CN110402372A - 具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器 - Google Patents

具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器 Download PDF

Info

Publication number
CN110402372A
CN110402372A CN201880013671.8A CN201880013671A CN110402372A CN 110402372 A CN110402372 A CN 110402372A CN 201880013671 A CN201880013671 A CN 201880013671A CN 110402372 A CN110402372 A CN 110402372A
Authority
CN
China
Prior art keywords
soft magnetism
plunger core
position sensor
inductive position
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880013671.8A
Other languages
English (en)
Inventor
J·本特松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sem Co
SEM AB
Original Assignee
Sem Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sem Co filed Critical Sem Co
Publication of CN110402372A publication Critical patent/CN110402372A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2216Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/08Variable transformers or inductances not covered by group H01F21/00 with core, coil, winding, or shield movable to offset variation of voltage or phase shift, e.g. induction regulators
    • H01F29/10Variable transformers or inductances not covered by group H01F21/00 with core, coil, winding, or shield movable to offset variation of voltage or phase shift, e.g. induction regulators having movable part of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electromagnets (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明涉及一种感应式位置传感器,包括:在纵向方向具有圆柱形线圈绕组(14)的第一部分,具有软磁柱塞芯(20)的第二部分。本发明还涉及软磁柱塞芯和围绕用于感应式位置传感器的所述圆柱形线圈绕组的磁屏蔽件。根据本发明,软磁柱塞芯以及优选地具有圆形横截面的磁屏蔽空心,都是由电工钢或软铁片材料制成。

Description

具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器
背景技术
目前,已经研发了不同种类的位置传感器,并且最常见的位置传感器之一使用感应式位置传感器,其包括围绕可相对于线圈移动的柱塞芯的线圈结构。线圈通常包括缠绕在线轴上的电绕组。
当线圈连接到交流电压源时,线圈产生磁场并且用作磁体,并且柱塞芯由可以改变线圈中的电感的软磁材料制成。线圈和相关部件形成位置传感器的一部分,并且柱塞芯形成可相对于第一部分移动的第二部分。通常,在部件之间的相对位置需要控制的系统中,具有线圈的第一部分是固定的,而具有柱塞芯的第二部分附接有可移动部分,但是它们也可以以相反的方式安装。
可移动磁性柱塞芯相对于线圈的位置可以通过测量绕组的电感来确定。
柱塞芯通常由软磁材料制成,优选使用铁合金,并制成实心杆。一个缺点是仅软磁柱塞芯的成本通常占传感器(包括线圈绕组和壳体)总成本的10%以上,通常约为15%。
已经提出了几种针对降低这种感应式位置传感器成本的建议,并且一些建议是在实心柱塞芯中使用电工钢而不是铁柱塞芯。
电工钢通常以冷轧带材制造。将这些带材切割成形以形成层叠在一起的叠片,从而形成变压器的层压实心芯,以及电动机的定子和转子。
成本问题对于这些感应式位置传感器是非常重要的问题,因为它们在诸如机动车辆系统的不同系统中大量使用,检测变速箱致动器和机动车辆的其他设备的位置。使用电工钢作为传感器的一部分从根本上降低了成本,因为带材生产的电工钢以大批量生产并且每公斤成本低。
在US5204621,“Position sensor employing a soft magnetic core”公开了一种感应式位置传感器,其使用具有特定设计的实心可移动柱塞芯,但是其中线圈芯的固定部分由软铁板材制成的线圈芯支撑,这是电工钢的替代设计。然而,电工钢的这种使用通常用于线圈绕组部分。
在DE102010002505中,“Induktiver Kraftfahrzeugsensor und Verwendungdesselben”,公开了一种感应式位置传感器,其中一个实施例公开了一种由电工钢制成的实心柱塞芯(德语中的“Transformatorblech”),其集成在围绕柱塞芯的推杆中。
在DE102014219009中,“Positionssensor”,公开了另一种感应式位置传感器,其中可移动柱塞芯在另外的平坦传感器结构中是平坦的
在US2427866中,公开了一种位置传感器,其中可移动柱塞芯以合适的磁性材料中制成中空芯,通过压配合安装连接到电木导向杆上。然而,中空柱塞芯在压配区域外部的区域中是自支撑的,并且本身不能实现箔设计。该设计还公开了作为磁屏蔽件的开槽套管,但其在轴向上没有任何屏蔽。
DE3507585公开了另一种圆柱形设计的可移动柱塞芯,由厚度为0.5mm的磁片材料制成,圆柱形的小的内径大约为2.7mm。这也是一种自支撑的柱塞芯,并不能实现箔设计。
GB2040470还公开了另一种管状结构的可移动柱塞芯,由磁片材料制成并且也是自支撑柱塞芯。
以上示例公开了成本降低目标对于这些位置传感器非常重要,并且已经提出了若干解决方案来降低传感器的总成本。由于大量的位置传感器安装在单个车辆中,因此很明显即使是很小的成本降低也是所需的。
发明内容
本发明涉及一种感应式位置传感器的新设计,其能够进一步降低传感器的成本,其中优选地,磁屏蔽件以及可移动磁性柱塞芯由电工钢或中空圆形的软铁片材料制成。共同的发明目的是降低成本,例如通过使用至少部分软磁材料实现成本有效且可靠的设计,通过减少在感应式位置传感器中使用的更昂贵的软磁材料的量,减少在制造所述感应式位置传感器期间这种软磁材料的浪费。
电工钢的定义(来自维基百科)表示一种特殊的钢材,专门用于产生特定的磁特性:小的滞后面积导致每个循环的低功率损耗,低铁芯损耗和高磁导率。电工钢通常以厚度小于2毫米的冷轧带材制造。将这些带材切割成形以形成层叠在一起的叠片,从而形成变压器的层压实心芯,以及电动机的定子和转子。可以通过冲头和模具将叠片切割成其最终形状,或者可以通过激光或线EDM切割少量的叠片。软磁合金是铁磁材料,易于磁化和去磁。为了提供最佳的磁性能,这些合金具有非常低水平的碳、氮和氧含量。它们依赖于各种磷、镍和硅的添加来优化磁感应、磁导率和抗磁力。所有这些合金的磁特性受益于在氢气中高于1200℃的高温烧结。密度和晶粒尺寸增加,而碳、氧和氮的残留水平降低。典型应用包括继电器、磁芯、传感器探头、电枢、电磁阀组件和极片。
本发明的感应式位置传感器使用电工钢作为包围线圈绕组的外屏蔽件。
因此,在感应式位置传感器的优选实施例中,薄壁软磁管状屏蔽围绕圆柱形线圈绕组,其中所述薄壁软磁屏蔽件具有形状为圆形横截面的第一管状部件,第一管状部件具有内径并且具有平行于圆柱形线圈绕组的纵向延伸的纵向邻接接缝,并且所述第一管状部件由切成矩形的扁平冷轧带材形成圆形横截面,并且其中薄壁软磁屏蔽件具有圆柱形横截面。屏蔽件通过附加的屏蔽孔垫圈元件在至少一个山墙端封闭,该屏蔽孔垫圈元件具有外径并位于第一管状部件的内部,并且其中软磁管状屏蔽件和屏蔽孔垫圈元件均由电工钢的扁平带材制成。通过这种两部分形式可以以低成本制造屏蔽壳体,同时最小化昂贵的软磁材料的浪费,其中屏蔽孔垫圈元件夹在卷起的第一管状部件内。
发明人还惊奇地意识到,感应式位置传感器的创造性设计使用可移动磁性柱塞芯的趋肤效应,并且具有实心可移动柱塞芯的现有技术设计不需要将线圈绕组的电感改变到足够的程度。柱塞芯可以优选地由非常薄的材料制成,例如,厚度小于0.5mm,并且优选地作为安装在支撑柱塞芯上的箔,例如以任何低成本聚合物、金属或电木制成。
趋肤效应是交流电流(AC)在导体内分布的趋势,使得电流密度在导体表面附近最大,并且在导体内随着深度的增加而减小。就磁场而言,磁场强度在柱塞芯的表面处最强,并且在柱塞芯内随着深度的增加而减小,即,磁场集中在柱塞芯的靠外表面上。
因此,改变绕组的电感的可移动磁性柱塞芯不需要是实心的。相反,为了每千克柱塞芯材料的影响最大,柱塞芯的外表面应最大化,同时最小化所用材料的量。在这种情况下,柱塞芯的外表面被称为软磁柱塞芯的活动部分,因为它与磁场相互作用并改变线圈绕组的电感。可移动柱塞芯的剩余部分称为软磁柱塞芯的非活动部分。
除了外屏蔽壳体之外,本发明的感应式位置传感器优选地还包括:
软磁柱塞芯,其形状为中空横截面形状,其中软磁柱塞芯的壁厚度为软磁柱塞芯的总外径的0.02-5%之间。优选地,软磁柱塞芯的壁厚度在0.01-0.4mm之间。
软磁柱塞芯的中空横截面可以优选地为圆形横截面,但也可以是椭圆形、三角形、正方形、五边形或具有多于5条边。
通过这种基本设计,柱塞芯的成本可以降低到常规使用的实心铁柱塞芯的成本的10%以下。在典型的位置传感器中,实心Ni-Fe铁柱塞芯的成本约为0:60欧元,而电工钢中空柱塞芯的成本仅为0:04欧元左右。
在另一个优选的实施例中,软磁柱塞芯的壁甚至可以作为箔安装在由非磁性材料制成的中心非活动芯元件的顶部上。或者,箔可以通过使用溅射或浸涂技术,作为具有软磁特性的表面涂层施加。
本发明还涉及这样的柱塞和磁屏蔽件,两者都用于上述感应式位置传感器。这可以使生产者减少传感器中使用的材料的数量,并且购买用于传感器中的多个部件的更大体积的廉价电工钢带。
上面列出的目标主要集中在降低成本的感应式位置传感器,同时该设计不会导致检测位置的精确度降低。
附图说明
本发明将使用如下附图进行描述,其中
图1a示出了没有可移动柱塞芯的线圈绕组壳体的纵向横截面;
图1b示出了图1a中A-A视图的线圈绕组壳体的横截面;
图1a示出了图1a中B-B视图的线圈绕组屏蔽件的横截面;
图2示出了具有可移动柱塞芯的线圈绕组壳体的横截面;
图3示出了传统设计实心体的传统可移动柱塞芯的横截面;
图4a示出了柱塞芯的透视图;
图4b示出了柱塞芯的侧视图;
图4c示出了柱塞芯的端视图;
图5a以透视图示出了用于形成柱塞芯的平板;
图5b以侧视图示出了在将平板卷成管状形式之后的柱塞芯;
图5c示出了如图5b中所示的柱塞芯的端视图;
图6以端视图示出了柱塞芯的替代实施例;以及
图7以端视图示出了本发明的屏蔽件11a的类似端视图;
图8a单独示出了管状屏蔽部件;
图8b单独示出了屏蔽孔垫圈;
图8c单独示出了壳体;
图9a至图9c示出了屏蔽构件进入壳体的安装顺序;
图10单独示出了壳体的端视图;
图11示出了当屏蔽元件安装在壳体中时,屏蔽元件之间的相互作用的细节图。
具体实施方式
图1a示出了没有可移动柱塞芯的线圈绕组壳体的纵向横截面。并且在图1b中示出了在视图A-A中看到的线圈绕组壳体的横截面,并且在图1c中示出了在视图B-B中看到的磁屏蔽件的横截面。
如图1a中所示,线圈绕组壳体包括缠绕在细长电绕组支撑件13上的电绕组14,其中细长电绕组支撑件13配备有绕组室。线圈绕组的匝绕缠绕在与线圈绕组壳体的纵向轴线交叉的正交平面中,并且线圈绕组在纵向方向上的长度至少与待检测的运动的行程一样长(即,后面描述的柱塞芯的行程长度)。线圈绕组壳体的总长度用LH表示,即,稍微长于线圈绕组的长度。
绕组封装在一些绝缘材料12中,绝缘材料12可以是油或树脂,其可以通过填料注入孔12h注入(图1a中插入)。
磁屏蔽件围绕线圈绕组。优选地,磁屏蔽件由软磁材料制成,例如电工钢。在该图中是在杯形件11中制成的磁屏蔽件,其中外薄壁板部分形成为管并且一个山墙端被底部部件封闭。外薄壁软磁屏蔽件11及其底部可以通过从切成矩形的扁平冷轧带材压制成杯形状而成形为杯形。一个山墙端(柱塞芯从其延伸)被底部部件封闭。因此,磁屏蔽件将由杯形屏蔽件封闭。然后,屏蔽件优选地由坚固的聚合物材料完全封装,该聚合物材料形成线圈绕组壳体的外皮。外皮也覆盖圆柱形孔15的内表面,并因此是优选使用的具有低摩擦的聚合物材料。如图1a所示,互补凸缘可以设置在该外皮中,用于将感应式传感器安装至正确的位置。在线圈绕组的中心形成圆柱形孔15形式的凹槽,该圆柱形孔15用于稍后将描述的柱塞芯的引导件。
图2与图2是相同的视图,但是安装有可移动的柱塞芯20。可移动柱塞芯20的行程方向由双头箭头指示,即柱塞芯20可以移出或移入线圈绕组壳体的圆柱形孔15。并且如前所述,柱塞芯或线圈绕组壳体的任何部分可以是固定的部分。常规的柱塞芯由铁合金制成实心杆。图3中单独示出了柱塞芯20,其具有纵向长度LC,通常为5-15mm,长于线圈绕组14的纵向长度,允许将紧固构件附接至突出末端。
柱塞芯20在图4a中以透视图示出,在图4b中以严格的侧视图示出,以及在图4c中以端视图示出。在该实施例中,软磁柱塞芯20具有中空和圆形的横截面,并且由电工钢或软铁片材料制成。柱塞芯20成形为中空圆形横截面形状,其具有平行于圆柱形线圈绕组14的纵向延伸的纵向邻接接缝21s。接缝21s可以在柱塞芯的邻接边缘之间具有间隙W,但是也可以通过钎焊/焊接而闭合。然而,由于接缝在线圈绕组的纵向方向上延伸,因此它不会干扰磁场。
如图5a-5c所示,柱塞芯20可以由切成矩形20SP(如图5a所示)的扁平冷轧带材制成,并成形为中空圆形横截面形状20R,如图5b和5c所示。柱塞芯20的壁厚度WT小于柱塞芯20的总外径ODc的25%,但是大于0.01%。
优选地,柱塞芯20的壁厚度WT在柱塞芯20的总外径ODc的0.02-5%之间。优选地,软磁柱塞芯的实际壁厚度在0.01-0.3mm之间。
图6以端视图示出了柱塞芯的另一实施例。在此,软磁柱塞芯20的壁作为薄箔安装在中心芯元件22的顶部上,其中中心芯元件22由不同于电工钢的填充材料制成。优选地,芯元件22具有与柱塞芯的总长度相同的总长度,从而支撑附接到芯元件22的外表面的薄箔。填料可以是树脂或任何聚合物共混物,即使软磁材料作为薄箔安装在中心芯元件22的表面上,也可以导致柱塞芯的高结构刚度。箔可以粘合到中心芯元件22的表面上,或者在填料固化期间与填料一起固化。柱塞的这种箔设计本身是有创造性的,因为现有技术没有使用厚度在柱塞芯20的总外径ODc的0.02-5%之间的薄箔,这可能是当低成本软磁箔变得可用时要考虑的进一步降低成本的设计。
在图7中还以端视图示出了本发明的屏蔽件11a的类似端视图。除了导致更大的外径之外,相同的制造原则也适用于作为柱塞芯的屏蔽件。采用与柱塞芯和屏蔽件相同的制造工艺,可以降低生产成本,因为可以使用相同类型的轧制机,并且可以使用相同的电工钢或软铁片材料并以卷的形式交付到车间,保持了组件数量下降。
在图8a至8c中示出了形成屏蔽壳体的三个主要组件,即由两件制成的磁屏蔽件,外薄壁管状部件11a和由屏蔽孔垫圈11b封闭的一个山墙端。管状部件11a和屏蔽孔垫圈11b安装在壳体10中。整个壳体在图8c中单独示出,其具有中心支柱构件10c,中心支柱构件10c提供使柱塞可移位的孔15,并且使得屏蔽孔垫圈11b居中。
图9a以分解图示出了本发明的屏蔽壳体的三个主要组件,其中壳体10、管状屏蔽部件11a和屏蔽孔垫圈11b在顶部彼此堆叠。如图9a中箭头所示,首先将管状屏蔽部件11a向下压入壳体10中。图9b示出了管状屏蔽部件在壳体10中的最终位置。如图9b中箭头所示,屏蔽孔垫圈11b然后向下压入管状屏蔽部件11a和壳体10中,到达最终位置,如图9c所示。
图10仅示出了壳体10,并且该壳体配备有围绕壳体的内圆周均匀布置的整体斜面槽口10x,在该实施例中具有8个斜面槽口。这些斜面槽口将径向向内压缩管状屏蔽部件11a,减小间隙l1s。在壳体底部还有将屏蔽孔垫圈支撑在其最终位置的脊部10y。
在图11中公开了管状屏蔽部件11a和屏蔽孔垫圈11b之间的共同作用的详细实施例。当斜面槽口10x径向向内挤压管状屏蔽部件时,将产生抵靠屏蔽孔垫圈11b的外周边的接触力。为了提供最佳的屏蔽效果,屏蔽孔垫圈的厚度大于管状屏蔽部件的厚度,增加了它们之间的接触表面。如图11所示,屏蔽孔垫圈的厚度应该是管状屏蔽部件厚度的大约2倍,并且优选地使得屏蔽孔垫圈元件11b的厚度相对于薄壁软磁管状屏蔽件11a的厚度在1.5到5倍的范围内。
除了所示的实施例之外,本发明可以以几种方式进行修改。这适用于电线圈绕组的类型和线圈的线轴结构。
基本特征在于,围绕线圈的线圈屏蔽由轧制的软磁板材料制成,该材料是大批量制造的标准产品,因此可以低成本获得,并且优选地,屏蔽件的山墙端由类似软磁材料制成的孔垫圈制成。
本发明的屏蔽壳体的设计也可以优选地与由软磁板材料以类似方式制成的柱塞芯组合,即改变电线圈绕组中的电感的柱塞芯使用由电工钢制成的空心杆,其中空心杆使用柱塞芯的大外表面作为电感变换构件,并且在优选实施例中使用也由电工钢制成的相同类型的屏蔽件设计。可以预见,柱塞芯设计本身可以是保护对象,即对屏蔽件没有任何限制,例如,通过分案申请。
即使柱塞芯的活动部分和薄壁软磁屏蔽被成形为圆形横截面形状,并且纵向邻接接缝平行于圆柱形线圈绕组的纵向延伸,接缝也可以相对于圆柱形线圈绕组的纵向倾斜地延伸。特别是如果接缝熔接在一起。

Claims (9)

1.一种感应式位置传感器,包括:在纵向方向具有圆柱形线圈绕组(14)的第一部分,具有软磁柱塞芯(20)的第二部分,所述软磁柱塞芯(20)设置为能够在纵向方向相对于圆柱形线圈绕组(14)移动并且所述软磁柱塞芯的纵向长度平行于圆柱形线圈绕组的纵向方向,以及其中所述第一部分至少部分地围绕软磁柱塞芯,其特征在于,薄壁软磁管状屏蔽件(11a)围绕圆柱形线圈绕组(14),其中所述薄壁软磁屏蔽件(11a)成形为圆形横截面形状,具有平行于圆柱形线圈绕组的纵向方向延伸的纵向邻接接缝(11c),并且从切成矩形的扁平带成形为圆形横截面形状,并且其中所述薄壁软磁屏蔽件(11a)具有圆形横截面,带有一个由屏蔽孔垫圈元件(11b)封闭的山墙端,并且其中软磁管状屏蔽件(11a)和屏蔽孔垫圈元件(11b)均由电工钢的扁平带制成。
2.根据权利要求1所述的感应式位置传感器,其中薄壁软磁管状屏蔽件(11a)设置在由聚合物材料制成的管状壳体内,所述管状壳体具有与壳体集成的斜面槽口并围绕薄壁软磁管状屏蔽件(11a)的端部周向布置,所述斜面槽口按压薄壁软磁管状屏蔽件(11a)使得纵向邻接接缝(11c)的间隙减小。
3.根据权利要求1所述的感应式位置传感器,其中屏蔽孔垫圈元件(11b)的厚度相对于薄壁软磁管状屏蔽件(11a)的厚度在1.5-5倍的范围内。
4.根据权利要求2所述的感应式位置传感器,其中由聚合物材料制成的管状壳体包括用于软磁柱塞芯(20)的中心导管。
5.根据权利要求1所述的感应式位置传感器,其中所述软磁柱塞芯(20)成形为中空横截面形状,具有沿着平行于圆柱形线圈绕组(14)的纵向方向延伸的纵向邻接接缝(21s),并且所述软磁柱塞芯(20)从切成矩形(20SP)的电工钢的扁平冷轧带成形为中空圆形横截面形状(20R)。
6.根据权利要求5所述的感应式位置传感器,其中软磁柱塞芯(20)的纵向邻接接缝(21s)熔接在一起。
7.根据权利要求5所述的感应式位置传感器,其中软磁柱塞芯(20)的壁厚度(WT)在软磁柱塞芯的总外径(ODc)的0.02-5%之间。
8.根据权利要求7所述的感应式位置传感器,其中软磁柱塞芯(20)的壁厚度(WT)在0.01-0.4mm之间。
9.根据权利要求8所述的感应式位置传感器,其中软磁柱塞芯(20)的壁作为箔安装在由非磁性材料制成的中心非活动芯元件(22)的顶部上。
CN201880013671.8A 2017-02-27 2018-02-16 具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器 Pending CN110402372A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1750210A SE541400C2 (en) 2017-02-27 2017-02-27 Inductive position sensor with improved plunger core design
SE1750210-5 2017-02-27
PCT/EP2018/053889 WO2018153784A1 (en) 2017-02-27 2018-02-16 Inductive position sensor with improved magnetic shield and plunger core design

Publications (1)

Publication Number Publication Date
CN110402372A true CN110402372A (zh) 2019-11-01

Family

ID=61256944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880013671.8A Pending CN110402372A (zh) 2017-02-27 2018-02-16 具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器

Country Status (5)

Country Link
US (1) US20200003582A1 (zh)
EP (1) EP3586089B1 (zh)
CN (1) CN110402372A (zh)
SE (1) SE541400C2 (zh)
WO (1) WO2018153784A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427866A (en) * 1944-04-25 1947-09-23 Baldwin Locomotive Works Electromagnetic motion responsive device
GB1347887A (en) * 1970-09-19 1974-02-27 Daimler Benz Ag Electronic displacement transducer
WO1985005710A1 (en) * 1984-06-01 1985-12-19 Scientific-Atlanta, Inc. Linear servoactuator with integrated transformer position sensor
EP0463236A1 (en) * 1990-06-22 1992-01-02 Data Instruments Gmbh Linear position transducer
EP0814321A1 (de) * 1996-06-21 1997-12-29 WABCO GmbH Induktiver Wegsensor
JP2004069682A (ja) * 2002-06-10 2004-03-04 Amitec:Kk 検出用回路を組み込んだ位置検出装置
CN1898533A (zh) * 2004-03-08 2007-01-17 微一埃普西龙测量技术有限两合公司 非接触式位移测量系统
CN101031778A (zh) * 2005-05-12 2007-09-05 松下电工株式会社 位置传感器
CN101040165A (zh) * 2004-03-08 2007-09-19 G·勃兰特·泰勒 感应传感器
US20090091314A1 (en) * 2006-02-28 2009-04-09 Alexy Davison Karenowska Position Sensor
CN102822633A (zh) * 2010-06-10 2012-12-12 松下电器产业株式会社 位置传感器
CN205403691U (zh) * 2016-03-11 2016-07-27 中国水利水电科学研究院 一种轴向位移传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947788A (en) * 1974-09-03 1976-03-30 Spencer C. Schantz Solenoid
IT1108522B (it) * 1978-12-19 1985-12-09 Sandretto Spa Apparecchio per rilevare la posizione di un organo mobile rispetto a un corpo di supporto fisso
DE3507585A1 (de) * 1985-03-04 1986-09-04 Elektroteile GmbH, 7772 Uhldingen-Mühlhofen Kern aus ferromagnetischem material, insbesondere fuer induktive wegaufnehmer
DE68920188T2 (de) * 1988-01-22 1995-05-04 Data Instr Inc Positionskompensationswindung für Wegaufnehmer.
DE3809887A1 (de) * 1988-03-24 1989-10-05 Teves Gmbh Alfred Sensor zur messung mechanischer bewegungsgroessen
DE4103603C2 (de) 1990-02-08 2003-09-11 Papst Licensing Gmbh & Co Kg Positionssensor zum Erfassen linearer oder rotatorischer Bewegungen eines Teils
US7679361B2 (en) * 2005-05-12 2010-03-16 Panasonic Electric Works Co., Ltd. Position sensor having tubular detection coil
DE102010002505B4 (de) 2010-03-02 2022-09-01 Helag-Electronic Gmbh Induktiver Kraftfahrzeugsensor und Verwendung desselben
KR20150054895A (ko) * 2012-09-07 2015-05-20 레미 테크놀러지스 엘엘씨 일체형 전자기 간섭 쉴드를 구비한 가변 릴럭턴스 리졸버 및 그를 구비한 회전 전기 기계
DE102014219009A1 (de) 2014-09-22 2016-03-24 Continental Teves Ag & Co. Ohg Positionssensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427866A (en) * 1944-04-25 1947-09-23 Baldwin Locomotive Works Electromagnetic motion responsive device
GB1347887A (en) * 1970-09-19 1974-02-27 Daimler Benz Ag Electronic displacement transducer
WO1985005710A1 (en) * 1984-06-01 1985-12-19 Scientific-Atlanta, Inc. Linear servoactuator with integrated transformer position sensor
EP0463236A1 (en) * 1990-06-22 1992-01-02 Data Instruments Gmbh Linear position transducer
EP0814321A1 (de) * 1996-06-21 1997-12-29 WABCO GmbH Induktiver Wegsensor
JP2004069682A (ja) * 2002-06-10 2004-03-04 Amitec:Kk 検出用回路を組み込んだ位置検出装置
CN1898533A (zh) * 2004-03-08 2007-01-17 微一埃普西龙测量技术有限两合公司 非接触式位移测量系统
CN101040165A (zh) * 2004-03-08 2007-09-19 G·勃兰特·泰勒 感应传感器
CN101031778A (zh) * 2005-05-12 2007-09-05 松下电工株式会社 位置传感器
US20090091314A1 (en) * 2006-02-28 2009-04-09 Alexy Davison Karenowska Position Sensor
CN102822633A (zh) * 2010-06-10 2012-12-12 松下电器产业株式会社 位置传感器
CN205403691U (zh) * 2016-03-11 2016-07-27 中国水利水电科学研究院 一种轴向位移传感器

Also Published As

Publication number Publication date
SE1750210A1 (en) 2018-08-28
EP3586089A1 (en) 2020-01-01
WO2018153784A1 (en) 2018-08-30
EP3586089B1 (en) 2020-12-02
SE541400C2 (en) 2019-09-17
US20200003582A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US4990881A (en) Ignition coil with permanent magnet
KR101277828B1 (ko) 솔레노이드 유닛 및 이러한 솔레노이드 유닛의 제조 방법과이러한 솔레노이드 유닛용 자석 하우징의 제조 방법
EP1878908B1 (en) Electromagnetic fuel injection valve
US7598734B2 (en) Position sensor with a shield member for improving linearity of impedance of the detection coil
EP2850328B1 (en) Magnetic bearing and method for mounting a ferromagnetic structure around the core of a magnetic bearing
CA2308664A1 (en) Linear actuator
US8421566B2 (en) Linear solenoid
KR20000008382A (ko) 리니어 모터용 고정자 코어 및 이를 이용한 고정자 제조방법
US20110128103A1 (en) Electromagnetic actuator
JPH07208629A (ja) 弁操作装置
EP2787515B1 (en) Inductor gap spacer
US7152592B2 (en) Ignition coil for a combustion engine
CN110402372A (zh) 具有改进的磁屏蔽件和柱塞芯设计的感应式位置传感器
CN107567646A (zh) 具有减小性能变化的电磁致动器
JP3592183B2 (ja) 静止誘導電器
CN213070768U (zh) 一种组合磁芯及三相电抗器电感磁芯及三相电抗器
JP6111294B2 (ja) 電磁弁のための一体的な構成部分
JP2008070215A (ja) ポジションセンサ用の検出部、及びポジションセンサ
JP2008218754A (ja) トランス
JP6096058B2 (ja) 電磁平衡式秤量装置の電磁力発生装置
KR100608853B1 (ko) 왕복동식 모터의 고정자 구조
CN112985248A (zh) 一种位移传感器
JP2019102558A (ja) リアクトル
EP2816572A1 (en) Inductor
KR20000001151A (ko) 리니어 모터

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191101