CN110372372A - 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法 - Google Patents

高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法 Download PDF

Info

Publication number
CN110372372A
CN110372372A CN201910697614.2A CN201910697614A CN110372372A CN 110372372 A CN110372372 A CN 110372372A CN 201910697614 A CN201910697614 A CN 201910697614A CN 110372372 A CN110372372 A CN 110372372A
Authority
CN
China
Prior art keywords
bismuth
dielectric loss
under high
low
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910697614.2A
Other languages
English (en)
Other versions
CN110372372B (zh
Inventor
王媛玉
谭柳茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201910697614.2A priority Critical patent/CN110372372B/zh
Publication of CN110372372A publication Critical patent/CN110372372A/zh
Application granted granted Critical
Publication of CN110372372B publication Critical patent/CN110372372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法:以K2CO3、Na2CO3、Nb2O5、Bi2O3、Sb2O3、TiO2作为初始原料,按照(1‑x)Bi0.5Na0.5TiO3‑x(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取初始原料,并进行混料,x为0.01~0.05;混合粉料预烧研磨,然后加入粘合剂,进行造粒和压片,所得的陶瓷圆片坯体先烧结,然后用银作为电极披覆在所得的烧结后陶瓷片的上下两面,高压下极化,得到高温下低介电损耗的钛酸铋钠基无铅压电陶瓷。可广泛应用于高温高频范围、要求性能稳定且压电响应灵敏的压电式传感器、滤波器等。

Description

高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法
技术领域
本发明属电子功能材料领域,具体涉及一种具有高温度稳定性及低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法及其应用。
背景技术
压电陶瓷可以实现电能和机械能之间的转化,且造价成本低廉,是目前应用最为广泛的功能陶瓷材料。传统的压电陶瓷主要以含铅的锆钛酸铅陶瓷为主,铅元素在制备、使用和回收过程中,会对人类健康和环境带来不可忽视的伤害。出于人类可持续发展的考虑,无铅压电陶瓷成为了近年来的研究热点。其中,钛酸铋钠(Bi0.5Na0.5TiO3,BNT)因具有良好的综合性能,受到了人们的广泛关注。BNT是一种具有A位复合钙钛矿结构的弛豫铁电材料,于1960年由前苏联科学家Smolenskii等首次合成获得,BNT具有铁电性强(Pr=38C/cm2)、机械强度高、声学性能(Np=3200Hz·m)佳、机电耦合系数各异向性好、居里温度高(Tc=320℃)、烧结温度低、相对介电常数较小等优点,特别适用于高频使用,尤其是超声滤波领域。
但纯的BNT陶瓷存在室温条件下矫顽场过大(Ec=73kV/cm),铁电相区的电导率高,导致陶瓷样品难以极化;Bi、Na元素在高温烧结过程中易挥发,使得样品难以致密化,漏电流大;陶瓷的退极化温度较低;结构中存在的Na-O键容易吸水,物理和化学稳定性较差等弊端。研究者们对BNT基材料的结构和性能进行了大量深入研究,其中掺杂是最为经济有效的改性方式。
通过掺杂改性,BNT陶瓷的矫顽场显著降低,使其极化相对容易,同时压电性能也有了一定的提高。但掺杂会导致BNT基陶瓷的居里温度降低,电阻率增大,从而使介电损耗增加,同时陶瓷的机电耦合系数减小。特别是当掺杂以多组元的方式引入BNT基体,由于形成了多相共存的多晶相界,通常导致弛豫铁电相转变变得非常复杂,BNT基陶瓷的温度稳定性也因此大幅下降。
201610169203.2的发明专利《铌锑酸钾钠系无铅压电陶瓷及其制备方法》告知了以下两种配料方式:
以K2CO3、Na2CO3、Nb2O5、Sb2O3、Bi2O3、Ta2O3、Li2CO3为原料,按化学式(1-x)Bi0.5Na0.5TiO3-x(K0.5Na0.5)(Nb0.96Sb0.04)O3中x的设定值确定的该化学式进行称量配料;所述M2O3为Sm2O3、Nd2O3或La2O3
以K2CO3、Na2CO3、Nb2O5、Sb2O3、Bi2O3、Ta2O3、Li2CO3为原料,按化学式(1-x)Bi0.5Na0.5TiO3-x(K0.5Na0.5)(Nb0.96Sb0.04)O3中x的设定值确定的该化学式进行称量配料;所述M2O3为Sm2O3、Nd2O3或La2O3
将配好的原料进行研磨烘干,之后在770~950℃下预烧4~8h进行铌酸盐化合物的合成,预烧结束冷得到预烧粉体;向所得的预烧粉体中加入质量浓度为4%~12%的聚乙烯醇水溶液进行造粒;将所得到的粒料用模具压制成型;将模压成型的陶瓷型坯在1120~1180℃下烧结1~6h(优选2~3h),得到烧结陶瓷;所得到的烧结陶瓷经镀电极后,放入硅油中施加2~4kV/mm的直流电进行极化,极化15~20min即得到铌锑酸钾钠系无铅压电陶瓷。
所镀电极为金、银、镍。
发明内容
本发明要解决的技术问题是提供一种具有高温度稳定性及低介电损耗的钛酸铋钠基无铅压电陶瓷材料的制备方法;所得的钛酸铋钠基无铅压电陶瓷材料具有多晶相界且陶瓷致密度高。
为了解决上述技术问题,本发明提供一种高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法,包括以下步骤:
1)、以K2CO3(99.5%),Na2CO3(99.95%),Nb2O5(99.9%),Bi2O3(99.999%),Sb2O3(99.99%),TiO2(99%)作为初始原料,按照(1-x)Bi0.5Na0.5TiO3-x(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取初始原料,并进行混料处理,得混合粉料(粒径分布均匀的混合粉料);
所述x为0.01~0.05;
2)、将步骤1)所得的混合粉料先于(850±50)℃下预烧(6±0.5)小时;
3)、将步骤2)所得的预烧后粉料(钛酸铋钠基主晶相)研磨至粒径为1~2微米的细微粉体;然后加入粘合剂,进行造粒和压片,得陶瓷圆片坯体;
4)、先将陶瓷圆片坯体于1120~1180℃烧结2小时,然后用银作为电极,披覆在所得的烧结后陶瓷片(致密的陶瓷片)的上下两面,在(5±1)千伏/毫米的高压下极化(充分极化)(20±2)分钟,得到高温下低介电损耗的钛酸铋钠基无铅压电陶瓷。
每面电极的厚度例如可约为0.3μm。
作为本发明的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法的改进:
所述步骤1)中,混料处理时间为(12±2)小时;
作为初始原料的K2CO3、Na2CO3、Nb2O5、Bi2O3、Sb2O3、TiO2的粒径为30~50μm。
作为本发明的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法的进一步改进:
所述步骤3)中,粘合剂选用质量浓度为7~10%的聚乙烯醇水溶液(PVA);粘合剂占混合粉料总重的0.3‰~0.8‰。
作为本发明的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法的进一步改进:
所述步骤3)中,陶瓷圆片坯体直径为10毫米、厚度为1毫米。
本发明采用传统的固相烧结法,以Bi0.5Na0.5TiO3作为材料基体,通过引入掺杂组元(K0.5Na0.5)(Nb0.96Sb0.04)O3,得到了具有高温度稳定性及低介电损耗的钛酸铋钠基无铅压电陶瓷材料。掺杂组元(K0.5Na0.5)(Nb0.96Sb0.04)O3的摩尔量控制在0.01mol-0.05mol,余量为Bi0.5Na0.5TiO3。本发明的方法简单,成本低廉,材料相界及其相比例易于通过调整掺杂比例进行调控,便于大规模生产。所得到的钛酸铋钠基无铅压电陶瓷材料是一种理想的无铅压电宽温高频器件,可广泛应用于高温高频范围,要求性能稳定且压电响应灵敏的压电式传感器、滤波器等。
本发明采用传统的固相烧结法,通过引入铌锑酸钾钠,在陶瓷中形成了正交相和三方相共存的多晶相界,即,本发明采用传统固相烧结法制备了铌锑酸钾钠改性钛酸铋钠基无铅压电陶瓷,并通过相界类型及相比例的调整、提高陶瓷致密度等方式;得到了具有高温度稳定性及低介电损耗的钛酸铋钠基无铅压电陶瓷材料。
本发明的方法简单,成本低廉,材料相界及其相比例易于通过调整掺杂比例进行调控,便于大规模生产。此方法制备的钛酸铋钠基无铅压电陶瓷通过多晶相界的构建,有效保持了钛酸铋钠压电陶瓷优异的高频介电性能,降低了弛豫相转变温度并提高了弛豫相-顺电相转变温度,使介电常数在宽的温度范围内表现出良好的温度稳定性。此外,因为铌锑酸钾钠的引入,陶瓷的致密性得到了明显的提高,使其介电损耗在宽的温度范围保持在一个低数值。具有高温度稳定性及低介电损耗的钛酸铋钠基无铅压电陶瓷材料是一种理想的无铅压电宽温高频器件,可广泛应用于高温高频范围、要求性能稳定且压电响应灵敏的压电式传感器、滤波器等。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为实施例1制备的钛酸铋钠基无铅压电陶瓷材料的50000倍扫描电镜图片。
图2为实施例2制备的钛酸铋钠基无铅压电陶瓷材料的XRD图。
图3为实施例3制备的钛酸铋钠基无铅压电陶瓷材料的10000倍透射电镜图片。
图4为实施例3制备的钛酸铋钠基无铅压电陶瓷材料的不同频率下的介温曲线图片。
图5为实施例2制备的钛酸铋钠基无铅压电陶瓷材料的铁电性能图片。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
下述实施例中,作为初始原料K2CO3(99.5%),Na2CO3(99.95%),Nb2O5(99.9%),Bi2O3(99.999%),Sb2O3(99.99%)、TiO2(99%)的粒径为30~50μm。
上述%为质量%,代表纯度。
实施例1、
1)、按照0.99Bi0.5Na0.5TiO3-0.01(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取上述原料,然后进行12小时混料处理(搅拌转速为450rmb/s),使其形成粒径分布均匀的混合粉料;
按照相应配方的化学式进行称量配料,即,按照化学式的计量比mol*(g/mol)*(1/purity),就能获得上述初始原料的摩尔用量。
2)、将混合粉料在850℃下预烧6小时,得到预烧后粉料(钛酸铋钠基压电陶瓷的主晶相);
3)、对步骤2)所得的预烧后粉料进行二次研磨,得到粒径分布范围在1-2μm的细微粉体,然后加入质量浓度为10%的聚乙烯醇水溶液(PVA)进行造粒,聚乙烯醇水溶液占混合粉料总重的0.5‰;
造粒后得到约10μm的近球形颗粒,并在15MPa的压力下压制成直径为10mm、厚度为1mm的圆片;
4)、将步骤3)所得的陶瓷圆片坯体置于1170℃下烧结2小时,得到致密的陶瓷片,然后用银作为电极,披覆在陶瓷片的上下两面,每面电极的厚度约为0.3μm,在5kV/mm的高压下充分极化20min。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为755,介电损耗tanδ在25℃-320℃的范围内为0.018,压电常数d33为110pC/N,机械品质因素Qm为185。陶瓷的居里温度为312℃。
实施例2、
步骤1)、按照0.98Bi0.5Na0.5TiO3-0.02(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取原料,
步骤4)、将陶瓷圆片坯体置于1150℃下烧结2小时;
其余等同于实施例1。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为980,介电损耗tanδ在25℃-350℃的范围内为0.015,压电常数d33为102pC/N,机械品质因素Qm为171,综合性能良好。且陶瓷的居里温度为317℃,表现出良好的高温特性,适合宽温下高频范围的应用。
实施例3
步骤1)、按照0.97Bi0.5Na0.5TiO3-0.03(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取原料,
步骤4)、将陶瓷圆片坯体置于1140℃下烧结2小时;
其余等同于实施例1。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为750,介电损耗tanδ在25℃-340℃范围内为0.016,压电常数d33为90pC/N,机械品质因素Qm为158。陶瓷的居里温度为320℃。
实施例4
步骤1)、按照0.96Bi0.5Na0.5TiO3-0.04(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取原料,
步骤4)、将陶瓷圆片坯体置于1130℃下烧结2小时;
其余等同于实施例1。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为910,介电损耗tanδ在25℃-325℃范围内为0.021,压电常数d33为84pC/N,机械品质因素Qm为152。陶瓷的居里温度为295℃。
实施例5
步骤1)、按照0.95Bi0.5Na0.5TiO3-0.05(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取原料,
步骤4)、将陶瓷圆片坯体置于1130℃下烧结2小时;
其余等同于实施例1。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为932,介电损耗tanδ在25℃-320℃范围内为0.023,压电常数d33为78pC/N,机械品质因素Qm为148。陶瓷的居里温度为289℃。
对比例1-1、
以K2CO3(99.5%),Na2CO3(99.95%),Nb2O5(99.9%),Bi2O3(99.999%),Ta2O3(99.9%),TiO2(99%)作为初始原料,按照0.98Bi0.5Na0.5TiO3-0.02(K0.5Na0.5)(Nb0.96Ta0.04)O3计量比称取原料。
其余等同于实施例2。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为560,介电损耗tanδ在25℃-300℃的范围内为0.04,压电常数d33为75pC/N,机械品质因素Qm为95。陶瓷的居里温度为275℃。
对比例1-2、
以K2CO3(99.5%),Na2CO3(99.95%),Nb2O5(99.9%),Bi2O3(99.999%),Sb2O3(99.99%),Li2CO3(99.9%)作为初始原料,按照0.98Bi0.5(Na0.8Li0.2)0.5TiO3-0.02(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取原料。
其余等同于实施例2。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为680,介电损耗tanδ在25℃-320℃的范围内为0.032,压电常数d33为85pC/N,机械品质因素Qm为112。陶瓷的居里温度为305℃。
对比例2、将实施例2中的烧结温度由1150℃改成1100℃;其余等同于实施例2。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为698,介电损耗tanδ在25℃-340℃的范围内为0.048,压电常数d33为65pC/N,机械品质因素Qm为98。陶瓷的居里温度为313℃。
对比例3、实施例2中的“在5kV/mm的高压下充分极化20min”改成“在4kV/mm的高压下充分极化20min”;其余等同于实施例2。
放置一天后对其进行电学性能测试。该陶瓷在100Hz下的相对介电常数εr为750,介电损耗tanδ在25℃-340℃的范围内为0.031,压电常数d33为88pC/N,机械品质因素Qm为105。陶瓷的居里温度为315℃。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (4)

1.高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法,其特征是包括以下步骤:
1)、以K2CO3、Na2CO3、Nb2O5、Bi2O3、Sb2O3、TiO2作为初始原料,按照(1-x)Bi0.5Na0.5TiO3-x(K0.5Na0.5)(Nb0.96Sb0.04)O3计量比称取初始原料,并进行混料处理,得混合粉料;
所述x为0.01~0.05;
2)、将步骤1)所得的混合粉料先于(850±50)℃下预烧(6±0.5)小时;
3)、将步骤2)所得的预烧后粉料研磨至粒径为1~2微米的细微粉体;然后加入粘合剂,进行造粒和压片,得陶瓷圆片坯体;
4)、先将陶瓷圆片坯体于1120~1180℃烧结2小时,然后用银作为电极,披覆在所得的烧结后陶瓷片的上下两面,在(5±1)千伏/毫米的高压下极化(20±2)分钟,得到高温下低介电损耗的钛酸铋钠基无铅压电陶瓷。
2.根据权利要求1所述的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法,其特征是:
所述步骤1)中,混料处理时间为(12±2)小时;
作为初始原料的K2CO3、Na2CO3、Nb2O5、Bi2O3、Sb2O3、TiO2的粒径为30~50μm。
3.根据权利要求1或2所述的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法,其特征是:
所述步骤3)中,粘合剂选用质量浓度为7~10%的聚乙烯醇水溶液;粘合剂占混合粉料总重的0.3‰~0.8‰。
4.根据权利要求1或2所述的高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法,其特征是:
所述步骤3)中,陶瓷圆片坯体直径为10毫米、厚度为1毫米。
CN201910697614.2A 2019-07-31 2019-07-31 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法 Active CN110372372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910697614.2A CN110372372B (zh) 2019-07-31 2019-07-31 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910697614.2A CN110372372B (zh) 2019-07-31 2019-07-31 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN110372372A true CN110372372A (zh) 2019-10-25
CN110372372B CN110372372B (zh) 2021-12-17

Family

ID=68257186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910697614.2A Active CN110372372B (zh) 2019-07-31 2019-07-31 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN110372372B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111694A1 (de) 2021-05-05 2022-11-10 Pi Ceramic Gmbh Bleifreier piezokeramischer Werkstoff auf Bismut-Natrium-Titanat-Barium-Titanat (BNT-BT)-Basis
DE102021111701A1 (de) 2021-05-05 2022-11-10 Pi Ceramic Gmbh Verfahren zur Herstellung eines piezokeramischen Werkstoffs auf BNT- oder KNN-Basis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376594A (zh) * 2007-08-30 2009-03-04 香港理工大学 铌锑酸钠钾系无铅压电陶瓷组合物
CN101514103A (zh) * 2009-04-03 2009-08-26 西北工业大学 铌酸钠钾-钛酸铋钠纳米陶瓷的制备方法
KR100941522B1 (ko) * 2008-01-17 2010-02-10 한국세라믹기술원 납성분을 포함하지 않는 ptc 써미스터용 세라믹 조성물및 이에 의해 제조되는 ptc 세라믹 써미스터
WO2013157650A1 (ja) * 2012-04-20 2013-10-24 日立金属株式会社 半導体磁器組成物の製造方法
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN105837210A (zh) * 2016-03-23 2016-08-10 四川大学 铌锑酸钾钠系无铅压电陶瓷及其制备方法
CN109608195A (zh) * 2018-12-26 2019-04-12 同济大学 高压电性、高电致应变的无铅压电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376594A (zh) * 2007-08-30 2009-03-04 香港理工大学 铌锑酸钠钾系无铅压电陶瓷组合物
KR100941522B1 (ko) * 2008-01-17 2010-02-10 한국세라믹기술원 납성분을 포함하지 않는 ptc 써미스터용 세라믹 조성물및 이에 의해 제조되는 ptc 세라믹 써미스터
CN101514103A (zh) * 2009-04-03 2009-08-26 西北工业大学 铌酸钠钾-钛酸铋钠纳米陶瓷的制备方法
WO2013157650A1 (ja) * 2012-04-20 2013-10-24 日立金属株式会社 半導体磁器組成物の製造方法
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN105837210A (zh) * 2016-03-23 2016-08-10 四川大学 铌锑酸钾钠系无铅压电陶瓷及其制备方法
CN109608195A (zh) * 2018-12-26 2019-04-12 同济大学 高压电性、高电致应变的无铅压电陶瓷材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALAIN BRICE KOUNGA,ET AL.,《: "Morphotropic phase boundary in(1-x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoceramics", 《APPLIED PHYSICS LETTERS》 *
TAN LIUMAO等: "Effects of (K0.5Na0.5)(Nb0.96Sb0.04)O3 on microstructure and electrical", 《MATERIALS SCIENCE & ENGINEERING B》 *
王媛玉: "铌酸钾钠基无铅压电陶瓷相界构建及微观形貌调控的研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
郭根生等: "Sb掺杂K0.5Na0.5NbO3无铅压电陶瓷相结构和电学性能的研究", 《人工晶体学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111694A1 (de) 2021-05-05 2022-11-10 Pi Ceramic Gmbh Bleifreier piezokeramischer Werkstoff auf Bismut-Natrium-Titanat-Barium-Titanat (BNT-BT)-Basis
WO2022233984A1 (de) 2021-05-05 2022-11-10 Pi Ceramic Gmbh Bleifreier piezokeramischer werkstoff auf bismut-natrium-titanat-barium-titanat (bnt-bt)-basis der zusammensetzung
DE102021111701A1 (de) 2021-05-05 2022-11-10 Pi Ceramic Gmbh Verfahren zur Herstellung eines piezokeramischen Werkstoffs auf BNT- oder KNN-Basis

Also Published As

Publication number Publication date
CN110372372B (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN104876567B (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN111087238B (zh) 钛酸铋钠基无铅压电陶瓷及其制备方法
WO2022148271A1 (zh) 一种用于弛豫铁电单晶生长的原料的制备方法
CN110372372A (zh) 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN105198417A (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN110845230A (zh) 一种三元系铌钪酸铅-铌镁酸铅-钛酸铅陶瓷及其制备方法
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
CN102336567B (zh) 钛镁酸铋-铋锌基钙钛矿-钛酸铅三元系高温压电陶瓷及其制备方法
CN101333109B (zh) 宽温区相变型热释电陶瓷材料的制备方法
CN102718484A (zh) 一种锆钛酸铅压电陶瓷的制备方法
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN103172377B (zh) 反应固相生长制备高性能压电陶瓷的方法
CN109456057A (zh) 锆钛酸钡钙基无铅压电陶瓷及其制备方法
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
CN114988872A (zh) 一种碳酸钙粉体在铌酸钾钠基压电陶瓷的应用
CN101696035A (zh) 一种铌酸钠粉体的制备方法
CN101269974A (zh) 用于制备织构层状结构的钙钛矿系陶瓷纳米粉体合成方法
CN100361932C (zh) 一种钛酸铋钠基无铅压电陶瓷
JPH0524862B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant