CN110377094B - 一种低温漂极低功耗线性稳压器 - Google Patents
一种低温漂极低功耗线性稳压器 Download PDFInfo
- Publication number
- CN110377094B CN110377094B CN201910414672.XA CN201910414672A CN110377094B CN 110377094 B CN110377094 B CN 110377094B CN 201910414672 A CN201910414672 A CN 201910414672A CN 110377094 B CN110377094 B CN 110377094B
- Authority
- CN
- China
- Prior art keywords
- pmos tube
- electrode
- tube
- pmos
- drain electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003381 stabilizer Substances 0.000 title abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 30
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/567—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/468—Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/59—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/618—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
本发明公开了一种低温漂极低功耗线性稳压器,包括9个PMOS管,分别为PMOS管PM1到PMOS管PM9;两个电阻,分别为电阻R1和电阻R2;两个电容,分别为电容C1和电容C2;两个NMOS管,分别为NMOS管NM1和NMOS管NM2。本发明的稳压器将传统线性稳压器的闭环控制融合进基准电压产生电路。以最少的电流支路与晶体管数实现了极低功耗下低温漂的线性稳压功能。具有结构简单、静态功耗低、输出驱动范围大的特点。
Description
技术领域
本发明涉及供电设备领域,特别涉及一种低温漂极低功耗线性稳压器。
背景技术
在手持终端及物联网络节点等应用场合,功耗水平直接制约了电池的连续供电时间。为尽可能降低平均功耗,电源管理模块通过定时唤醒的方式尽可能压缩电路的活跃时间。在大多数时间中芯片处于待机或者休眠模式,此时只有低速时钟电路和存储模块仍然维持供电,而工作电流也下降到几个微安或者更低的程度。因此线性稳压器自身的静态功耗必须足够低以维持高能效。传统的线性稳压器需要带隙基准电路提供不随温度和电压变化的稳定参考电压,再由闭环的驱动电路产生稳定输出电压。从功耗层面上看,独立的带隙基准电路和稳压驱动电路含有众多电流支路,包含若干放大器和偏置电路,不利于实现低偏置电流。
发明内容
本发明的目的是为了克服上述问题,提供一种低温漂极低功耗线性稳压器。
为达到上述目的,本发明采用的方法是:一种低温漂极低功耗线性稳压器,包括9个PMOS管,分别为PMOS管PM1到PMOS管PM9;两个电阻,分别为电阻R1和电阻R2;两个电容,分别为电容C1和电容C2;两个NMOS管,分别为NMOS管NM1和NMOS管NM2;
所述的PMOS管PM1的源极接电源,PMOS管PM1的栅极接PMOS管PM2的源极,PM1的漏极接电阻R2的正极,电阻R2的负极接地;
PMOS管PM2的栅极接PMOS管PM1的漏极,PMOS管PM2的漏极接地;
电容C1的正极接PMOS管PM2的栅极,电容C1的负极接地;
PMOS管PM3的源极接电源,PMOS管PM3的栅极接PMOS管PM2的源极,PMOS管PM3的漏极接NMOS管NM1的漏极;
NMOS管NM1的栅极接第一NMOS管的漏极,NMOS管NM1的源极接地;
PMOS管PM4的源极接电源,PMOS管PM4的栅极接PMOS管PM2的源极,PMOS管PM4的漏极接NMOS管NM2的漏极;
NMOS管NM2的栅极接NMOS管NM1的漏极,NMOS管NM2的源极接电阻R1的正极;电阻R1的负极接地;
PMOS管PM5的源极接电源,PMOS管PM5的栅极接PMOS管PM9的漏极,PMOS管PM5的漏极接PMOS管PM6的源极;
PMOS管PM6的栅极接NMOS管NM2的源极,PMOS管PM6的漏极接PMOS管PM7的漏极,PMOS管PM7的栅极接NMOS管NM1的漏极,PMOS管PM7的源极接地;
PMOS管PM9的源极接电源,PMOS管PM9的栅极接PMOS管PM2的源极;
PMOS管PM8的源极接PMOS管PM9的漏极,PMOS管PM8的栅极接PMOS管PM6的漏极,PMOS管PM8的漏极接地;
电容C2即为线性稳压器的负载电容,电容C2的正极接PMOS管PM5的漏极,电容C2的负极接地。
有益效果:
本发明将带隙基准与线性稳压电路进行融合,直接在稳压器的输出端获取温度补偿后的电压,并且通过反馈环路获得较低的线性调整率以及稳定的温度特性,实现了高度功能融合,将所需要的电流支路减小到最低的程度。本发明提出的极低功耗的低温漂线性稳压电路,适用于要求具有极低待机功耗,同时在低驱动电流下仍须实现较高效率的应用场合,具有偏置电流低、温度系数低、驱动电流范围宽、能量效率高等特点。
附图说明
图1 为本发明的低温漂极低功耗线性稳压器电路结构图;
图2 为本发明的线性稳压器在0~20mA驱动电流下的输出电压随温度变化曲线。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细的说明。
如图1所示为本发明的低温漂极低功耗线性稳压器电路结构图,本发明公开了一种低温漂极低功耗线性稳压器的电路包括, 9个PMOS管,分别为PMOS管PM1到PMOS管PM9;两个电阻,分别为电阻R1和电阻R2;两个电容,分别为电容C1和电容C2;两个NMOS管,分别为NMOS管NM1和NMOS管NM2。
所述的PMOS管PM1的源极接电源,PMOS管PM1的栅极接PMOS管PM2的源极,PM1的漏极接电阻R2的正极,电阻R2的负极接地。
PMOS管PM2的栅极接PMOS管PM1的漏极,PMOS管PM2的漏极接地。
电容C1的正极接PMOS管PM2的栅极,电容C1的负极接地。
PMOS管PM3的源极接电源,PMOS管PM3的栅极接PMOS管PM2的源极,PMOS管PM3的漏极接NMOS管NM1的漏极。
NMOS管NM1的栅极接第一NMOS管的漏极,NMOS管NM1的源极接地。
PMOS管PM4的源极接电源,PMOS管PM4的栅极接PMOS管PM2的源极,PMOS管PM4的漏极接NMOS管NM2的漏极。
NMOS管NM2的栅极接NMOS管NM1的漏极,NMOS管NM2的源极接电阻R1的正极;电阻R1的负极接地。
PMOS管PM5的源极接电源,PMOS管PM5的栅极接PMOS管PM9的漏极,PMOS管PM5的漏极接PMOS管PM6的源极。
PMOS管PM6的栅极接NMOS管NM2的源极,PMOS管PM6的漏极接PMOS管PM7的漏极,PMOS管PM7的栅极接NMOS管NM1的漏极,PMOS管PM7的源极接地。
PMOS管PM9的源极接电源,PMOS管PM9的栅极接PMOS管PM2的源极。
PMOS管PM8的源极接PMOS管PM9的漏极,PMOS管PM8的栅极接PMOS管PM6的漏极,PMOS管PM8的漏极接地。
电容C2即为线性稳压器的负载电容,电容C2的正极接PMOS管PM5的漏极,电容C2的负极接地。
该电路的工作原理分析如下:整个线性稳压器从右到左分别是PTAT电压内核启动电路,PTAT电压内核电路,负温度特性产生电路以及驱动级闭环控制电路。PM5~PM9组成了反馈电路,该反馈电路一方面箝位了流过PM6的电流使之与NM2成比例关系,从而得到温度稳定的输出电压;另一方面可根据负载电流的变化动态调整PM5的栅极电压,从而根据负载需求输出不同电流。由于PM5的尺寸较大,在不同负载情况下PM6的漏极电压变化幅度相对较小,不会对PM6电流与NM2电流的关系产生显著影响,保证了在不同负载下均可获得精确的并且不随温度变化的电压。
图2所示为本发明的线性稳压器在0~20mA驱动电流下的输出电压随温度变化曲线。从图中可以看出,线性稳压器的输出电压在-20摄氏度到85摄氏度的温度范围内表现出较高的温度稳定性,并形成一阶温度补偿特性。电流从0变化到20mA的过程中输出电压仅有小幅的下降,在20mA的最大驱动电流模式下其整个温度范围内的电压变化在1mV以内。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。以上所述是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (1)
1.一种低温漂极低功耗线性稳压器,其特征在于:包括9个PMOS管,分别为PMOS管PM1到PMOS管PM9;两个电阻,分别为电阻R1和电阻R2;两个电容,分别为电容C1和电容C2;两个NMOS管,分别为NMOS管NM1和NMOS管NM2;
所述的PMOS管PM1的源极接电源,PMOS管PM1的栅极接PMOS管PM2的源极,PM1的漏极接电阻R2的一端,电阻R2的另一端接地;
PMOS管PM2的栅极接PMOS管PM1的漏极,PMOS管PM2的漏极接地;
电容C1的正极接PMOS管PM2的栅极,电容C1的负极接地;
PMOS管PM3的源极接电源,PMOS管PM3的栅极接PMOS管PM2的源极,PMOS管PM3的漏极接NMOS管NM1的漏极;
NMOS管NM1的栅极接NMOS管NM1的漏极,NMOS管NM1的源极接地;
PMOS管PM4的源极接电源,PMOS管PM4的栅极接PMOS管PM2的源极,PMOS管PM4的漏极接NMOS管NM2的漏极;
NMOS管NM2的栅极接NMOS管NM1的漏极,NMOS管NM2的源极接电阻R1的一端;电阻R1的另一端接地;
PMOS管PM5的源极接电源,PMOS管PM5的栅极接PMOS管PM9的漏极,PMOS管PM5的漏极接PMOS管PM6的源极;
PMOS管PM6的栅极接NMOS管NM2的源极,PMOS管PM6的漏极接PMOS管PM7的漏极,PMOS管PM7的栅极接NMOS管NM1的漏极,PMOS管PM7的源极接地;
PMOS管PM9的源极接电源,PMOS管PM9的栅极接PMOS管PM2的源极;
PMOS管PM8的源极接PMOS管PM9的漏极,PMOS管PM8的栅极接PMOS管PM6的漏极,PMOS管PM8的漏极接地;
电容C2即为线性稳压器的负载电容,电容C2的正极接PMOS管PM5的漏极,电容C2的负极接地。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910414672.XA CN110377094B (zh) | 2019-05-17 | 2019-05-17 | 一种低温漂极低功耗线性稳压器 |
US16/966,476 US11175686B2 (en) | 2019-05-17 | 2020-04-30 | Low-temperature drift ultra-low-power linear regulator |
PCT/CN2020/087983 WO2020233382A1 (zh) | 2019-05-17 | 2020-04-30 | 一种低温漂极低功耗线性稳压器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910414672.XA CN110377094B (zh) | 2019-05-17 | 2019-05-17 | 一种低温漂极低功耗线性稳压器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110377094A CN110377094A (zh) | 2019-10-25 |
CN110377094B true CN110377094B (zh) | 2020-11-27 |
Family
ID=68248569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910414672.XA Expired - Fee Related CN110377094B (zh) | 2019-05-17 | 2019-05-17 | 一种低温漂极低功耗线性稳压器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11175686B2 (zh) |
CN (1) | CN110377094B (zh) |
WO (1) | WO2020233382A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110377094B (zh) * | 2019-05-17 | 2020-11-27 | 东南大学 | 一种低温漂极低功耗线性稳压器 |
CN115421549B (zh) * | 2021-06-01 | 2024-07-05 | 上海艾为电子技术股份有限公司 | 自偏置带隙基准电路及其控制方法、电源电路及电子设备 |
CN114200994B (zh) * | 2021-12-07 | 2023-03-28 | 深圳市灵明光子科技有限公司 | 一种低压差线性稳压器和激光测距电路 |
CN114489213B (zh) * | 2022-02-09 | 2023-03-10 | 广芯电子技术(上海)股份有限公司 | 线性稳压电路 |
CN116185122B (zh) * | 2023-03-17 | 2024-08-13 | 成都华微电子科技股份有限公司 | 负相输出电压高电源抑制比的线性稳压器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3671770A (en) * | 1970-08-17 | 1972-06-20 | Motorola Inc | Temperature compensated bias circuit |
US6989708B2 (en) * | 2003-08-13 | 2006-01-24 | Texas Instruments Incorporated | Low voltage low power bandgap circuit |
JP2005122277A (ja) * | 2003-10-14 | 2005-05-12 | Denso Corp | バンドギャップ定電圧回路 |
US7683701B2 (en) * | 2005-12-29 | 2010-03-23 | Cypress Semiconductor Corporation | Low power Bandgap reference circuit with increased accuracy and reduced area consumption |
EP2120124B1 (en) * | 2008-05-13 | 2014-07-09 | STMicroelectronics Srl | Circuit for generating a temperature-compensated voltage reference, in particular for applications with supply voltages lower than 1V |
CN102012715A (zh) * | 2010-11-24 | 2011-04-13 | 天津泛海科技有限公司 | 高阶曲率补偿的带隙基准电压源 |
KR102124241B1 (ko) * | 2016-08-16 | 2020-06-18 | 선전 구딕스 테크놀로지 컴퍼니, 리미티드 | 선형 레귤레이터 |
CN108427466A (zh) | 2017-05-09 | 2018-08-21 | 吴小再 | 高精度、低功耗电源装置 |
CN107168442B (zh) | 2017-06-21 | 2019-02-19 | 西安电子科技大学 | 带隙基准电压源电路 |
US10528070B2 (en) * | 2018-05-02 | 2020-01-07 | Analog Devices Global Unlimited Company | Power-cycling voltage reference |
CN109343643A (zh) | 2018-12-03 | 2019-02-15 | 成都信息工程大学 | 一种非常规结构低温漂电压基准源 |
CN110377094B (zh) | 2019-05-17 | 2020-11-27 | 东南大学 | 一种低温漂极低功耗线性稳压器 |
US11392155B2 (en) * | 2019-08-09 | 2022-07-19 | Analog Devices International Unlimited Company | Low power voltage generator circuit |
-
2019
- 2019-05-17 CN CN201910414672.XA patent/CN110377094B/zh not_active Expired - Fee Related
-
2020
- 2020-04-30 WO PCT/CN2020/087983 patent/WO2020233382A1/zh active Application Filing
- 2020-04-30 US US16/966,476 patent/US11175686B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11175686B2 (en) | 2021-11-16 |
US20210311514A1 (en) | 2021-10-07 |
CN110377094A (zh) | 2019-10-25 |
WO2020233382A1 (zh) | 2020-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110377094B (zh) | 一种低温漂极低功耗线性稳压器 | |
CN105099445B (zh) | 一种环形振荡器的频率控制方法及电路 | |
CN102289243B (zh) | Cmos带隙基准源 | |
US11966245B2 (en) | Voltage reference source circuit and low power consumption power supply system | |
CN112068627B (zh) | 一种电压输出调节模块 | |
CN103425177B (zh) | 一种基准电流源 | |
CN103631306A (zh) | 具有低温度系数的电流源基准电路 | |
CN104615185B (zh) | 一种基准电压源启动电路 | |
CN114200994B (zh) | 一种低压差线性稳压器和激光测距电路 | |
CN102097923B (zh) | 一种具有零关断电流的驱动电路及其驱动方法 | |
CN101916128A (zh) | 一种提高带隙基准源输出电源抑制比的方法及相应的电路 | |
CN108594924A (zh) | 一种超低功耗全cmos亚阈工作的带隙基准电压电路 | |
CN114200993A (zh) | 一种具有快速瞬态响应和低负载调整率的线性稳压器 | |
CN201936213U (zh) | 低压降稳压器 | |
CN103440011B (zh) | 具有压差补偿的线性恒流源电路 | |
CN203386099U (zh) | 带隙基准电路及电视机 | |
CN108268078B (zh) | 一种低成本低功耗的低压差线性稳压器 | |
CN105224006B (zh) | 一种低压cmos基准源 | |
CN111240390A (zh) | 一种低功耗带隙基准电路 | |
CN203465628U (zh) | 具有压差补偿的线性恒流源电路 | |
CN115268554A (zh) | 一种低压差线性稳压器 | |
CN201097247Y (zh) | 一种基准电压源电路 | |
CN204314762U (zh) | 一种基准电压源启动电路 | |
CN211857321U (zh) | 一种低功耗带隙基准电路 | |
CN208459892U (zh) | 一种超低功耗全cmos亚阈工作的带隙基准电压电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191025 Assignee: Wuxi Shengjing Microelectronics Co.,Ltd. Assignor: SOUTHEAST University Contract record no.: X2022320000118 Denomination of invention: A low temperature drift low power linear regulator Granted publication date: 20201127 License type: Common License Record date: 20220620 |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201127 |