CN110391918A - 利用机器学习的通讯频道推荐系统、方法和计算机可读介质 - Google Patents
利用机器学习的通讯频道推荐系统、方法和计算机可读介质 Download PDFInfo
- Publication number
- CN110391918A CN110391918A CN201910170347.3A CN201910170347A CN110391918A CN 110391918 A CN110391918 A CN 110391918A CN 201910170347 A CN201910170347 A CN 201910170347A CN 110391918 A CN110391918 A CN 110391918A
- Authority
- CN
- China
- Prior art keywords
- communication
- channel
- data item
- user
- request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/185—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with management of multicast group membership
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1813—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1813—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
- H04L12/1822—Conducting the conference, e.g. admission, detection, selection or grouping of participants, correlating users to one or more conference sessions, prioritising transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1813—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
- H04L12/1831—Tracking arrangements for later retrieval, e.g. recording contents, participants activities or behavior, network status
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/02—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail using automatic reactions or user delegation, e.g. automatic replies or chatbot-generated messages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/07—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail characterised by the inclusion of specific contents
- H04L51/18—Commands or executable codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/21—Monitoring or handling of messages
- H04L51/214—Monitoring or handling of messages using selective forwarding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/21—Monitoring or handling of messages
- H04L51/216—Handling conversation history, e.g. grouping of messages in sessions or threads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/04—Real-time or near real-time messaging, e.g. instant messaging [IM]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Information Transfer Between Computers (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
利用机器学习的通讯频道推荐系统、方法和计算机可读介质。示例实现方式涉及一种控制对通讯流的贡献的方法。示例实现方式包括:检测用户向频道的通讯流添加数据项的请求;依据通讯流分析所述数据项以确定所述数据项的相关度得分;以及基于所述数据项的相关度得分为所述请求提供控制界面。例如,所述控制界面可以包括受众报告、通知、先前帖子链接、备选频道推荐、私信邀请或继续发布命令。
Description
技术领域
本公开总体上涉及机器学习,更具体地,涉及利用机器学习基于数据项分析的频道推荐的系统和方法。
背景技术
工作场所通讯经常经由群组电子邮件或基于聊天的通讯平台发生。在现有技术的实现方式中,基于聊天的通讯平台允许用户通过发布到帖子中心流的帖子来共享信息和发送内容。传统上,实现不同的聊天频道或线程以有效地组织话题、控制对对话的访问、以及方便私人子对话。然而,当用户再次发布先前共享的信息或者错误发布与频道的话题无关的信息时,基于聊天的通讯频道的效用变差。接收重复和无关的帖子可能导致用户不参与(disengage)或忽略聊天频道。
随着用户参加不同群组和子群组的更多频道,来自多个聊天频道的共享内容的量通常导致信息超载。此外,聊天频道的用户可能快速地改变,并且不同聊天频道可能具有重叠用户,这增加了错误传送和重复共享。因此,用户难以找到具有预期受众的适当通讯频道以共享新的和有用的信息。
发明内容
本文所描述的示例实现方式提供了包括用于基于聊天的通讯的频道推荐的系统和方法。示例实现方式包括一种系统,所述系统用于检测用户经由数字通讯频道向接收者群组发送数据项的请求,识别与所述群组的另两个用户关联的一个或更多个备选数字通讯频道,分析所述用户和接收者群组的通讯历史以检测与所述数据项关联的相似通讯;以及针对所述相似通讯提供一组控制。
示例实现方式包括:检测用户向频道的通讯流添加数据项的请求,依据通讯流分析数据项以确定数据项的相关度得分;以及基于数据项的相关度得分为所述请求提供控制界面。例如,所述控制界面可以包括受众报告、通知、先前帖子链接、备选频道推荐、私信(private message)邀请或继续发布命令。
一种包含指令的非暂时性计算机可读介质,在由处理器执行时,所述指令应用以下方法:检测用户经由数字通讯频道向接收者群组发送数据项的请求,识别与所述群组的另两个用户关联的一个或更多个备选数字通讯频道,分析所述用户和接收者群组的通讯历史以检测与数据项关联的相似通讯;以及针对所述相似通讯提供一组控制。
在阅读以下详细描述和附图之后,本发明构思的其它特征和优点对于本领域普通技术人员而言将变得更容易显而易见。
附图说明
将通过阅读以下详细描述和附图来理解示例实现方式的结构和操作,附图中相同的标号指代相同的部分,并且附图中:
图1示出根据示例实现方式的示例通讯频道界面。
图2示出根据示例实现方式的系统的概览。
图3示出根据示例实现方式的语境控制处理的示例流程图。
图4示出根据示例实现方式的语境处理的示例流程图。
图5示出根据示例实现方式的频道控制处理的示例流程图。
图6示出根据示例实现方式的频道处理的示例流程图。
图7A和图7B示出根据示例实现方式的示例控制界面。
图8示出具有适用于示例实现方式的示例计算机装置的示例服务器计算环境。
图9示出具有适用于示例实现方式的示例计算机装置的示例联网环境。
具体实施方式
以下详细描述提供了本申请的附图和示例实现方式的进一步的细节。为了清晰,省略了附图之间的重复元件的标号和描述。贯穿说明书所使用的术语是作为示例提供的,并非旨在限制。例如,根据实践本申请实现方式的本领域普通技术人员的期望实现方式,术语“自动”的使用可以涉及全自动实现方式、或者涉及用户或操作者对实现方式的某些方面进行控制的半自动实现方式。
如本文所述,频道推荐系统使用语境线索(contextual cue)来智能地检测在诸如工作场所通讯平台的公共和/或半公共环境中何时共享了重复内容。在示例实现方式中,系统检测是否共享了相同或相似的内容、共享该内容的方式、时间、地点和对象。该系统分析预期接收者群组的通讯历史以向发送者呈现用于共享该内容的信息和控制选项。例如,可以向发送者呈现具有推荐的备选频道、流行度量度、版本化信息、参与(engagement)历史等的自适应通知界面或提示。因此,该系统在发布信息之前向用户提供增强的信息并减轻接收者的信息超载,同时帮助重新浮现可能被遗忘或忽视的相关信息。
示例实现方式包括:检测用户向频道的通讯流添加数据项的请求,依据通讯流分析数据项以确定数据项的相关度得分;以及基于数据项的相关度得分为所述请求提供控制界面。例如,控制界面可以包括受众报告、通知、先前帖子链接、备选频道推荐、私信邀请或继续发布命令。
通讯平台的用户可以选择频道以与私人或公共用户群组共享信息(例如,URL、文档或其它内容)。然而,用户经常很难找到先前共享信息的频道或群组。此外,例如,当两个不同的个人与两个不同的公共频道(这些频道包括若干共同的重叠成员)共享相同的网站地址(例如,四个人接收相同的数据项内容两次)时,可能发生信息超载或重复数据项。在另一示例中,多个用户可能在没有向上翻看或查看先前发布了什么的情况下,在公共线程内提及相同的问题或概念。
示例实现方式的多个方面涉及动态地检测人何时将要在通讯平台内共享已经共享的信息。示例实现方式利用机器学习基于此人将要共享的数据项和潜在接收者的通讯历史进行语境分析,以向共享信息的人和信息的可能接收者智能地生成控制选项和/或提示。该系统随时间推移对不直接通讯的群组之间是否存在共享内容的重叠进行学习,并用此作为频道推荐器引擎的训练行为模型的输入。示例方面提供了一种记忆辅助工具,以经由集成或添加到现有通讯平台上的控制接口减少不必要的中断。
参照工作场所通讯(例如,办公室环境)描述了示例实现方式的方面。然而,示例实现方式的范围不限于特定环境,因此在不脱离本发明范围的情况下其它环境可以代替。例如,但不作为限制,可以进行频道推荐控制的其它环境可以包括办公室或工作场所以外的娱乐环境(例如,社区组织)、医疗环境等,但不限于此。
图1示出根据示例实现方式的示例通讯频道界面100。通讯平台可以包括若干不同的通讯频道以方便与不同用户群组或子群组的对话。在一些示例中,不同通讯频道的用户群组或子群组可以动态地改变,并且在不同的时间具有重叠的用户。示例通讯界面100可以包括具有用户群组的通讯频道的通讯流120。
在示例中,发送者可以输入要与通讯频道120共享或发布110的数据项105。根据示例实现方式,频道推荐系统可以在数据项105被发布到通讯频道的通讯流120之前接收请求。频道推荐系统可以依据通讯流120和通讯频道的潜在接收者的通讯历史来分析数据项105,并向控制界面130提供信息140和控制选项135。
在示例实现方式中,用户可以请求发布网站地址数据项105,频道推荐系统可以分析网站的内容、分析通讯频道或用户群组的通讯历史、识别整个平台范围内该网站地址或相似内容的先前帖子。控制界面130可以提供关于该网站在群组和/或平台的用户当中的流行度和参与历史的信息140,向用户提示网站数据项105的先前帖子,和/或提供将网站数据项105共享给通讯频道的子群组、在备选频道中共享等附加控制选项135。
图2示出根据示例实现方式的包括频道引擎210的系统的概览。
频道引擎210包括一个或更多个I/O接口212、界面模块215、消息支持系统230和控制模块240。频道引擎210联接到一个或更多个用于存储数据(例如,信息、模型、数据项、文档存储库、通讯历史、元数据等)的数据存储部203。频道引擎210可以辨别整个通讯平台范围内的通讯历史中的模式以基于语境分析和使用话题模型的分类来检测相似和相关的帖子。可以基于通讯频道、用户群组或共享数据项的请求来开发自定义话题模型。
在示例实现方式中,频道引擎210可以与通讯平台集成或在通讯平台外部,以方便推荐用于共享数据项的选项。
频道引擎210可以包括监测多个通讯频道以及对帖子(例如,通讯历史)进行编目录的功能,以允许对处理请求进行有效确定,如参照图3至图6所描述的。在示例实现方式中,频道引擎210的消息支持系统230可以使用盘点各个数据项的机器学习来生成通讯历史的元数据。
在示例实现方式中,I/O接口212包括与网络202或不同类型的装置205a至205c通信连接的一个或更多个通信接口。
频道引擎210可以按照在一个或更多个处理装置(例如,一个或更多个装置205a和205b)上运行的软件(例如,非暂时性计算机可读介质上的指令)的形式、经由网络202远程地作为云服务205c、或者本领域普通技术人员已知的其它配置实现。
术语“计算机”、“计算机平台”、处理装置和装置旨在包括任何数据处理装置,例如台式计算机、膝上型计算机、平板计算机、大型计算机、服务器、手持装置、数字信号处理器(DSP)、嵌入式处理器或者能够处理数据的任何其它装置。计算机/计算机平台被配置为包括通信连接到一个或更多个非暂时性计算机可读介质以及一个或更多个网络的一个或更多个微处理器。
频道引擎210直接或间接包括诸如数据存储部203(例如,RAM、ROM和/或内部存储装置,磁、光、固态存储装置和/或有机存储装置)的存储器,数据存储部203中任一个可以联接在通信机制(或总线)上以传送信息。
在示例实现方式中,频道引擎210可以由云服务205c托管并经由网络202通信连接到装置205a和205b以便发送和接收数据。术语“通信连接”旨在包括可以传送数据的任何类型的连接(有线或无线)。术语“通信连接”旨在包括(但不限于)单个计算机内的装置和/或程序之间、或者网络102上的装置和/或单独的计算机之间的连接。术语“网络”旨在包括(但不限于)诸如局域网(LAN)、广域网(WAN)、TCP/IP、因特网的分组交换网络,并且可以使用各种传输手段,例如(但不限于) 低功耗无线局域网因特网协议版本6(6LowPAN)、电力线通信(PLC)、以太网(例如,10兆字节(Mb)、100Mb和/或1千兆字节(Gb)以太网)或其它通信协议。
I/O接口212可以从诸如数据存储部203、不同类型的装置205a至205c、因特网、私人数据存储库或经由网络202的不同源接收数据。此外,I/O接口212可以监测外部通讯平台的通讯频道并分析来自不同源(例如,数据存储部203、不同类型的装置205a至205c或经由网络202)的通讯历史。
装置205a至205c可以包括例如移动计算装置205a(例如,智能电话、膝上型计算机、平板等)、计算装置205b(例如,台式机、大型机、网络设备等)、多媒体库、云服务205c(例如,远程可用的专有或公共计算资源)。装置205a至205c可以访问具有例如收集、传输和/或共享数据项和消息数据的功能的通讯服务。
在示例中,数据存储部203可以将一段时间(例如,小时、天、周、月等)的通讯历史连同元数据(包括语境、类别、接收者列表、参与数据等)一起存储,用于在检测到重复数据项时生成用户控制。在一些示例实现方式中,一个或更多个应用程序接口(API)219可以提供(例如,来自文档存储库、专有数据库、外部系统等的)外部信息,以例如比较数据项的版本。
频道引擎210可以与数据存储库交互并存储通讯会话以输出控制选项。消息支持系统(MSS)230可以包括与I/O接口212、界面模块215和控制模块240交互的模式模块233、相似度模块236、链接模块237和频道模块239。在示例实现方式中,消息支持系统230包括分析与数据项关联的语境、内容和用户的分析处理。该处理跟踪通讯历史,确定对话语境,学习对话模式。
根据示例实现方式,MSS 230分析通讯流以学习信息共享的模式并推荐用于避免重复共享数据项的控制选项。例如,MSS 230可以使用词汇模式和句法模式分析来对消息进行分类,以训练用于学习群组对话中的模式的分类模型。模式模块233分析所接收的数据并创建话题模型以供频道引擎210使用。相似度模块236使用句法分析从消息确定语境因素。在示例实现方式中,相似度模块236可以包括用于确定信息是否有用的策略集合作为对消息进行分类以及对消息与要共享的数据项的相关度进行评分的标准。
MSS 230的模式模块233和相似度模块236通过机器学习处理开发规则,这些规则可以包括基于附加参数将加权因子指派给频道或帖子。根据示例实现方式,相似度模块236可以使用数据来识别语境因素以交互地确定或验证数据项与频道的相关语境或话题关联。在示例实现方式中,词汇和句法问题模式用于检测特征并构建分类模型。实现机器学习处理以基于训练数据或动态更新的模型将对消息的经验评估完全自动化,如参照图3至图6更详细描述的。
链接模块237识别备选频道中的帖子与不同用户群组之间的相关性。链接模块237可以与模式模块233和频道模块239交互以将数据项或帖子或其它消息关联,如参照图3至图7B更详细描述的。
频道模块239可以监测与通讯平台关联的活动。在一些实现方式中,频道模块239被包括在频道引擎210中,可以由装置205a至205c托管,并且可以向频道引擎210通知数据(例如,信息、请求、数据项等)。在示例实现方式中,频道模块239跟踪用户跨不同频道的通讯行为以及用户对数据项的参与。MSS 230利用来自相似度模块236的数据项相关度评分来分析通讯历史以开发通讯模型,并且可以利用类别、话题和/或得分来标记数据项。
在示例实现方式中,MSS 230与控制模块240交互,以响应于用户计划向一个或更多个接收者共享重复或不相关的数据项而主动地提供用于智能地共享数据项的控制选项。控制模块240还可以基于MSS 230的分析来提供数据项的流行度量度、视觉图形、到先前帖子的链接、推荐的备选频道和/或接收者子群组。久而久之,随着用户选择不同的控制选项,频道引擎210可以学习用户的发送者行为,以为将来的发布请求调整控制选项。
图3示出根据示例实现方式的语境控制处理300的示例流程图。方法300可以由处理逻辑执行,该处理逻辑可以包括硬件(电路、专用逻辑等)、软件(例如,在通用计算机系统或专用机器上运行)、或这二者的组合。方法300可以由图2的频道引擎210执行。尽管方法300被描述为由处理装置执行,但也可以由其它处理逻辑执行。
在310,处理装置检测用户向频道的通讯流添加数据项的请求。在320,处理装置依据通讯流对数据项进行分析以确定数据项的相关度得分。可以通过分析距该请求最近一段时间内的其它帖子来确定相关度得分。在示例实现方式中,可以基于通讯流的其它内容、频道的其他用户的参与、频道的语境或者与其它频道话题的相似度来确定数据项的相关度得分。
在示例实现方式中,可以依据通讯频道,通过识别频道的其他用户、确定用户的一个或更多个备选频道(包括所述其他用户中的至少一个)、以及确定基于所述一个或更多个备选频道的备选相关度是否大于相关度来分析数据项。
在330,处理装置基于数据项的相关度得分为所述请求提供控制界面。例如,响应于相关度,控制界面可以包括指示数据项先前在通讯流中发布过的重复提示。在340,用户从控制界面进行选择以处理请求。
图4示出根据示例实现方式的语境处理400的示例流程图。在405,用户请求经由数字通讯频道向接收者发送数据项。在410,检查数据项是否与先前帖子匹配。如果数据项不与先前帖子匹配,则在470发布数据项。
如果数据项与先前帖子匹配,则在420将数据项的内容与先前帖子的内容进行比较以确定内容是不是相同的版本。如果内容不同,则在425向用户提供查看先前帖子的选项和/或在470发布数据项。
如果数据项的内容是与先前帖子相同的版本,则在430针对先前帖子的接收者检查请求的预期接收者以确定是否存在重叠的接收者。
对于重叠的接收者,在440可以将数据项的语境与其它频道的语境进行比较,以在445确定是否存在具有更适合共享数据项的语境的备选频道。
如果数据项的语境与数字通讯频道的对话相似,则在450可以检查先前帖子以确定接收者是否参与了该数据项。
在一些示例中,如果接收者没有在先前帖子中参与该数据项,则再次发布数据项可能是有用的。在455,用户可以接收关于数据项的流行度的信息(例如,使用量度、参与统计等)以供考虑。
当接收者在先前帖子中参与了该数据项时,接收重复数据项会分散注意力并导致不参与。因此在460,用户可以接收到向参与过先前帖子的那些接收者隐藏该数据项的选项。例如,当受众数字通讯频道改变时,用户可以将数据项再次发布给新的接收者。在示例实现方式中,对于先前帖子的接收者,数据项的重复发布可以被弱化(例如,抑制、最小化、灰显等)。
图5示出根据示例实现方式的频道控制处理500的示例流程图。在510,该处理检测用户经由数字通讯频道向接收者群组发送数据项的请求。在520,该处理识别与群组的另两个用户关联的一个或更多个备选数字通讯频道。在530,该处理分析用户和接收者群组的通讯历史以检测与数据项关联的相似通讯。在540,该处理针对相似通讯提供一组控制。例如,所述一组控制可以包括识别备选数字通讯频道、列出相似通讯的接收者子群组、以及提供到相似通讯的链接的控制选项。在550,根据用户对来自控制界面的控制选项的选择来处理请求。
图6示出根据示例实现方式的频道处理600的示例流程图。频道处理600是利用机器学习来确定与数据项关联的相似通讯的示例实现方式。对来自请求的数据项和预期接收者群组进行分析以检测不同通讯频道中的相似通讯。可以并行或依次分析该请求的通讯频道和接收者群组的通讯历史。在一些示例实现方式中,处理600可以利用不同的、更少的或更多的方框实现。处理600可以被实现为计算机可执行指令,该计算机可执行指令可以被存储在介质上、加载到一个或更多个计算装置的一个或更多个处理器上并且作为计算机实现的方法执行。
在方框610,系统从用户接收经由数字通讯频道向接收者群组发送数据项的请求。在方框620,该系统分析数据项的内容。在方框625,该系统分析在请求时通讯频道的语境。例如,可以分析通讯频道的最近帖子以识别正在讨论的共同话题或没有共同话题。通讯频道可以具有指派的主题或话题,并且可以包括具有隐私设置的频道简档(profile)。该系统分析来自接收者群组的通讯历史中的帖子。可以经由消息支持系统处理通讯历史以分析内容、开发话题模型以及向通讯历史指派类别。
在方框630,该系统跟踪当前通讯频道中的各个用户的通讯历史。跟踪系统(例如,图2的频道模块239)可以跟踪当前通讯频道中的各个用户在具有多个频道的平台范围内的通讯历史。例如,工作场所可以具有不同部门、话题等的一系列通讯频道。通讯历史可以被限制在最近一段时间(例如,前一周、月等)。此外,通讯历史可以被限制在某些类型的频道(例如,私人频道、公共频道等)。在方框635,该系统在通讯历史中检测帖子中或附近的关键字以确定备选频道的语境。
在方框640,该系统在通讯历史中搜索与请求的数据项相似的数据项。在方框645,该系统基于检测到的关键字和语境对通讯历史中的帖子进行分类。分类的通讯历史可以与到相似帖子的链接关联,从而创建跨频道的话题趋势。与所分析的最近通讯历史关联的话题和/或类别可以由消息支持系统使用。例如,可以检测数据项的话题和/或类别以识别具有共同用户的一个或更多个备选数字通讯频道,这些备选数字通讯频道具有话题和/或类别相似的帖子或数据项。消息支持系统可以使用数据项的话题和/或类别作为加权输入,以用于受众的通讯历史的模式检测和分类。
根据另一示例实现方式,可以利用包括与请求相似的数据项的帖子来生成带有到先前帖子和/或备选频道的链接的流行度量度。例如,可以采用特征向量和句法模式分析。模式分析的示例可以包括对来自不同数据项的重复关键字的识别、远程内容源的访问检测、帖子之后的对话速率等。挖掘和学习处理可以完全自动化(不需要人为干预),以基于训练数据或动态更新的模型提供对通讯历史的经验评估。用于检测通讯历史的话题的其它方法可以基于通用自然语言处理。
可以例如使用话题模型来递增地生成专用于通讯频道的附加类别。例如,可以使用隐狄利克雷分配来生成将由未观察的群组说明的、观察到的集合的统计模型,以将相似的数据部分关联。可以使用推理学习(例如,贝叶斯推理、吉布斯采样和期望传播)来确定话题集合、关联词概率、各个词的话题、帖子或频道的特定话题混合等的分布。可以使用该分析来提供与数据项、频道、话题等关联的流行度量度。
可以检测语境相关词语(例如,重要词或独特词)并将其包括在模式分析中。例如,工作场所对话可以由首字母缩略词、行业特定或组织特定词语主导。根据示例实现方式,可以相对于频道或跨频道频繁协作的用户群组标示独特词语。例如,该处理可以包括词频–逆文档频率向量空间建模和基于自然语言处理(NLP)的高级关键短语检测方法。可以计算帖子或备选频道中的关键字的相关性排名。
在方框650,该系统利用相关度得分来标记帖子。在示例实现方式中,该系统分析各个帖子以对通讯历史中的帖子的相关度进行评分。例如,引擎可以基于与请求的数据项的潜在匹配、与请求的数据项相似的源、与请求的数据项相似的话题、与先前数据项关联的参与量、重叠的接收者等来确定相关度得分。
在方框655,该系统生成要向提交请求的用户推荐的一组控制选项。在方框660,该系统控制将数据项发布到所请求的频道、建议的备选频道、子群组等。
图7A和图7B示出根据示例实现方式的示例控制界面。示例控制界面可以包括选项控制选项(例如受众报告、通知、先前帖子链接、备选频道推荐、私信邀请和/或继续发布命令)的各种组合。
在示例基于聊天的协作平台(例如,群聊、HangoutTM、SlackTM等)中,可以在各种粒度级别(levels of granularity)共享信息。例如,不同的频道可以是向所有员工开放的公共频道(例如,#general)、具有员工的子集作为成员的公共频道(例如,#enterprisecomm)、与小群组的直接(私人)消息集合以及与单个人的直接一对一私信。
界面700可以向用户提供关于数据项的先前帖子的信息(例如,频道)、显示具有该数据项的最近帖子、以及查看先前帖子或共享该数据项的控制选项。界面710可以向用户通知该数据项最近在另一频道中被共享、指示重叠的接收者、以及再次发布该数据项的控制选项。界面720可以向用户通知该数据项的不同版本最近被共享、版本之间的差异、以及查看先前版本或发布该数据项的控制选项。
界面730可以向用户提示具有该数据项的其它备选频道、提供包括该数据项的其它帖子的预览、并且提供在备选频道中发布该数据项的控制选项。界面740可以向用户提示具有与该数据项相关的语境的其它备选频道并提供查看该备选频道和发布该数据项的控制选项。界面750可以向用户通知关于数据项或数据项的话题的流行度(例如,图形、量度等)、指示参与该数据项的其他用户、并且/或者建议共享该数据项的备选频道。
图8示出用于一些示例实现方式的、具有与外部主机关联的示例计算装置的示例计算环境。计算环境800中的计算装置805可以包括一个或更多个处理单元、核或处理器810、存储器815(例如,RAM、ROM等)、内部存储装置820(例如,磁、光、固态存储装置和/或有机存储装置)和/或I/O接口825,其中任一个可以联接在用于传送信息的通信机制或总线830上或嵌入在计算装置805中。
计算装置805可以通信联接到输入/用户接口835和输出装置/接口840。输入/用户接口835和输出装置/接口840中的任一者或两者可以是有线或无线接口并且可以是可拆卸的。输入/用户接口835可以包括可以用于提供输入的任何装置、组件、传感器或(物理或虚拟)接口(例如,按钮、触摸屏接口、键盘、指点/光标控制、麦克风、摄像头、盲文、运动传感器、光学读取器等)。
输出装置/接口840可以包括显示器、电视、监视器、打印机、扬声器、盲文等。在一些示例实现方式中,输入/用户接口835和输出装置/接口840可以被嵌入或物理联接到计算装置805。在其它示例实现方式中,其它计算装置可以用作计算装置805的输入/用户接口835和输出装置/接口840,或者提供计算装置805的输入/用户接口835和输出装置/接口840的功能。
计算装置805的示例可以包括(但不限于)高机动装置(例如,智能电话、车辆或其它机器中的装置、人和动物携带的装置等)、移动装置(例如,平板、笔记本、膝上型计算机、个人计算机、便携式电视、收音机等)以及不是为移动性设计的装置(例如,台式计算机、其它计算机、信息亭、嵌入有和/或联接到一个或更多个处理器的电视、收音机等)。
计算装置805可以(例如,经由I/O接口825)通信联接到外部存储装置845和网络850以用于与任何数量的联网组件、装置和系统(包括相同或不同配置的一个或更多个计算装置)通信。计算装置805或任何连接的计算装置可以用作服务器、客户端、精简服务器、通用机器、专用机器、提供服务器、客户端、精简服务器、通用机器、专用机器的服务,或被称为服务器、客户端、精简服务器、通用机器、专用机器或另一标签。
I/O接口825可以包括方便经由语音和/或经由数据网络的无线通信的无线通信组件(未示出)。无线通信组件可以包括具有一个或更多个天线的天线系统、无线电系统、基带系统或其任何组合。可以在无线电系统的管理下通过天线系统在空中发射和接收射频(RF)信号。
I/O接口825可以包括(但不限于)使用任何通信或I/O协议或标准(例如,以太网、802.11x、通用系统总线、WiMax、调制解调器、蜂窝网络协议等)的有线和/或无线接口,以用于至少向和/或从计算环境800中的所有连接的组件、装置和网络传送信息。网络850可以是任何网络(例如,因特网、局域网、广域网、电话网络、蜂窝网络、卫星网络等)或网络组合。
计算装置805可以使用计算机可用或计算机可读介质(包括暂时性介质和非暂时性介质)并且/或者使用计算机可用或计算机可读介质进行通信。暂时性介质包括传输介质(例如,金属线缆、光纤)、信号、载波等。非暂时性介质包括磁介质(例如,磁盘和磁带)、光学介质(例如,CD ROM、数字视频盘、蓝光盘)、固态介质(例如,RAM、ROM、闪存、固态存储装置)以及其它非易失性存储装置或存储器。
计算装置805可以用于在一些示例计算环境中实现技术、方法、应用、处理或计算机可执行指令。计算机可执行指令可以从暂时性介质取回,并且被存储在非暂时性介质上并从非暂时性介质取回。可执行指令可以源自任何编程、脚本和机器语言(例如,C、C++、C#、Java、Visual Basic、Python、Perl、JavaScript等)中的一个或更多个。
处理器810可以在本机或虚拟环境中的任何操作系统(OS)(未示出)下执行。可以部署一个或更多个应用,包括逻辑单元855、应用编程接口(API)单元860、输入单元865、输出单元870、频道推荐引擎875和控制模块880。
例如,输入单元865、频道推荐引擎875和控制模块880可以实现图2、图4至图5和图8所示的一个或更多个处理。所描述的单元和元件的设计、功能、配置或实现方式可以变化,不限于所提供的描述。
在一些示例实现方式中,当API单元860接收到信息或执行指令时,可以将该信息或执行指令传送到一个或更多个其它单元(例如,逻辑单元855、输出单元870、输入单元580、输入单元865、频道推荐引擎875和控制模块880)。
输入单元865可以经由API单元860与频道推荐引擎875和控制模块880交互,以提供与发布数据项的请求关联的控制选项。在一些情况下,在上述一些示例实现方式中,逻辑单元855可以被配置为对单元之间的信息流进行控制并引导由API单元860、输入单元865、输出单元870、输入单元865、频道推荐引擎875和控制模块880提供的服务。例如,一个或更多个处理或实现方式的流程可以由逻辑单元855单独控制、或与API单元860配合控制。
图9示出适合于一些示例实现方式的示例环境。环境900包括装置905至950,各个装置经由例如网络960(例如,通过有线和/或无线连接)通信连接到至少一个其它装置。一些装置可以通信连接到一个或更多个存储装置930和945。
一个或更多个装置905至950的示例可以分别是关于图8描述的计算装置805。装置905至950可以包括(但不限于)具有显示器和如上所述的关联的网络摄像头的计算机905(例如,膝上型计算装置)、移动装置910(例如,智能电话或平板)、电视915、与车辆关联的装置920、服务器计算机925、计算装置935至940、存储装置930和945。如上所述,用户的会议环境可以变化,不限于办公室环境。
在一些实现方式中,装置905至920、950可以被视为与企业的用户关联的用户装置。装置925至950可以是与客户端服务关联的装置(例如,由用户或管理员用来提供如上面关于图1至图6所描述的服务和/或关于其的信息)。
按照计算机内的操作的算法和符号表示来呈现详细描述的一些部分。这些算法描述和符号表示是由数据处理领域的技术人员用来将其创新本质传达给本领域其他技术人员的手段。算法是带来期望的最终状态或结果的一系列定义的操作。在示例实现方式中,所执行的操作需要对有形量的物理操纵以实现有形结果。
除非另外具体地说明,否则从讨论中显而易见的是应理解:贯穿说明书,利用诸如“确定”、“分析”、“提供”、“识别”等术语的讨论可以包括计算机系统或其它信息处理设备的动作和处理,这些动作和处理将计算机系统的寄存器和存储器内表示为物理(电子)量的数据操纵和变换成计算机系统的存储器或寄存器或其它信息存储、传输或显示装置内类似地表示为物理量的其它数据。
示例实现方式还可以涉及用于执行本文中的操作的设备。该设备可以是为所需目的而专门构造的,或者它可以包括由一个或更多个计算机程序选择性地激活或重新配置的一个或更多个通用计算机。这些计算机程序可以被存储在诸如计算机可读存储介质或计算机可读信号介质的计算机可读介质中。
计算机可读存储介质可以涉及有形介质,例如(但不限于)光盘、磁盘、只读存储器、随机存取存储器、固态装置和驱动器、或者适合于存储电子信息的任何其它类型的有形或非暂时性介质。计算机可读信号介质可以包括诸如载波的介质。本文中所呈现的算法和显示并非固有地与任何特定计算机或其它设备有关。计算机程序可以涉及纯软件实现方式,该纯软件实现方式涉及执行期望的实现方式的操作的指令。
各种通用系统可以与根据本文中的示例的程序和模块一起使用,或者可以证明构造执行期望的方法操作的更专用的设备是方便的。另外,未参考任何特定编程语言描述示例实现方式。将理解,可以使用各种编程语言来实现如本文中所描述的示例实现方式的教导。编程语言的指令可以由一个或更多个处理装置(例如,中央处理单元(CPU)、处理器或控制器)执行。
如本领域中已知的,上述操作可以由硬件、软件或软件和硬件的某种组合来执行。示例实现方式的各方面可以使用电路和逻辑装置(硬件)来实现,而其它方面可以使用存储在机器可读介质上的指令(软件)来实现,这些指令如果由处理器执行,将使处理器执行完成本申请的实现方式的方法。
此外,本申请的一些示例实现方式可以仅在硬件中执行,而其它示例实现方式可以仅在软件中执行。此外,所描述的各种功能可以在单个单元中执行,或者可以按照任何数量的方式跨越若干组件分布。当由软件执行时,所述方法可以由诸如通用计算机的处理器基于存储在计算机可读介质上的指令执行。如果期望,指令可以按照压缩和/或加密格式存储在介质上。
与现有技术相比,示例实现方式可以具有各种差异和优点。例如但不作为限制,与上面关于现有技术所说明的利用JavaScript编写网页相比,可以在视频文档中检测和分析文本和鼠标(例如,指向)动作。
此外,考虑到说明书和本申请的教导的实践,对于本领域技术人员而言本申请的其它实现方式将显而易见。所描述的示例实现方式的各方面和/或组件可以单独地使用或按照任何组合使用。说明书和示例实现方式旨在仅被视为示例,本申请的真实范围和精神由所附权利要求指示。
Claims (19)
1.一种利用机器学习的通讯频道推荐系统,所述系统包括:
存储器;
能够在工作上联接到所述存储器的处理器,所述处理器被配置为:
检测用户经由数字通讯频道向接收者群组发送数据项的请求;
识别与所述群组的另两个用户关联的一个或更多个备选数字通讯频道;
分析所述用户和所述接收者群组的通讯历史,以检测与所述数据项关联的相似通讯;以及
针对所述相似通讯提供一组控制。
2.根据权利要求1所述的系统,其中,所述控制包括以下中的至少一项:识别所述备选数字通讯频道、提供所述相似通讯的接收者子群组的列表、以及建议到所述相似通讯的链接。
3.根据权利要求1所述的系统,其中,分析所述通讯历史包括以下中的至少一项:语境分析、内容分析和用户分析。
4.根据权利要求1所述的系统,其中,分析所述通讯历史还包括:
依据所述通讯历史来分析所述数据项,以确定所述一个或更多个备选数字通讯频道中的每一个的相关度得分;以及
基于所述相关度得分来建议备选数字通讯频道。
5.一种包含指令的非暂时性计算机可读介质,当由处理器执行时,所述指令:
检测用户经由数字通讯频道向接收者群组发送数据项的请求;
识别与所述群组的另两个用户关联的一个或更多个备选数字通讯频道;
分析所述用户和所述接收者群组的通讯历史,以检测与所述数据项关联的相似通讯;以及
针对所述相似通讯提供一组控制。
6.根据权利要求5所述的非暂时性计算机可读介质,其中,所述控制包括以下中的至少一项:识别所述备选数字通讯频道、提供所述相似通讯的接收者子群组的列表、以及建议到所述相似通讯的链接。
7.根据权利要求5所述的非暂时性计算机可读介质,其中,分析所述通讯历史包括以下中的至少一项:语境分析、内容分析和用户分析。
8.根据权利要求5所述的非暂时性计算机可读介质,其中,分析所述通讯历史还包括:
依据所述通讯历史来分析所述数据项,以确定所述一个或更多个备选数字通讯频道中的每一个的相关度得分;以及
基于所述相关度得分来建议备选数字通讯频道。
9.一种利用机器学习的通讯频道推荐方法,所述方法包括以下步骤:
检测用户向频道的通讯流添加数据项的请求;
依据所述通讯流来分析所述数据项,以确定所述数据项的相关度得分;以及
基于所述数据项的所述相关度得分,为所述请求提供控制界面。
10.根据权利要求9所述的方法,其中,所述控制界面包括以下中的至少一项:受众报告、通知、先前帖子链接、备选频道推荐、私信邀请和继续发布命令。
11.根据权利要求9所述的方法,其中,确定所述数据项的相关度得分至少基于距所述请求最近一段时间内所述通讯流的其它内容。
12.根据权利要求11所述的方法,其中,所述相关度得分还基于确定在距所述请求最近一段时间内所述频道的其他用户的参与度。
13.根据权利要求11所述的方法,其中,所述相关度得分还至少基于所述频道的语境。
14.根据权利要求13所述的方法,其中,所述相关度得分还至少基于在距所述请求最近一段时间内所述频道的其他用户。
15.根据权利要求9所述的方法,其中,所述相关度得分还基于确定在距所述请求最近一段时间内所述频道的其他用户的参与度。
16.根据权利要求9所述的方法,其中,响应于相关度,所述控制界面包括指示所述数据项先前在所述通讯流中发布过的重复提示。
17.根据权利要求16所述的方法,所述方法还包括确定所述请求的数据项与先前帖子的数据项之间的内容差异。
18.根据权利要求9所述的方法,其中,依据所述通讯流分析所述数据项的步骤还包括:
识别所述频道的其他用户;
确定用户的一个或更多个备选频道,所述备选频道包括所述其他用户中的至少一个;以及
确定基于所述一个或更多个备选频道的备选相关度是否大于所述相关度。
19.根据权利要求18所述的方法,其中,响应于所述备选相关度大于所述相关度,所述控制界面提供将所述请求重定向为将所述数据项添加到所述一个或更多个备选频道的命令。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/954,337 US11228542B2 (en) | 2018-04-16 | 2018-04-16 | Systems and methods for communication channel recommendations using machine learning |
US15/954,337 | 2018-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110391918A true CN110391918A (zh) | 2019-10-29 |
CN110391918B CN110391918B (zh) | 2023-06-06 |
Family
ID=68160798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910170347.3A Active CN110391918B (zh) | 2018-04-16 | 2019-03-07 | 利用机器学习的通讯频道推荐系统、方法和计算机可读介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11228542B2 (zh) |
JP (1) | JP7268366B2 (zh) |
CN (1) | CN110391918B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10181114B2 (en) * | 2016-09-30 | 2019-01-15 | The Toronto-Dominion Bank | System and method for generating an interaction request |
JP2019194771A (ja) * | 2018-05-01 | 2019-11-07 | 宏幸 山崎 | 情報共有システム、情報共有サーバ及び情報共有プログラム |
US11893526B2 (en) * | 2019-11-27 | 2024-02-06 | Amazon Technologies, Inc. | Customer contact service with real-time supervisor assistance |
US11862148B2 (en) | 2019-11-27 | 2024-01-02 | Amazon Technologies, Inc. | Systems and methods to analyze customer contacts |
JP7459263B2 (ja) | 2020-01-31 | 2024-04-01 | セールスフォース インコーポレイテッド | グループベースコミュニケーションシステムにおける動的チャンネル変換 |
US10951564B1 (en) | 2020-04-17 | 2021-03-16 | Slack Technologies, Inc. | Direct messaging instance generation |
US11784949B2 (en) | 2020-10-06 | 2023-10-10 | Salesforce, Inc. | Limited functionality interface for communication platform |
US11637714B2 (en) | 2020-10-30 | 2023-04-25 | Salesforce, Inc. | Embeddings-based discovery and exposure of communication platform features |
US11711404B2 (en) * | 2020-10-30 | 2023-07-25 | Salesforce, Inc. | Embeddings-based recommendations of latent communication platform features |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105074741A (zh) * | 2012-12-20 | 2015-11-18 | 微软技术许可有限责任公司 | 建议相关项 |
US20170068904A1 (en) * | 2015-09-09 | 2017-03-09 | Microsoft Technology Licensing, Llc | Determining the Destination of a Communication |
US20170250931A1 (en) * | 2016-02-29 | 2017-08-31 | Oracle International Corporation | Conditional automatic social posts |
US20170366491A1 (en) * | 2016-06-17 | 2017-12-21 | International Business Machines Corporation | Similar content alert |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6775689B1 (en) | 2000-06-07 | 2004-08-10 | International Business Machines Corporation | System for restructuring selected parts of email messages prior to transmission to plurality of recipients |
JP4719234B2 (ja) * | 2008-03-13 | 2011-07-06 | 株式会社東芝 | 情報共有装置及び情報共有プログラム |
US9153000B2 (en) * | 2010-12-13 | 2015-10-06 | Microsoft Technology Licensing, Llc | Presenting content items shared within social networks |
JP2013073408A (ja) * | 2011-09-27 | 2013-04-22 | Toshiba Corp | 情報共有システム及び情報共有方法 |
JP2015005130A (ja) * | 2013-06-20 | 2015-01-08 | 日本放送協会 | 文書投稿装置、方法及びプログラム |
US20150032813A1 (en) * | 2013-07-29 | 2015-01-29 | Microsoft Corporation | Techniques to locate and display content shared with a user |
US9319367B2 (en) * | 2014-05-27 | 2016-04-19 | InsideSales.com, Inc. | Email optimization for predicted recipient behavior: determining a likelihood that a particular receiver-side behavior will occur |
US10706233B2 (en) * | 2015-03-06 | 2020-07-07 | M-Files Oy | System and method for extracting and utilizing information from digital communications |
US10867269B2 (en) * | 2015-04-29 | 2020-12-15 | NetSuite Inc. | System and methods for processing information regarding relationships and interactions to assist in making organizational decisions |
US9923862B2 (en) * | 2015-06-23 | 2018-03-20 | International Business Machines Corporation | Communication message consolidation with content difference formatting |
JP6721314B2 (ja) * | 2015-10-26 | 2020-07-15 | シャープ株式会社 | ネットワークシステム、サーバ、および端末 |
US9762733B1 (en) * | 2016-09-21 | 2017-09-12 | Genesys Telecommunications Laboratories, Inc. | System and method for recommending communication mediums based on predictive analytics |
US10970656B2 (en) * | 2016-12-29 | 2021-04-06 | Dropbox, Inc. | Automatically suggesting project affiliations |
US11620566B1 (en) * | 2017-08-04 | 2023-04-04 | Grammarly, Inc. | Artificial intelligence communication assistance for improving the effectiveness of communications using reaction data |
US10764348B2 (en) * | 2017-09-18 | 2020-09-01 | 8X8, Inc. | Methods and systems for improving quality of digital communication in communication sessions |
US10877977B2 (en) * | 2017-10-25 | 2020-12-29 | Facebook, Inc. | Generating a relevance score for direct digital messages based on crowdsourced information and social-network signals |
US11132648B2 (en) * | 2018-03-12 | 2021-09-28 | International Business Machines Corporation | Cognitive-based enhanced meeting recommendation |
-
2018
- 2018-04-16 US US15/954,337 patent/US11228542B2/en active Active
-
2019
- 2019-01-24 JP JP2019010611A patent/JP7268366B2/ja active Active
- 2019-03-07 CN CN201910170347.3A patent/CN110391918B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105074741A (zh) * | 2012-12-20 | 2015-11-18 | 微软技术许可有限责任公司 | 建议相关项 |
US20170068904A1 (en) * | 2015-09-09 | 2017-03-09 | Microsoft Technology Licensing, Llc | Determining the Destination of a Communication |
US20170250931A1 (en) * | 2016-02-29 | 2017-08-31 | Oracle International Corporation | Conditional automatic social posts |
US20170366491A1 (en) * | 2016-06-17 | 2017-12-21 | International Business Machines Corporation | Similar content alert |
Also Published As
Publication number | Publication date |
---|---|
US20190319900A1 (en) | 2019-10-17 |
JP7268366B2 (ja) | 2023-05-08 |
JP2019185740A (ja) | 2019-10-24 |
US11228542B2 (en) | 2022-01-18 |
CN110391918B (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110391918A (zh) | 利用机器学习的通讯频道推荐系统、方法和计算机可读介质 | |
CN102890696B (zh) | 基于社交网络的上下文排序 | |
US11580112B2 (en) | Systems and methods for automatically determining utterances, entities, and intents based on natural language inputs | |
US9064212B2 (en) | Automatic event categorization for event ticket network systems | |
US20210295270A1 (en) | Machine-learning-based application for improving digital content delivery | |
US11482223B2 (en) | Systems and methods for automatically determining utterances, entities, and intents based on natural language inputs | |
CN107113339A (zh) | 增强的推送消息传递 | |
CN107615274A (zh) | 经由插件市场增强虚拟助理和对话系统的功能性 | |
CN114756122A (zh) | 确定用于执行动作的代理的方法、计算设备和存储介质 | |
CN105279672A (zh) | 线索推荐 | |
US20160071118A1 (en) | System and method for lead prioritization based on results from multiple modeling methods | |
Kaur et al. | Review of artificial intelligence with retailing sector | |
US11249751B2 (en) | Methods and systems for automatically updating software functionality based on natural language input | |
WO2023055807A1 (en) | System and method for an artificial intelligence data analytics platform for cryptographic certification management | |
KR20200060993A (ko) | 사용자 맞춤형 추천 콘텐츠 정보의 출력 방법 | |
US11080605B1 (en) | Interest matched interaction initialization | |
KR20220053131A (ko) | 딥러닝을 활용한 인플루언서와 기업의 매칭 방법 및 그 서버 | |
US11443216B2 (en) | Corpus gap probability modeling | |
CN117952584A (zh) | 信息推荐方法、装置、电子设备及存储介质 | |
US20220383125A1 (en) | Machine learning aided automatic taxonomy for marketing automation and customer relationship management systems | |
Rani et al. | AI Enhanced Customer Service Chatbot | |
US20130275116A1 (en) | Interactive, live-connection, specifically targetable, database-supported, dynamic dialogue management engine | |
WO2013089646A1 (en) | Information content reception and analysis architecture | |
US12041015B1 (en) | Automated relevant subject matter detection | |
EP4418143A1 (en) | Automatic image selection with cross modal matching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: Tokyo, Japan Applicant after: Fuji film business innovation Co.,Ltd. Address before: Tokyo, Japan Applicant before: Fuji Xerox Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |