CN110386816B - 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料 - Google Patents

一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料 Download PDF

Info

Publication number
CN110386816B
CN110386816B CN201910668673.7A CN201910668673A CN110386816B CN 110386816 B CN110386816 B CN 110386816B CN 201910668673 A CN201910668673 A CN 201910668673A CN 110386816 B CN110386816 B CN 110386816B
Authority
CN
China
Prior art keywords
powder
strontium titanate
barium strontium
low loss
composite zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910668673.7A
Other languages
English (en)
Other versions
CN110386816A (zh
Inventor
张明伟
王威
沈世婷
辛乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201910668673.7A priority Critical patent/CN110386816B/zh
Publication of CN110386816A publication Critical patent/CN110386816A/zh
Application granted granted Critical
Publication of CN110386816B publication Critical patent/CN110386816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料,其特征在于,高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料的组分通式为:(1‑x)Ba0.4Sr0.6TiO3‑xZnGa2O4,其中,x的取值范围为10 wt%≤x≤70 wt%,选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Ga2O3粉体作为主要原料,按照(1‑x)Ba0.4Sr0.6TiO3‑xZnGa2O4配料,经过球磨、干燥、高温预烧制得混合粉料,压片后于550℃~600℃的温度下排胶再在1250℃~1300℃的温度下烧成。本发明制得的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料在很宽的范围内连续可调,且综合性能高。

Description

一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料
技术领域
本发明属于电子材料与器件技术领域,具体涉及一种高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷的介质材料及其制备。
背景技术
铁电材料钛酸锶钡具有介电非线性可调、低介电损耗和居里温度可调控等特点,这使得它在微波器件如可调振荡器、滤波器、移相器等方面受到广泛关注。相比通信领域中使用的其它材料如铁氧体和半导体等,铁电材料的使用具有明显的优势,它的使用可以降低成本、缩减器件体积和精简电路设计,并且具有响应快、功耗小、效率高和工作温区宽等特点。钛酸锶钡BST的介电非线性是指介电常数随外加直流电场的变化而变化,它可被定义为可调率Tunability= [εr(0)–εr(E)] /εr(0) × 100%,其中εr(0)、εr(E)分别为零电场和外加直流电场下的介电常数。可调率的大小意味着器件选频效果的好坏,所以材料的介电可调率尽量要高。另外,BST陶瓷材料还存在介电常数过高的问题,使其难以实现激励源内部阻抗匹配。介电损耗是材料在电导和极化过程中所消耗的电能,通常也会用品质因数Q值来表示,Q=1/tanδ。低的介电损耗可以减小器件的插入损耗,降低功耗,因此低损耗也是我们需要的。对BST材料进行改性的方法,通常有掺入氧化物、介电材料复合和粒子包覆等。通过这些改性方法引起BST的微结构和相界等方面的改变,从而有效的对其性能进行调控。在目前报道的技术中,有研究人员采用不同质量比的MgO、MnO2和Mg2TiO4等材料与BST进行复合,获得了低介电常数、低介电损耗和一定介电可调率的陶瓷复合材料。然而,这些陶瓷复合材料仍存在可调率不够高和微波下Q值过低等问题,综合性能还有待进一步提高。
发明内容
本发明的目的在于提供一种综合性能高、制备工艺简单的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷的介质材料,其技术方案为:
一种高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷的介质材料,其特征在于,高电可调低损耗的钛酸锶钡基复合铝酸锌陶瓷铁电介电材料的化学组成式为:(1-x)Ba0.4Sr0.6TiO3-xZnGa2O4,其中,x的取值范围为10 wt % ≤ x ≤ 70 wt %,其制备方法包括以下步骤:
(1)选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Ga2O3粉体作为主要原料,按照(1-x)Ba0.4Sr0.6TiO3-xZnGa2O4中Ba、Sr、Ti、Zn和Ga的化学计量比配料,将配好的原料置于尼龙球磨罐中,加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧结及研磨后得到混合粉料1;在所述进行预烧的温度为1100℃~1385℃,烧结时间为4~6小时。
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行24~48小时球磨,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为7%~10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa~100MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在550℃~600℃的温度下,保温时间为4~10小时排胶处理;排胶后于1250℃~1300℃下时间为4~6小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
本发明高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料具有以下优点:
(1)通过优选的Ba/Sr,将复合陶瓷的居里温度控制在合适的区间,复合陶瓷(1-x)Ba0.4Sr0.6TiO3-xZnGa2O4在很宽的工作温区内具有高的介电可调性,尤其适用于室温及以上工作温度;
(2)通过使用不同的x质量比,将介电常数调节在合适的不同区间内,可满足不同器件应用下的需求,拓宽了材料的应用范围;
(3)具有高Q值(低介电损耗)(Q值可达348、低的介电常数(158),高的可调率(可调率可达21.8%),并且微波下的综合介电性能高;
(4)采用传统的电子陶瓷制备工艺,工艺简单,可重复性好;材料体系中只存在Ba0.4Sr0.6TiO3和ZnGa2O4两相,属于绿色环保材料,无毒无副作用。材料性能优异,适用于微波可调振荡器、滤波器、移相器等元器件。
实施例1
(1)按照90 wt % Ba0.4Sr0.6TiO3+10 wt % ZnGa2O4中的化学计量比分别称取BaTiO312.4g、SrTiO314.6g、ZnO0.9g和Ga2O32.1g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1385℃,烧结时间为6小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨24小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在550℃的温度下,保温时间为10小时排胶处理;排胶后于1250℃下时间为4小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Ga2O3纯度为99.99%麦克林生化科技有限公司生产;
制备的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料性能为:居里温度Tc(K)@10kHz为234,介电常数ε r(室温20℃)@10 kHz为779,介电损耗tanδ(室温20℃)@10kHz为0.0189,介电可调性T(30kV/cm,20℃)@10 kHz为18.2%,谐振频率(MHz)为2468,谐振时介电常数ε r为747,Q值为121。
实施例2
(1)按照70 wt % Ba0.4Sr0.6TiO3+30 wt % ZnGa2O4中的化学计量比分别称取BaTiO39.6g、SrTiO311.4g、ZnO2.7g和Ga2O36.3g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1385℃,烧结时间为5小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨30小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为8%的聚乙烯醇水溶液混合均匀并造粒,然后在50MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在580℃的温度下,保温时间为7小时排胶处理;排胶后于1250℃下时间为6小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Ga2O3纯度为99.99%麦克林生化科技有限公司生产;
制备的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料性能为:居里温度Tc(K)@10kHz为242,介电常数ε r(室温20℃)@10 kHz为616,介电损耗tanδ(室温20℃)@10kHz为0.0079,介电可调性T(30kV/cm,20℃)@10 kHz为22%,谐振频率(MHz)为2756,谐振时介电常数ε r为584,Q值为269。
实施例3
(1)按照50 wt % Ba0.4Sr0.6TiO3+50 wt % ZnGa2O4中的化学计量比分别称取BaTiO36.9g、SrTiO38.1g、ZnO4.5g和Ga2O310.5g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1385℃,烧结时间为4小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨48小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为7%的聚乙烯醇水溶液混合均匀并造粒,然后在100MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在600℃的温度下,保温时间为4小时排胶处理;排胶后于1300℃下时间为4小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Ga2O3纯度为99.99%麦克林生化科技有限公司生产;
制备的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料性能为:居里温度Tc(K)@10kHz为242,介电常数ε r(室温20℃)@10 kHz为158,介电损耗tanδ(室温20℃)@10kHz为0.0029,介电可调性T(30kV/cm,20℃)@10 kHz为21.8%,谐振频率(MHz)为3335,谐振时介电常数ε r为150,Q值为348。
实施例4
(1)按照30 wt % Ba0.4Sr0.6TiO3+70 wt % ZnGa2O4中的化学计量比分别称取BaTiO34.1g、SrTiO34.9g、ZnO6.3g和Ga2O314.7g粉体,将配好的原料置于尼龙球磨罐中加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧及研磨后得到混合粉料1;在所述进行预烧的温度分别为1100℃和1385℃,烧结时间为4小时;
(2)将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行球磨24小时,出料烘干后过筛得到混合粉料2;
(3)将(2)中所述的混合粉料2加入质量比为7%的聚乙烯醇水溶液混合均匀并造粒,然后在30MPa压力下压制成陶瓷生坯片;
(4)将(3)中所述的陶瓷生坯片在600℃的温度下,保温时间为4小时排胶处理;排胶后于1300℃下时间为6小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
实验所用的BaTiO3纯度为99.5%,麦克林生化科技有限公司生产,SrTiO3纯度为99.5%,麦克林生化科技有限公司生产,ZnO纯度为99.9%,天津化学试剂三厂生产,Ga2O3纯度为99.99%麦克林生化科技有限公司生产;
制备的高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料性能为:居里温度Tc(K)@10kHz为242,介电常数ε r(室温20℃)@10 kHz为72,介电损耗tanδ(室温20℃)@10kHz为0.0013,介电可调性T(30kV/cm,20℃)@10 kHz为11.5%,谐振频率(MHz)为2794,谐振时介电常数ε r为69,Q值为612。

Claims (1)

1.一种高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料,其特征在于,高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料的组分通式为:(1-x) Ba0.4Sr0.6TiO3-xZnGa2O4,其中,x的取值范围为10 wt % ≤ x ≤ 70 wt %,其制备方法包括以下步骤:
( 1 ) 选用BaTiO3粉体、SrTiO3粉体、ZnO粉体和Ga2O3粉体作为主要原料,按照(1-x)Ba0.4Sr0.6TiO3-xZnGa2O4中Ba、Sr、Ti、Zn和Ga的化学计量比配料,将配好的原料置于尼龙球磨罐中,加入氧化锆球和球磨介质后进行球磨,出料烘干后进行预烧结及研磨后得到混合粉料1;在所述进行预烧的温度为1100℃~1385℃,烧结时间为4~6小时;
( 2 ) 将(1)中所述的混合粉料1加入氧化锆球和无水乙醇或去离子水进行24~48小时球磨,出料烘干后过筛得到混合粉料2;
( 3 ) 将(2)中所述的混合粉料2加入质量比为7%~10%的聚乙烯醇水溶液混合均匀并造粒,然后在10MPa~100MPa压力下压制成陶瓷生坯片;
( 4 )将(3)中所述的陶瓷生坯片在550℃~600℃的温度下,保温时间为4~10小时排胶处理;排胶后于1250℃~1300℃下时间为4~6小时烧结成瓷,制得高可调率低损耗的钛酸锶钡基复合镓酸锌陶瓷介质材料。
CN201910668673.7A 2019-07-23 2019-07-23 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料 Active CN110386816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910668673.7A CN110386816B (zh) 2019-07-23 2019-07-23 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910668673.7A CN110386816B (zh) 2019-07-23 2019-07-23 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料

Publications (2)

Publication Number Publication Date
CN110386816A CN110386816A (zh) 2019-10-29
CN110386816B true CN110386816B (zh) 2022-04-22

Family

ID=68287049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910668673.7A Active CN110386816B (zh) 2019-07-23 2019-07-23 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料

Country Status (1)

Country Link
CN (1) CN110386816B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978080A (zh) * 2020-08-04 2020-11-24 山东理工大学 一种高可调低损耗的钛酸锶钡复合镓酸铜的低烧陶瓷材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020125821A1 (en) * 2001-03-12 2002-09-12 University Of Cincinnati Electroluminescent display formed on glass with a thick film dielectric layer
CN101381228B (zh) * 2008-10-08 2011-09-14 吉林大学 镓掺杂氧化锌透明多晶陶瓷的制备方法
CN102358930B (zh) * 2011-06-30 2013-10-30 同济大学 一种低损耗、高介电可调钛酸锶钡基陶瓷材料及其制备方法
CN102618927B (zh) * 2012-04-17 2014-12-24 陕西科技大学 一种微波水热制备ZnGa2O4单晶的方法
CN103708825A (zh) * 2013-12-19 2014-04-09 中国科学院上海硅酸盐研究所 高调谐低损耗钛酸锶钡-铝酸锌复合材料及其制备方法
CN108046795B (zh) * 2017-12-29 2020-10-20 山东理工大学 一种高介电可调的钛酸锶钡基复合硅铝酸盐陶瓷介质材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effects of non-stoichiometric defects on the dielectric properties of (Ba0.5Sr0.5)xTiO3-ZnGa2O4 composite ceramics;Shiting Shen 等;《Ceramics International》;20201001;第46卷(第14期);第22391-22396页 *
Effects of vacancy defects caused by non-stoichiometric ratio on dielectric properties of ABO(3) perovskite (Ba0.5Sr0.5)(x)TiO3 ceramics;Shiting Shen 等;《CERAMICS INTERNATIONAL》;20200601;第46卷(第8期);第11943-11949页 *

Also Published As

Publication number Publication date
CN110386816A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
US7960302B2 (en) Tunable low loss ceramic composite compounds based on a barium strontium titanate/barium magnesium tantalate/niobate
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN108046795B (zh) 一种高介电可调的钛酸锶钡基复合硅铝酸盐陶瓷介质材料
Jiayu et al. Effects of rare earth oxides on dielectric properties of Y2Ti2O7 series ceramics
CN108117385B (zh) 一种大尺寸高耐电强度氧化钛基介质陶瓷材料及其制备方法和应用
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN106187189B (zh) 一种储能微波介质陶瓷材料及其制备方法
Ma et al. The energy storage properties of fine-grained Ba0. 8Sr0. 2Zr0. 1Ti0. 9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings
CN110386815B (zh) 一种具有较高可调率低损耗可实用的钛酸锶钡复合铝酸锌陶瓷材料
CN110386816B (zh) 一种高可调率低损耗钛酸锶钡复合镓酸锌陶瓷材料
CN114605151A (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN101665353B (zh) 介电可调的钛酸锶钡基复合钨酸盐微波介质材料及其制备
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN101337812B (zh) 压控可调钛酸锶钡基复合陶瓷材料及其制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN106866143A (zh) 微波复相陶瓷AWO4‑TiO2及其制备方法
CN101891463B (zh) 介电可调的过渡金属元素化合物掺杂钛酸锶钡复合钨酸钡陶瓷介质材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN108147815B (zh) 一种钨青铜型单相多铁性陶瓷材料及其制备方法
CN111978080A (zh) 一种高可调低损耗的钛酸锶钡复合镓酸铜的低烧陶瓷材料
Zhang et al. Relaxor behavior and dielectric properties of (1− x) Ba0. 6Sr0. 4TiO3–xMg0. 7Zn0. 3TiO3 composite ceramics for tunable microwave applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant