CN110407700B - 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应 - Google Patents

一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应 Download PDF

Info

Publication number
CN110407700B
CN110407700B CN201910699312.9A CN201910699312A CN110407700B CN 110407700 B CN110407700 B CN 110407700B CN 201910699312 A CN201910699312 A CN 201910699312A CN 110407700 B CN110407700 B CN 110407700B
Authority
CN
China
Prior art keywords
decarboxylation
product
free
catalyst
giese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910699312.9A
Other languages
English (en)
Other versions
CN110407700A (zh
Inventor
郑超
陈光英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201910699312.9A priority Critical patent/CN110407700B/zh
Publication of CN110407700A publication Critical patent/CN110407700A/zh
Application granted granted Critical
Publication of CN110407700B publication Critical patent/CN110407700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/10Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/31Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/14Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/235Unsaturated compounds having —CHO groups bound to acyclic carbon atoms containing six-membered aromatic rings and other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/608Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a ring other than a six-membered aromatic ring in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4075Esters with hydroxyalkyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/03Free radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/24All rings being cycloaliphatic the ring system containing nine carbon atoms, e.g. perhydroindane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应:在溶液环境中,使烷基N‑(酰氧基)苯邻二甲酰亚胺类化合物、汉斯酯和烯基类化合物在波长范围为370–470nm的蓝紫光辐照下、在惰性保护气氛中发生反应,烷基N‑(酰氧基)苯邻二甲酰亚胺类化合物、汉斯酯和烯基类化合物的当量比为1:1–3:1–2。经过光活化的汉斯酯转化为自由基,在自由基的进攻下,烷基N‑(酰氧基)苯邻二甲酰亚胺类化合物能够在没有催化剂的情况下发生脱羧反应,并与含有烯基的化合物发生Giese自由基加成反应。

Description

一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成 反应
技术领域
本发明属于有机化学领域,具体地,涉及一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应。
背景技术
脂肪族羧酸类物质具有易于操作、产物丰富、环境友好等优良特性,能够在绿色化学合成中被广泛应用。基于此,以脂肪族羧酸类物质作为反应物的烷基羧化物脱羧及脱羧Giese自由基加成反应得到集中的发展。目前,主要用于促进羧化物脱羧进而形成碳-碳键结构的方法主要是:在高温的反应条件下,利用过渡金属复合物作为催化剂,催化反应物发生反应。然而,用于以上用途的催化剂往往价格昂贵,大大地提高了生产中的原料成本,降低生产的经济效益。另外,混合在目标产物中的催化剂往往具有较高的毒性且难以与目标产物分离,厂家必须为了分离目标产物中的催化剂而投入大量的技术成本,同时,残存在目标产物中无法被分离的催化剂也会降低目标产物的纯度,影响产品的品质。例如,通过Barton脱羧反应得到的脱羧产物中不可避免地混有锡化物和硫醇,这些物质具有较高毒性和刺激性气味,为产物引入安全隐患,为了从产物中分离这些物质所投入的费用占据着产品产出成本中不少的比例。因此,为了响应绿色环保可持续发展的理念以及提高产品的经济效益和安全性,迫切地需要开发一种无需催化剂的羧化物脱羧反应方法。
发明内容
本发明的目的在于提供一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,以在光活化的条件下实现羧化物的脱羧及脱羧后重新形成碳-碳键的方法。
根据本发明的一个方面,提供一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应:在溶液环境中,使烷基N-(酰氧基)苯邻二甲酰亚胺类化合物、汉斯酯和烯基类化合物在波长范围为370–470nm的蓝紫光辐照下、在惰性保护气氛中发生反应,烷基N-(酰氧基)苯邻二甲酰亚胺类化合物、汉斯酯和烯基类化合物的当量比为1:1–3:1–2;烯基类化合物包括α,β–不饱和烃基脂类化合物、砜类化合物、腈类化合物、醛类化合物、酰胺类化合物、磷酸盐化合物、酮类化合物、马来酸酯类化合物、硅烷类化合物、乙烯基频哪醇硼酸盐、N-乙烯咔唑类化合物或丙烯酸乙酯类化合物。
优选地,α,β–不饱和烃基脂类化合物选自:
Figure GDA0003731859310000021
Figure GDA0003731859310000022
优选地,烯基类化合物选自α,β–不饱和烃基脂类化合物中的一种。
优选地,蓝紫光的波长范围为427–467nm。
优选地,蓝紫光的波长为456nm。
优选地,溶液环境的溶剂选自N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
优选地,溶剂为N,N-二甲基乙酰胺。
优选地,惰性保护气氛为氩气气氛。
优选地,烷基N-(酰氧基)苯邻二甲酰亚胺类化合物和汉斯酯的当量比为1:1.5。
优选地,烷基N-(酰氧基)苯邻二甲酰亚胺类化合物和烯基类化合物的当量比为1:1.5。
烷基N-(酰氧基)苯邻二甲酰亚胺类化合物,即
Figure GDA0003731859310000023
属于氧化还原活性酯(redox active esters,RAEs)中的一种。本发明以
Figure GDA0003731859310000024
作为电子受体结构,以汉斯酯(Hantzsch ester,HE),即
Figure GDA0003731859310000025
作为电子供体结构,通过π-π堆积作用共同组成的电子供体-受体(Electron Donor-acceptor,EDA)复合物RAE…HE,其能够在光的辐照下被有效地活化,从而构建蓝紫光辐照下的脱羧质子化反应以及涉及迈克尔受体分子的脱羧共轭加成反应。RAE…HE经过光活化后发生内球电子转移,从而产生脱羧的烷基自由基。烷基自由基能够被含有C=C的烯基类化合物
Figure GDA0003731859310000031
有效地俘获,从而形成新的C–C,进一步地,接收来自处氧化态的HE提供的氢原子,最终完成共轭加成反应并生成吡啶盐。具体的反应机理如下,其中RAE指代
Figure GDA0003731859310000032
Figure GDA0003731859310000033
上述反应过程不需要使用催化剂,只需要在蓝紫光的活化下即可启动反应,并且使反应物在反应的过程中保持良好的反应活性。
然而,电子供体-受体复合物RAE…HE并不是一种稳定的组合物,本发明利用N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMA)作为溶剂,为反应物提供溶液反应环境,能够提高RAE…HE在溶液中的稳定性,避免其在被光活化前发生解离,显著地提高了目标产物的得率。然而,物质溶解在不同溶剂中往往对应不同的光吸收峰,而本发明涉及的反应物的蓝紫光吸收率随着波长的变化存在极大的差异,因此,利用不同溶剂构建的反应体系对激发光的敏感度存在显著的区别。本发明根据反应物本身以及其在不同溶剂中的光吸收特性,对激发光的波长限定在一定范围内,保证反应物能够被有效地活化,使脱羧反应能够顺利进行,并且获得较高的产物得率。
另外,本发明还通过为反应提供合适的保护气氛、限定适当的反应物当量比等反应条件,更好地促进反应物向目标产物转化,提高目标产物得率,降低副产品的产出。
由于上述过程不需要催化剂的参与,从而避免了催化剂的使用为产物引入有毒的、难以分离的杂质,有效地提高了产品的纯度和安全性,也削减了为了购买催化剂而产生的昂贵原料投入以及为了将产物与催化剂分离而产生的设备投入和时间投入,极大地提高了产品的生产效益。
附图说明
图1为实施例2中设置的溶剂为DMA形成的溶液的紫外-可见吸收光谱图,其中:(a)RAE的DMA溶液(c=c*),(b)HE的DMA溶液(c=c*),(c)HE+RAE的DMA溶液(c=c*),(d)HE+RAE的DMA溶液(c=0.1c*);
图2为实施例2中设置的溶剂为DCM形成的溶液的紫外-可见吸收光谱图,其中:(a)RAE的DCM溶液(c=c*),(b)HE的DCM溶液(c=c*),(c)HE+RAE的DCM溶液(c=c*),(d)HE+RAE的DCM溶液(c=0.1c*);
图3为实施例1中产物1的1H NMR谱图;
图4为实施例1中产物1的13C NMR谱图;
图5为实施例5中产物2的1H NMR谱图;
图6为实施例5中产物2的13C NMR谱图;
图7为实施例5中产物3的1H NMR谱图;
图8为实施例5中产物3的13C NMR谱图;
图9为实施例5中产物4的1H NMR谱图;
图10为实施例5中产物4的13C NMR谱图;
图11为实施例5中产物5的1H NMR谱图;
图12为实施例5中产物5的13C NMR谱图;
图13为实施例5中产物6的1H NMR谱图;
图14为实施例5中产物6的13C NMR谱图;
图15为实施例5中产物7的1H NMR谱图;
图16为实施例5中产物7的13C NMR谱图;
图17为实施例5中产物8的1H NMR谱图;
图18为实施例5中产物8的13C NMR谱图;
图19为实施例5中产物9的1H NMR谱图;
图20为实施例5中产物9的13C NMR谱图;
图21为实施例5中产物10的1H NMR谱图;
图22为实施例5中产物10的13C NMR谱图;
图23为实施例5中产物11的1H NMR谱图;
图24为实施例5中产物11的13C NMR谱图;
图25为实施例5中产物12的1H NMR谱图;
图26为实施例5中产物12的13C NMR谱图;
图27为实施例5中产物13的1H NMR谱图;
图28为实施例5中产物13的13C NMR谱图;
图29为实施例5中产物14的1H NMR谱图;
图30为实施例5中产物14的13C NMR谱图;
图31为实施例5中产物15的1H NMR谱图;
图32为实施例5中产物15的13C NMR谱图;
图33为实施例5中产物17-1的1H NMR谱图;
图34为实施例5中产物17-1的13C NMR谱图;
图35为实施例5中产物17-2的1H NMR谱图;
图36为实施例5中产物17-2的13C NMR谱图;
图37为实施例5中产物18的1H NMR谱图;
图38为实施例5中产物18的13C NMR谱图;
图39为实施例5中产物19的1H NMR谱图;
图40为实施例5中产物19的13C NMR谱图;
图41为实施例5中产物20的1H NMR谱图;
图42为实施例5中产物20的13C NMR谱图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
下列实施例中需要用到的主要仪器如下:Schlenk管、Buchi旋转蒸发器、ShimadzuGC-2014气相色谱仪、Bruker Avance 400核磁共振波谱仪、Bruker Avance 400核磁共振波谱仪、装配有APCI离子源的Thermo LTQ Orbitrap XL高分辨质谱仪、UV-3600紫外-可见吸收光谱仪。
除了特别说明外,以下实施例中涉及的脱羧以及Giese自由基加成反应均在充满氩气气氛的干燥Schlenk管内进行。所使用的试剂均购自阿达玛斯试剂有限公司(Adamas)、梯希爱(上海)化成工业发展有限公司(TCI)或西格玛奥德里奇(上海)贸易有限公司(Aldrich)。下列实施例中采用的光反应实验器材均由Anhui kemi machinery technologyCo.,Ltd提供。
在常温下,利用Bruker Avance 400核磁共振波谱仪获取1H-NMR和13C-NMR的谱图数据。1H-NMR中的数据含义如下:化学位移(ppm,scale),谱峰多重性(s=singlet,d=doublet,t=triplet,q=quartet,m=multiplet and/or multiplet resonances,br=broad),耦合常数(Hz),integration。13C-NMR中的数据含义如下:化学位移(ppm,scale),谱峰多重性,耦合常数(Hz)。
以下实施例中涉及的RAE的合成方法如下:
Figure GDA0003731859310000061
实施例1自由基时钟实验
1.主要所需药品
二氯甲烷(DCM)、N,N-二甲基乙酰胺(DMA)。
2.数据采集
薄层色谱法(TLC)、气相色谱-质谱联用仪(GC-MS)、核磁共振波谱仪(NMR)
3.自由基时钟实验反应步骤
3.1向配有搅拌器的Schlenk管中投入
Figure GDA0003731859310000062
(1.0equiv,0.2mmol)、
Figure GDA0003731859310000063
(0.3mmol)、HE(0.3mmol)、四甲基哌啶氮氧化物(TEMPO)(2.0equiv,0.4mmol),排空管内原有气体并通入氩气至充满管内空间(重复3次)。在氩气气氛下,向反应体系中注入无水DMA(2.0mL)。在室温下,为反应体系提供40W的蓝色(456nm)LED光照,期间不断搅拌反应体系中的混合物,持续12小时。利用饱和NaCl溶液对所得混合物进行淬火,并利用乙酸乙酯对其进行抽滤,抽滤重复3次。在硅胶板上采用闪式柱层析法分离产品,所采用的洗脱液为:石油醚/乙酸乙酯=10/1。
3.2向配有搅拌器的Schlenk管中投入
Figure GDA0003731859310000071
(1.0equiv,0.2mmol)、
Figure GDA0003731859310000072
(0.3mmol)、HE(0.3mmol),排空管内原有气体并通入氩气至充满管内空间(重复3次)。在氩气气氛下,向反应体系中注入无水DMA(2.0mL)。在室温下,为反应体系提供40W的蓝色(456nm)LED光照,期间不断搅拌反应体系中的混合物,持续12小时。反应结束后,利用饱和NaCl溶液对所得混合物进行淬火,并利用乙酸乙酯对其进行抽滤,抽滤重复3次。在硅胶板上采用闪式柱层析法分离产品,所采用的洗脱液为:石油醚/乙酸乙酯=10/1。
本实施例设置的自由基时钟实验的反应物反应条件及目标生产产物如下:
Figure GDA0003731859310000073
4.实验结果:在存在作为自由基清除剂的TEMPO的反应体系中得到的混合物中,未发现具有上述目标产物(标记为产物1)结构的产品。而在不存在TEMPO的反应体系中得到的产物的的结构符合上述目标产物结构,得到了40.8mg的目标产物,产率高达88%;产物1的NMR谱图如图3和图4所示,其1H NMR和13C NMR数据如下:
1H NMR(400MHz,CDCl3)δ7.38(t,J=7.9Hz,2H),7.23(t,J=7.4Hz,1H),7.09(d,J=7.6Hz,2H),2.63-2.51(m,2H),1.80-1.70(m,7H),1.38-1.15(m,4H),1.04-0.89(m,2H).
13C NMR(101MHz,CDCl3)δ172.6,150.7,129.3,125.6,121.5,37.2,32.9,32.3,32.0,26.5,26.2.。
由此,给出了上述反应历程为自由基历程的有力证据。
实施例2克级规模实验
本实施例将实施例1中3.2部分所开展的实验扩大规模至克级规模实验。向配有搅拌器的Schlenk管中投入
Figure GDA0003731859310000081
(6mmol)、
Figure GDA0003731859310000082
(9mmol)、HE(9mmol),排空管内原有气体并通入氩气至充满管内空间(重复3次)。在氩气气氛下,向反应体系中注入无水DMA(50mL)。在室温下,为反应体系提供40W的蓝色(456nm)LED光照,期间不断搅拌反应体系中的混合物,持续12小时。反应结束后,利用饱和NaCl溶液对所得混合物进行淬火,并利用50mL乙酸乙酯对其进行抽滤,抽滤重复3次。在硅胶板上采用闪式柱层析法分离产品,所采用的洗脱液为:石油醚/乙酸乙酯=10/1。
反应物反应条件及目标生产产物如下:
Figure GDA0003731859310000083
在本实施例开展的克级规模实验中,得到1.13g目标产物,得率高达81%。
实施例3
1.实验设置方式
1.1分别将实施例1采用的HE和RAE(即,
Figure GDA0003731859310000084
)按照实施例1中的反应浓度制成HE的DMA溶液、RAE的DMA溶液以及HE+RAE的DMA溶液(c=c*),以及取部分HE+RAE的DMA溶液(c=c*)稀释10倍,得到HE+RAE的DMA溶液(c=0.1c*)。
1.2分别将实施例1采用的HE和RAE(即,
Figure GDA0003731859310000085
)按照实施例1中的反应浓度制成HE的DCM溶液、RAE的DCM溶液以及HE+RAE的DCM溶液(c=c*),以及取部分HE+RAE的DCM溶液(c=c*)稀释10倍,得到HE+RAE的DCM溶液(c=0.1c*)。
2.数据获取方式
利用紫外-可见吸收光谱仪测试上述溶液的吸收光谱。
3.测试结果
测试结果如图1和图2所示。如图1所示,与分别将HE和RAE溶于DMA溶液相比,将HE和RAE同时溶于DMA以模拟实施例1中的反应条件的HE+RAE的DMA溶液(c=c*)的吸收光谱峰产生较大距离的红移,HE+RAE的DMA溶液(c=c*)的吸收峰对应溶液中形成的EDA复合物,其吸收峰延展至大于500nm的可见光区域。同时,反应物浓度也是影响吸收峰的重要因素。从图1可知,与HE+RAE的DMA溶液(c=c*)的吸收峰相比,HE+RAE的DMA溶液(c=0.1c*)的吸收峰发生显著的蓝移,产生这种现象的原因是,稀释的过程抑制了EDA复合物的形成。此外,基于为反应物提供溶液反应环境的溶剂能够对形成的EDA复合物的稳定性造成重要的影响,因此,溶剂是影响反应进行效果的关键因素。对比图1和图2展示的吸收光谱图,与HE+RAE的DMA溶液(c=c*)的吸收峰相比,HE+RAE的DCM溶液(c=c*)的吸收峰发生明显的蓝移,其吸收峰位于波长小于500nm的光谱范围。
实施例4
本实施例以以下对照处理方式为依据设置若干处理组,除特别的变量说明外,每个处理组的处理方式均与对照处理方式严格保持一致。反应式如下:
Figure GDA0003731859310000091
在本实施例中,上述反应式中的RAE指
Figure GDA0003731859310000092
(标记为:A)或
Figure GDA0003731859310000093
(标记为:B)。本实施利用气相色谱仪测得本实施例各处理组的目标产物得率。
对照处理方式:
向配有搅拌器的Schlenk管中投入
Figure GDA0003731859310000101
(0.2mmol)、A(0.3mmol)、HE(0.3mmol),排空管内原有气体并通入氩气至充满管内空间(重复3次)。在氩气气氛下,向反应体系中注入无水DMA(2mL)。在室温(25±3℃)下,为反应体系提供40W的蓝色(456nm)LED光照,期间不断搅拌反应体系中的混合物,持续12小时。反应结束后,利用饱和NaCl溶液对所得混合物进行淬火,并利用50mL乙酸乙酯对其进行抽滤,抽滤重复3次。在硅胶板上采用闪式柱层析法分离产品,所采用的洗脱液为:石油醚/乙酸乙酯=10/1。
各处理组的变量设置及目标产物的产量如表1所示。
表1本实施例各处理组设置方式对目标产物得率的影响
Figure GDA0003731859310000102
Figure GDA0003731859310000111
根据处理2对应的产物得率,对照处理方式中建立的反应条件同样适用于
Figure GDA0003731859310000112
的脱氨Giese加成反应。
通过对比处理1、处理3–6各自对应的产品得率可知,溶剂是反应成功的关键因素。因为溶剂与在其中形成的、具有光活性的组合物产生弱非共价键相互作用,从而影响该组合物的稳定性。从表1中展示的数据可知,DMA为本反应最合适的溶剂。
通过对比处理1、处理7–9各自对应的产品得率,利用其它的电子供体替代HE与其它反应物进行反应,都会大大地降低目标产物的得率。而根据处理14对应的数据可知,HE的参与是反应能够顺利进行的必要条件。而根据处理15和16,HE与其它反应物的投料当量比也能够在一定程度上对目标产品的得率构成影响。
根据处理19对应的产品得率,光辐照是反应能够顺利进行的必要条件。通过对比处理1、处理10–13各自对应的产品得率,采用390nm的紫光为反应物提供辐照,将显著地降低目标产物得率。而将辐照光的波长位于427–467nm的光谱范围内,在该辐照条件下,能够使目标产物的得率保持在80%以上。
根据处理17,可以证明该反应体系对水的敏感度较低,水的加入不会对产品得率带来显著的影响。然而,根据处理18,氩气保护气氛对反应的顺利进行也十分重要,当将反应物暴露于没有保护气氛的空气下反应,几乎无法检测到目标产物。
实施例5
本实施例选择
Figure GDA0003731859310000121
作为RAE,采用不同种类的
Figure GDA0003731859310000122
分别与
Figure GDA0003731859310000123
通过以下操作步骤进行如下脱羧及Giese自由基加成反应:
Figure GDA0003731859310000124
向配有搅拌器的Schlenk管中投入
Figure GDA0003731859310000125
(1.0equiv,0.2mmol)、
Figure GDA0003731859310000126
(0.3mmol)、HE(0.3mmol),排空管内原有气体并通入氩气至充满管内空间(重复3次)。在氩气气氛下,向反应体系中注入无水DMA(2.0mL)。在室温下,为反应体系提供40W的蓝色(456nm)LED光照,期间不断搅拌反应体系中的混合物,持续12小时。反应结束后,利用饱和NaCl溶液对所得混合物进行淬火,并利用乙酸乙酯对其进行抽滤,抽滤重复3次。在硅胶板上采用闪式柱层析法分离产品,所采用的洗脱液为:石油醚/乙酸乙酯=10/1。
表2为本实施例采用的不同种类的
Figure GDA0003731859310000127
作为反应物参与反应对应得到的目标产物及其得率。
表2
Figure GDA0003731859310000128
种类对目标产物类型及其产率的影响
Figure GDA0003731859310000129
Figure GDA0003731859310000131
Figure GDA0003731859310000141
表2中列举的产物的1H NMR和13C NMR数据如下:
产物2:
Figure GDA0003731859310000151
1H NMR(400MHz,CDCl3)δ7.45-7.30(m,2H),7.30-7.16(m,3H),7.16-7.03(m,4H),3.10(dd,J=15.1,7.6Hz,2H),2.65(dd,J=16.0,8.4Hz,4H),2.59-2.47(m,1H),1.98(dd,J=15.3,7.4Hz,2H).
13C NMR(101MHz,CDCl3)δ172.1,150.8,143.1,129.5,126.3,125.8,124.5,121.6,39.7,39.1,33.4,30.7.。
产物3:
Figure GDA0003731859310000152
1H NMR(400MHz,CDCl3)δ7.35-7.18(m,5H),7.10-7.02(m,4H),5.04(s,2H),2.95(dd,J=15.2,7.8Hz,2H),2.50(dd,J=15.3,8.2Hz,2H),2.40-2.30(m,3H),1.79(dd,J=15.4,7.4Hz,2H).
13C NMR(101MHz,CDCl3)δ173.4,143.0,136.0,128.5,128.2,128.1,126.1,124.3,66.2,39.6,38.9,33.2,30.7.
产物4:
Figure GDA0003731859310000153
1H NMR(400MHz,CDCl3)δ7.10(dd,J=5.2,3.5Hz,2H),7.07-7.01(m,2H),4.01(t,J=6.7Hz,2H),2.97(dd,J=15.2,7.8Hz,2H),2.52(dd,J=15.3,8.2Hz,2H),2.43-2.25(m,3H),1.77(dd,J=15.4,7.5Hz,2H),1.53(dd,J=14.8,6.9Hz,2H),1.42-1.22(m,2H),0.86(t,J=7.4Hz,3H).
13C NMR(101MHz,CDCl3)δ173.7,143.1,126.1,124.3,64.2,39.6,38.9,33.2,30.8,30.7,19.1,13.7.。
产物5:
Figure GDA0003731859310000161
1H NMR(400MHz,CDCl3)δ8.00-7.76(m,2H),7.59(t,J=7.4Hz,1H),7.50(t,J=7.6Hz,2H),7.21-6.95(m,4H),3.18-3.04(m,2H),2.95(dd,J=14.6,7.3Hz,2H),2.62-2.30(m,3H),1.96-1.77(m,2H).
13C NMR(101MHz,CDCl3)δ142.4,139.1,133.7,129.3,128.1,126.4,124.4,55.3,38.8,38.7,28.3.
产物6:
Figure GDA0003731859310000162
1H NMR(400MHz,CDCl3)δ7.21-6.95(m,4H),3.12(dd,J=15.1,7.8Hz,2H),2.70-2.56(m,3H),2.43(t,J=7.3Hz,2H),1.88(q,J=7.1Hz,2H).
13C NMR(101MHz,CDCl3)δ142.4,126.5,124.5,119.7,39.1,38.7,31.1,16.1.
HRMS(APCI)calcd for C12H13O2H+[(M+H)+]172.1121,found 172.1121.。
产物7:
Figure GDA0003731859310000163
1H NMR(400MHz,CDCl3)δ9.66(d,J=2.0Hz,1H),7.21-6.95(m,4H),3.12-2.99(m,2H),2.65-2.56(m,2H),2.54-2.47(m,1H),2.00-1.93(m,1H),1.70-1.42(m,2H),1.16(d,J=7.0Hz,3H).
13C NMR(101MHz,CDCl3)δ205.0,142.8,126.2,124.4,45.4,39.5,39.1,37.8,36.4,13.7.。
产物8:
Figure GDA0003731859310000164
1H NMR(400MHz,CDCl3)δ7.14-7.08(m,2H),7.08-7.02(m,2H),4.14-4.00(m,4H),3.02-2.83(m,3H),2.81-2.54(m,4H),2.44(dd,J=16.5,4.0Hz,1H),1.19(dd,J=15.0,7.2Hz,6H).
13C NMR(101MHz,CDCl3)δ174.1,171.9,142.4,142.1,126.4,124.3,124.3,124.2,60.7,60.6,45.9,41.9,36.9,36.8,35.2,14.2,14.1.。
产物9:
Figure GDA0003731859310000171
1H NMR(400MHz,CDCl3)δ7.21-7.10(m,4H),3.65(dd,J=18.9,6.8Hz,6H),3.56-3.43(m,2H),3.07(dd,J=15.2,7.8Hz,2H),2.62(dd,J=15.3,8.2Hz,2H),2.51-2.38(m,3H),1.86(dd,J=15.5,7.3Hz,2H).
13C NMR(101MHz,CDCl3)δ171.6,143.1,126.2,124.4,67.0,66.7,46.1,41.9,39.8,39.1,31.9,31.0.。
产物10:
Figure GDA0003731859310000172
1H NMR(400MHz,CDCl3)δ7.51(d,J=7.9Hz,2H),7.30(t,J=7.8Hz,3H),7.20-7.05(m,5H),3.07(dd,J=15.2,7.7Hz,2H),2.72-2.34(m,5H),1.95(dd,J=15.3,7.3Hz,2H).
13C NMR(101MHz,CDCl3)δ171.2,143.0,137.9,129.0,126.2,124.4,124.3,119.9,39.7,39.1,36.5,31.3.。
产物11:
Figure GDA0003731859310000173
1H NMR(400MHz,CDCl3)δ7.08(dd,J=18.2,3.3Hz,4H),4.03(dd,J=12.8,7.0Hz,4H),2.99(dd,J=15.2,7.6Hz,2H),2.52(dd,J=15.3,7.9Hz,2H),2.45-2.38(m,1H),1.74(d,J=6.5Hz,4H),1.25(t,J=7.0Hz,6H).
13C NMR(101MHz,CDCl3)δ142.8,126.1,124.3,61.5,61.4,40.6,38.7,28.1,25.2,23.8,16.4,16.3.。
产物12:
Figure GDA0003731859310000181
1H NMR(400MHz,CDCl3)δ7.52(dd,J=6.6,2.9Hz,2H),7.38-7.32(m,3H),7.16(dd,J=5.2,3.5Hz,2H),7.10(dd,J=5.5,3.2Hz,2H),3.02(dd,J=15.3,7.9Hz,2H),2.55(dd,J=15.4,8.1Hz,2H),2.46-2.31(m,1H),1.54-1.47(m,2H),0.88-0.78(m,2H),0.27(s,6H).
13C NMR(101MHz,CDCl3)δ147.5,143.3,137.4,132.7,131.6,129.8,128.3,47.1,42.9,33.7,18.2,0.8.。
产物13:
Figure GDA0003731859310000182
1H NMR(400MHz,CDCl3)δ7.26-7.23(m,2H),7.21-7.14(m,2H),3.11(dd,J=15.4,7.9Hz,2H),2.64(dd,J=15.5,8.0Hz,2H),2.45-2.34(m,1H),1.59-1.51(m,2H),0.68-0.60(m,2H),0.06(s,9H).
13C NMR(101MHz,CDCl3)δ146.1,128.4,126.9,45.7,41.5,32.4,17.7,0.8.。
产物14:
Figure GDA0003731859310000183
1H NMR(400MHz,CDCl3)δ8.03(d,J=7.7Hz,2H),7.51-7.28(m,4H),7.20-7.09(m,4H),7.09-7.01(m,2H),4.45-4.20(m,2H),3.04(dd,J=15.3,7.9Hz,2H),2.62(dd,J=15.4,7.8Hz,2H),2.45-2.41(m,1H),2.10-1.90(m,2H).
13C NMR(101 MHz,CDCl3)δ142.8,140.3,126.3,125.6,124.4,122.9,120.4,118.8,108.5,41.9,39.3,37.5,34.7.。
产物15:
Figure GDA0003731859310000184
1H NMR(400MHz,CDCl3)δ7.10(dd,J=5.2,3.4Hz,2H),7.03(dd,J=5.4,3.2Hz,2H),2.95(dd,J=15.3,7.8Hz,2H),2.50(dd,J=15.4,8.2Hz,2H),2.35-2.31(m,1H),1.54(dd,J=16.1,7.5Hz,2H),1.17(s,12H),0.86-0.74(m,2H).
13C NMR(101MHz,CDCl3)δ143.7,125.9,124.4,83.0,42.6,39.0,29.8,24.8.。
由于存在四级展宽,与硼原子直接相连的碳原子无法被检出。
产物17:
17-1:
Figure GDA0003731859310000191
1H NMR(400MHz,CDCl3)δ7.21-7.13(m,4H),7.10(d,J=15.7Hz,1H),5.89(dd,J=15.6,1.2Hz,1H),4.19(q,J=7.1Hz,2H),3.31-3.18(m,1H),3.15-3.06(m,2H),2.85(dd,J=15.3,7.8Hz,2H),1.29(t,J=7.1Hz,3H).
13C NMR(101MHz,CDCl3)δ166.6,151.5,142.0,126.4,124.3,120.5,60.2,42.5,38.5,14.2.。
17-2:
Figure GDA0003731859310000192
1H NMR(400MHz,CDCl3)δ7.15-7.03(m,4H),6.23(dd,J=11.3,10.0Hz,1H),5.68(d,J=11.4Hz,1H),4.34-4.21(m,1H),4.11(q,J=7.1Hz,2H),3.15(dd,J=15.5,8.1Hz,2H),2.67(dd,J=15.5,7.4Hz,2H),1.29-1.12(m,3H).
13C NMR(101MHz,CDCl3)δ166.2,153.5,142.6,126.3,124.4,119.2,59.9,39.6,38.6,14.2.。
产物18:
Figure GDA0003731859310000193
1H NMR(400MHz,CDCl3)δ7.20-7.09(m,4H),3.02-2.92(m,2H),2.71-2.60(m,2H),2.57-2.10(m,6H),1.06(t,J=7.3Hz,3H),0.95(d,J=6.5Hz,3H).
13C NMR(101MHz,CDCl3)δ211.4,143.3,143.2,126.2,126.2,124.3,124.3,48.3,46.1,37.3,36.9,36.6,34.3,18.3,7.8.。
产物19:
Figure GDA0003731859310000201
1H NMR(400MHz,CDCl3)δ7.20-7.08(m,4H),3.03(dd,J=15.2,7.8Hz,2H),2.58(dd,J=15.3,8.1Hz,2H),2.51-2.36(m,5H),1.79(dd,J=15.2,7.4Hz,2H),1.62-1.52(m,2H),1.36-1.23(m,4H),0.89(t,J=7.0Hz,3H).
13C NMR(101 MHz,CDCl3)δ211.3,143.1,126.1,124.4,42.8,41.5,39.7,39.1,31.4,29.5,23.6,22.4,13.9.。
产物20:
Figure GDA0003731859310000202
1H NMR(400MHz,CDCl3)δ7.14-6.99(nm,4H),4.07(q,J=7.1Hz,2H),3.03-2.92(m,2H),2.59-2.32(m,4H),1.96-1.78(m,1H),1.62-1.44(m,1H),1.19(t,J=7.1Hz,3H),1.12(d,J=7.0Hz,3H).
13C NMR(101 MHz,CDCl3)δ176.8,143.1,126.1,124.4,60.2,39.7,39.2,39.1,38.6,38.2,17.5,14.2.。
上述产物2-20的NMR谱图如图5-42所示。
从以上数据可知,适合作为与脱羧后的烷基羧化物共同发生Giese自由基加成反应的烯基类化合物种类丰富,其中,α,β-不饱和烃基脂类化合物(生成产物2-4、18)、砜类化合物(生成产物5)、腈类化合物(生成产物6)、醛类化合物(生成产物7)、酰胺类化合物(生成产物9、10)、磷酸盐化合物(生成产物11)、酮类化合物(生成产物19)、马来酸酯类化合物(生成产物8)。使用上述种类的烯基类化合物作为反应物进行Giese自由基加成反应,都能够对应地得到具有较高得率的目标产物。采用硅烷类化合物(生成产物12、13)、乙烯基频哪醇硼酸盐(生成产物14)、N-乙烯咔唑类化合物(生成产物15)或丙烯酸乙酯类化合物(生成产物17)分别与RAE反应能够得到具有中等得率的对应目标产物。然而,选择以
Figure GDA0003731859310000203
作为反应物中的
Figure GDA0003731859310000204
参与反应,几乎得不到其对应的目标产物。
以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

1.一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:在溶液环境中,使
Figure FDA0003731859300000011
汉斯酯和烯基类化合物在波长范围为370–470nm的蓝紫光辐照下、在惰性保护气氛中发生反应,
Figure FDA0003731859300000012
所述汉斯酯和所述烯基类化合物的当量比为1:1–3:1–2;
所述烯基类化合物选自:
Figure FDA0003731859300000013
所述溶液环境的溶剂选自N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
2.如权利要求1所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:所述蓝紫光的波长范围为427–467nm。
3.如权利要求2所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:所述蓝紫光的波长为456nm。
4.如权利要求1所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:所述溶剂为N,N-二甲基乙酰胺。
5.如权利要求1所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:所述惰性保护气氛为氩气气氛。
6.如权利要求1所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:
Figure FDA0003731859300000014
和所述汉斯酯的当量比为1:1.5。
7.如权利要求1所述无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应,其特征在于:
Figure FDA0003731859300000021
和所述烯基类化合物的当量比为1:1.5。
CN201910699312.9A 2019-07-31 2019-07-31 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应 Active CN110407700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910699312.9A CN110407700B (zh) 2019-07-31 2019-07-31 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910699312.9A CN110407700B (zh) 2019-07-31 2019-07-31 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应

Publications (2)

Publication Number Publication Date
CN110407700A CN110407700A (zh) 2019-11-05
CN110407700B true CN110407700B (zh) 2022-10-28

Family

ID=68364373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910699312.9A Active CN110407700B (zh) 2019-07-31 2019-07-31 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应

Country Status (1)

Country Link
CN (1) CN110407700B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341417B (zh) * 2020-10-28 2022-05-27 宁波工程学院 一种光/铜共催化合成多取代呋喃的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405995A (en) * 1994-06-20 1995-04-11 Occidental Chemical Corporation Difluorophthalic compounds and their preparation
CN108704665A (zh) * 2018-06-20 2018-10-26 海南师范大学 氯化三(2,2`-联吡啶)钌(ii)六水合物作为催化剂的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405995A (en) * 1994-06-20 1995-04-11 Occidental Chemical Corporation Difluorophthalic compounds and their preparation
CN108704665A (zh) * 2018-06-20 2018-10-26 海南师范大学 氯化三(2,2`-联吡啶)钌(ii)六水合物作为催化剂的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Contructing Quaternary Carbons from N-(Acyloxy)phthalimide Precursors of Tertiary Radicals Using Visible-Light Photocatalysis;PRATSCH,G.et al.,;《JOC》;20150601;第80卷;第6025-6036页 *
Donor-Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp(3))-C(sp(3)) Cleavage and Allylation/Alkenylation;Jing Zhang et al.,;《Angew. Chem. Int. Ed.》;20171231;第56卷;第12619-12623页 *
Fragment Coupling and the Construction of Quaternary Carbons Using Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By Visible-Light Photocatalysis;Lackner, GL et al.,;《JOURNAL OF ORGANIC CHEMISTRY》;20150601;第80卷;第12期 *
Metal-Free C(sp(3))-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex;Li, Y et al ,;《ORGANIC LETTERS》;20181231;第20卷(第11期);第3296-3299页 *
Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of N-(Acetoxy)phthalimides;Jin, YH et al. ,;《ORGANIC LETTERS》;20161207;第18卷(第24期);第6400-6403页 *

Also Published As

Publication number Publication date
CN110407700A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
Lautens et al. Rhodium-catalysed asymmetric ring opening reactions with carboxylate nucleophiles
CN110117260B (zh) 一种3-烷基喹喔啉-2(1h)-酮类化合物的制备方法
CN110028403B (zh) 一种合成丁二酸类化合物的方法
US20180312519A1 (en) Synthesis of substituted salicylaldehyde derivatives
CN110407700B (zh) 一种无催化剂的烷基羧化物的脱羧及脱羧Giese自由基加成反应
Mardjan et al. Strategies to access γ-hydroxy-γ-butyrolactams
Zhu et al. Synthesis of isoxazoline N-oxides and its application in the formal synthesis of dehydroclausenamide
Thiverny et al. Inexpensive, multigram-scale preparation of an enantiopure cyclic nitrone via resolution at the hydroxylamine stage
CN110452120B (zh) 光活化电子供体-受体复合物的烷基羧化物的脱羧及脱羧Giese自由基加成反应
Zhang et al. C (sp 3)–H bond functionalization of non-cyclic ethers by decarboxylative oxidative coupling with α, β-unsaturated carboxylic acids
CN110452151B (zh) 一种α-吲哚甘氨酸衍生物的合成方法
CN113880733A (zh) 一种n-苯基双(三氟甲磺酰)亚胺的制备方法
JP2008518991A (ja) イソニコチン酸誘導体の製造方法
DE10111262A1 (de) Verfahren zur Herstellung von Vinyl- Aryl- und Heteroarylessigsäuren und ihrer Devivate
CN107954872B (zh) 一种丙二酸酯类化合物的合成方法
CN115611692B (zh) 一种含氟化合物的合成方法
CN114805123B (zh) 一种光催化烯烃的Ritter反应制备γ-氨基丁酸及其衍生物的方法
CN110981781A (zh) 一种吲哚美辛及其类似物的合成方法
Mori et al. Photocatalytic Aldehyde C− H Bond Phosphonioethylation with Vinylphosphonium Bromide
CN115286547B (zh) 一种合成芳基苄基硫醚类化合物的方法
Fengqiang et al. Photochemical Behavior of Some p‐Styrylstilbenes and Related Compounds: Spectral Properties and Photoisomerization in Solution and in Solid State
CN117624117A (zh) 一种二噻吩乙烯1,3-二酮化合物及其制备方法、应用
Corvo et al. Synthesis of γ-amino acid analogues from natural α-amino acids by a radical pathway
CN118084726A (zh) 一种1-氰基-2-羟基-5-氟化合物及其制备方法
Dhungana Development of Nickel and Palladium-catalyzed Alkene Dicarbofunctionalization Reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant