24 2023-05-09 南京感动科技有限公司 一种基于交通流矩阵组合模型的交通流量预测方法
CN114707560A (zh) * 2022-05-19 2022-07-05 北京闪马智建科技有限公司 数据信号的处理方法及装置、存储介质、电子装置
CN114707560B (zh) * 2022-05-19 2024-02-09 北京闪马智建科技有限公司 数据信号的处理方法及装置、存储介质、电子装置
CN115035715B (zh) * 2022-05-26 2023-08-29 浙江省机电设计研究院有限公司 基于决策树和多元辅助信息的高速公路流量预测方法
CN115035715A (zh) * 2022-05-26 2022-09-09 浙江省机电设计研究院有限公司 基于决策树和多元辅助信息的高速公路流量预测方法
CN115909748A (zh) * 2023-01-07 2023-04-04 深圳市城市交通规划设计研究中心股份有限公司 节假日公路交通量预测方法、电子设备及存储介质
CN116913105A (zh) * 2023-07-24 2023-10-20 重庆邮电大学 一种基于循环神经灰色模型的短时交通流预测方法
CN116913105B (zh) * 2023-07-24 2024-03-19 重庆邮电大学 一种基于循环神经灰色模型的短时交通流预测方法
CN117829380A (zh) * 2024-03-05 2024-04-05 国网山东省电力公司信息通信公司 一种电力使用长期预测方法、系统、设备及介质
CN117829380B (zh) * 2024-03-05 2024-05-28 国网山东省电力公司信息通信公司 一种电力使用长期预测方法、系统、设备及介质
CN117994986A (zh) * 2024-04-07 2024-05-07 岳正检测认证技术有限公司 一种基于智能优化算法的交通车流量预测优化方法
CN117994986B (zh) * 2024-04-07 2024-05-28 岳正检测认证技术有限公司 一种基于智能优化算法的交通车流量预测优化方法
CN118015857A (zh) * 2024-04-08 2024-05-10 北京悦知未来科技有限公司 一种道路交通规划方法
CN118015857B (zh) * 2024-04-08 2024-06-07 北京悦知未来科技有限公司 一种道路交通规划方法

Also Published As

Publication number Publication date
CN110414719B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
CN110414719A (zh) 一种基于多变量灰色模型时间序列的车流量预测方法
Ding A novel self-adapting intelligent grey model for forecasting China's natural-gas demand
CN113962364B (zh) 一种基于深度学习的多因素用电负荷预测方法
CN108280551B (zh) 一种利用长短期记忆网络的光伏发电功率预测方法
Cheng et al. A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
CN108091135B (zh) 基于优化小波神经网络的停车泊位多步预测方法
Abdulhai et al. Reinforcement learning: Introduction to theory and potential for transport applications
CN109993270A (zh) 基于灰狼群优化lstm网络的锂离子电池剩余寿命预测方法
CN107622329A (zh) 基于多时间尺度长短时记忆神经网络的电力负荷预测方法
CN109887284B (zh) 一种智慧城市交通信号控制推荐方法、系统及装置
CN109492814A (zh) 一种城市交通流量预测方法、系统及电子设备
CN109685277A (zh) 用电量预测方法及装置
More et al. Road traffic prediction and congestion control using Artificial Neural Networks
Levent et al. Energy management for microgrids: a reinforcement learning approach
CN102930155B (zh) 获取电力需求的预警参数的方法及装置
CN106951990A (zh) 电力负荷智能预测方法及装置
CN112101521A (zh) 一种基于长短期记忆网络混合模型的建筑能耗预测方法
CN108898259A (zh) 基于多因素综合的自适应进化规划电力负荷预测方法及系统
CN112966871A (zh) 基于卷积长短期记忆神经网络的交通拥堵预测方法及系统
CN109934422A (zh) 一种基于时间序列数据分析的神经网络风速预测方法
CN111008790A (zh) 一种水电站群发电调度规则提取方法
CN112288140A (zh) 一种基于Keras的短期电力负荷预测方法、存储介质和设备
CN112036598A (zh) 一种基于多信息耦合的充电桩使用信息预测方法
CN113762591B (zh) 一种基于gru和多核svm对抗学习的短期电量预测方法及系统
Poczeta et al. Application of fuzzy cognitive maps to multi-step ahead prediction of electricity consumption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant