CN110362918A - 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法 - Google Patents

一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法 Download PDF

Info

Publication number
CN110362918A
CN110362918A CN201910629903.9A CN201910629903A CN110362918A CN 110362918 A CN110362918 A CN 110362918A CN 201910629903 A CN201910629903 A CN 201910629903A CN 110362918 A CN110362918 A CN 110362918A
Authority
CN
China
Prior art keywords
water reactor
pressurized water
domain
reactor containment
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910629903.9A
Other languages
English (en)
Other versions
CN110362918B (zh
Inventor
王明军
李俊
房迪
田文喜
秋穗正
苏光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910629903.9A priority Critical patent/CN110362918B/zh
Publication of CN110362918A publication Critical patent/CN110362918A/zh
Application granted granted Critical
Publication of CN110362918B publication Critical patent/CN110362918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

本发明公开了一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法,包括以下步骤:建立压水反应堆安全壳计算域简化几何模型;对压水反应堆安全壳计算域模型内的各部分进行网格划分,得到各部分的网格模型;通过将压水反应堆安全壳计算域内各部分的交界面设置为网格交界面实现各部分网格的拼接;在安全壳内部流体域网格模型范围内进行蒸汽冷凝计算;通过热传导关系式计算安全壳本体结构固体域内的温度分布;采用液膜模型计算安全壳外部流体域内的液膜的流场与温度场。

Description

一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法
技术领域
本发明属于核反应堆热工水力计算技术领域,具体涉及到一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法。
背景技术
安全壳作为压水堆核电站中防止放射性物质释放的最后一道屏障,所以保证安全壳的完整性对于保证核电厂的安全性是至关重要的。在这样的前提下,目前压水堆核电厂,例如AP1000,针对事故条件下的安全壳冷却设置了安全壳冷却系统。在发生反应堆一回路破口事故时,大量冷却剂闪蒸成为过热蒸汽,但随着冷却剂蒸汽的喷放,安全壳内的压力与温度急剧上升,这种现象对安全壳的完整性造成了很大的威胁。这时安全壳冷却系统的投入可以完成安全壳内部冷却剂蒸汽的降温,同时降低了安全壳内部的气体压力。安全壳冷却系统依靠喷雾,换热器或安全壳的钢制结构将安全壳内部的气体热量带走。其中,当喷放的冷却剂蒸汽接触到钢制安全壳表面时,蒸汽会通过接触温度较低的壁面而重新冷凝成液体,并在安全壳的内表面形成液膜;同时,在钢制安全壳的外表面同样存在着蒸发液膜将安全壳内部的冷凝热流导出安全壳。
在进行安全壳热工设计时,确定钢制安全壳的热量导出能力是至关重要的。在进行全尺寸实验较困难的前提下,使用计算流体力学手段来进行确定是有效且方便的。对于这两种关键热工水力现象的计算方法很多。但是计算多关注单侧的单个现象的计算,虽然能对安全壳的设计以及能力评估给予一定的指导性意见,但是这种单现象计算缺乏对于全局关键现象,例如冷凝液膜和蒸发液膜间的导热、安全壳外蒸发液膜与空气间的自然对流等现象的捕捉。
故而,使用计算流体力学手段对安全壳内外关键的热工水力现象进行耦合计算对于安全壳的热工设计是十分重要的。
发明内容
本发明的目的在于提供一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法,该方法能够运用计算流体力学手段对安全壳内的蒸汽冷凝以及安全壳外的液膜蒸发进行耦合计算。
为了达到上述目的,本发明采用如下技术方案:
本发明方法采用计算流体力学软件中的组分输运模型以及质量扩散理论来模拟安全壳内的蒸汽冷凝现象;运用该软件中的液膜模型模拟安全壳外部的蒸发液膜;同时根据傅里叶导热定律计算位于安全壳外部的蒸发液膜以及安全壳内部的冷凝液膜间的安全壳的温度分布。
一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法,包括如下步骤:
步骤1:建立压水反应堆安全壳计算域简化模型,包括压水反应堆安全壳内部流体域,压水反应堆安全壳外部流体域以及压水反应堆安全壳的本体结构固体域模型,具体步骤如下:
步骤1-1:运用几何模型建立软件建立压水反应堆安全壳内部流体域的简化几何模型,在计算中可将该流体域简化为长方体;
步骤1-2:运用几何模型建立软件建立压水反应堆安全壳本体结构的固体域简化几何模型,同步骤1-1,基于简化目的,将该固体域模型建立为与步骤1-1中建立的长方体流体域等长、等宽的长方体薄板;
步骤1-3:运用几何模型建立软件建立压水反应堆安全壳外部流体域的简化几何模型,同步骤1-1,基于简化的目的,将该流体域模型建立为与步骤1-1中建立的压水反应堆安全壳内部流体域简化几何模型全等的长方体;
步骤2:在步骤1中得到的压水反应堆安全壳内部流体域简化几何模型、压水反应堆安全壳的本体结构固体域简化几何模型以及压水反应堆安全壳外部流体域简化几何模型的基础上进行网格划分,具体步骤如下:
步骤2-1:进行压水反应堆安全壳内部流体域的网格划分,得到压水反应堆安全壳内部流体域网格模型,具体地,运用网格划分软件在步骤1-1中得到的压水反应堆安全壳内部流体域的简化几何模型的基础上进行六面体结构化网格划分;
步骤2-2:进行压水反应堆安全壳本体结构的固体域网格划分,得到压水反应堆安全壳本体结构固体域网格模型,具体地,运用网格划分软件在步骤1-2中得到的压水反应堆安全壳本体结构的固体域简化几何模型的基础上进行六面体结构化网格划分;
步骤2-3:进行压水反应堆安全壳外部流体域的网格划分,得到压水反应堆安全壳外部流体域网格模型,具体地,运用网格划分软件在步骤1-3中得到的压水反应堆安全壳外部流体域的简化几何模型的基础上进行六面体结构化网格的划分;
步骤3:将步骤2得到的三部分网格模型进行网格拼接得到完整的计算网格,具体地,将步骤2中得到的压水反应堆安全壳本体结构固体域网格模型和压水反应堆安全壳内部流体域网格模型的交界面,以及压水反应堆安全壳本体结构固体域网格模型和压水反应堆安全壳外部流体域网格模型的交界面设置为网格交界面,通过插值算法实现交界面两侧的网格模型的通讯;
步骤4:在压水反应堆安全壳内部流体域网格模型范围内进行蒸汽冷凝计算,具体步骤如下:
步骤4-1:将压水反应堆安全壳内部流体域网格模型的下部表面设置为流体域入口,并依据事故条件下的真实条件设置入口位置处混合物中空气和蒸汽的浓度、混合物的速度、压力以及混合物的温度;
步骤4-2:将压水反应堆安全壳内部流体域网格模型的上部表面设置为流体域的出口,并设置出口处混合物的压力;
步骤4-3:求解混合物的质量、动量、能量及组分输运方程,得到安全壳内部流体域的混合物速度场、温度场以及组分浓度场,其中求解组分浓度场的组分输运方程为:
方程(1)为组分输运方程的具体形式,其中:
ρ——混合物的密度,kg/m3
Yi——混合物中的第i相质量份额,%;
——混合物的速度,m/s;
t——时间,s;
Di,m——混合物中第i相的层流扩散系数m2·s-1
Di,t——混合物中第i相的湍流扩散系数m2·s-1
步骤4-4:在求得的混合物速度场、温度场与组分浓度场的基础上计算得到压水反应堆安全壳内部流体域网格模型与压水反应堆安全壳本体结构固体域网格模型的网格交界面处的蒸汽冷凝率为:
其中:
——蒸汽的冷凝率,kg/s;
ρ——混合物的密度,kg/m3
Dm——层流扩散系数m2·s-1
ws——蒸汽质量份额,%;
n——面法向量;
步骤4-5:由步骤4-4中求得的蒸汽冷凝率计算蒸汽冷凝向压水反应堆安全壳本体结构释放的热量,并得到包括网格交界面处温度分布的压水反应堆安全壳内部流体域的温度场;具体地,蒸汽冷凝释热功率为:
其中:
——蒸汽的质量流量,kg/s;
hfg——蒸汽汽化潜热,J/kg;
QE——蒸汽冷凝释热功率W;
步骤5:计算压水反应堆安全壳本体结构固体域内的温度分布,并得到压水反应堆安全壳本体结构固体域和压水反应堆安全壳外部流体域的交界面上的温度分布,具体地,在压水反应堆安全壳本体结构的固体域内,热量主要通过热传导的方式传递,根据傅里叶导热定律:
其中:
QE——蒸汽冷凝释热功率W;
λ——安全壳本体结构的导热系数,W/m2·K;
A——安全壳内部流体域和安全壳本体结构的交界面面积,m2
t——安全壳本体结构温度,K;
x——安全壳本体结构由内指向外的位置坐标,m;
由(4)式得到压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布;
步骤6:以步骤5中得到的压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布,采用液膜模型计算安全壳外部流体域内面液膜的速度场和温度场;具体步骤如下:
步骤6-1:将压水反应堆安全壳外部流体域上部面设置为蒸发液膜的进口,并设置初始的液膜高度;
步骤6-2:求解液膜的质量、动量和能量守恒方程,得到压水反应堆安全壳外部流体域内的速度场与温度场分布,从而确定外部液膜是否会蒸干而失去冷却压水反应堆安全壳本体结构的能力;具体地,液膜的质量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
ms——质量源项,kg/m3
ρl——液膜的密度,kg/m3
液膜的动量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
——液膜的平均速度,m/s;
PL——液膜内的压力,Pa;
ρl——液膜的密度,kg/m3
——重力加速度,m2/s2
vl——液膜的运动粘度,m2/s;
液膜的能量守恒方程为:
其中:
h——液膜高度m;
Tf——液膜温度,K;
——液膜的平均速度,m/s;
t——流体流动时间,s;
ρl——液膜的密度,kg/m3
Cp——定压比热容,J/kg·K;
λf——液膜的热导率,J/kg·m2
Ts——液膜与气体间交界面的温度,K;
Tw——压水反应堆安全壳外部流体域与压水反应堆安全壳本体结构固体域交界面的温度,K;
L——液膜蒸发的相变潜热,J/kg;
通过求解液膜的质量、动量和能量守恒方程,得到液膜的厚度变化情况,并评估压水反应堆安全壳外部流体域内液膜的冷却能力以及压水反应堆安全壳内部冷却剂蒸汽的冷凝情况。
本发明具有以下有益效果:
1)能够实现事故条件下的压水反应堆安全壳内外的冷凝和蒸发现象的耦合计算;
2)模型独立,方法通用性强,可以适应于不同类型的流体力学计算分析程序;
3)该计算模型能够耦合计算安全壳内外的冷凝和蒸发现象,可以给工程设计提供更准确的计算数据。
附图说明
图1为典型压水堆安全壳结构示意图。
图2为事故条件下压水堆安全壳内外发生的关键热工水力现象。
图3为三部分计算域正视图。
图4为本发明流程图。
具体实施方式
以下结合图4所示流程图,以典型压水堆安全壳内外冷凝与蒸发耦合计算过程为例,对本发明作进一步的详细描述,另外典型压水反应堆安全壳结构如图1所示。事故条件下,压水反应堆安全壳内外的关键热工水力现象如图2所示。
本发明一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法,包括如下步骤:
步骤1:建立压水反应堆安全壳计算域简化模型,包括压水反应堆安全壳内部流体域,压水反应堆安全壳外部流体域以及压水反应堆安全壳的本体结构固体域模型,三部分计算域模型的正视图如图3所示。具体步骤如下:
步骤1-1:运用几何模型建立软件solidworks建立压水反应堆安全壳内部流体域的简化几何模型,在计算中可将该流体域简化为长方体;
步骤1-2:运用几何模型建立软件solidworks建立压水反应堆安全壳本体结构的固体域简化几何模型,同步骤1-1,基于简化目的,将该固体域模型建立为与步骤1-1中建立的长方体流体域等长、等宽的长方体薄板;
步骤1-3:运用几何模型建立软件solidworks建立压水反应堆安全壳外部流体域的简化几何模型,同步骤1-1,基于简化的目的,将该流体域模型建立为与步骤1-1中建立的压水反应堆安全壳内部流体域简化几何模型全等的长方体;
步骤2:在步骤1中得到的压水反应堆安全壳内部流体域简化几何模型、压水反应堆安全壳的本体结构固体域简化几何模型以及压水反应堆安全壳外部流体域简化几何模型的基础上运用ANSYS-ICEM进行网格划分,具体步骤如下:
步骤2-1:进行压水反应堆安全壳内部流体域的网格划分,得到压水反应堆安全壳内部流体域网格模型,具体地,运用ANSYS-ICEM在步骤1-1中得到的压水反应堆安全壳内部流体域的简化几何模型的基础上进行六面体结构化网格划分;
步骤2-2:进行压水反应堆安全壳本体结构的固体域网格划分,得到压水反应堆安全壳本体结构固体域网格模型,具体地,运用ANSYS-ICEM在步骤1-2中得到的压水反应堆安全壳本体结构的固体域简化几何模型的基础上进行六面体结构化网格划分;
步骤2-3:进行压水反应堆安全壳外部流体域的网格划分,得到压水反应堆安全壳外部流体域网格模型,具体地,运用ANSYS-ICEM在步骤1-3中得到的压水反应堆安全壳外部流体域的简化几何模型的基础上进行六面体结构化网格的划分;
步骤3:将步骤2得到的三部分网格模型进行网格拼接得到完整的计算网格,具体地,将步骤2中得到的安全壳内部流体域网格模型、安全壳本体结构固体域网格模型和安全壳外部流体域网格模型导入ANSYS-FLUENT,并将安全壳本体结构固体域网格模型和和安全壳内部流体域网格模型的交界面,以及安全壳本体结构固体域网格模型和安全壳外部流体域网格模型的交界面设置为网格交界面,通过ANSYS-FLUENT自带的插值算法实现交界面两侧的网格模型的通讯;
步骤4:在压水反应堆安全壳内部流体域网格模型范围内进行蒸汽冷凝计算,具体步骤如下:
步骤4-1:将压水反应堆安全壳内部流体域网格模型的下部表面设置为流体域入口,并依据事故条件下的真实条件设置入口位置处混合物中空气和蒸汽的浓度、混合物的速度、压力以及混合物的温度;
步骤4-2:将压水反应堆安全壳内部流体域网格模型的上部表面设置为流体域的出口,并设置出口处混合物的压力;
步骤4-3:求解混合物的质量、动量、能量及组分输运方程,得到安全壳内部流体域的混合物速度场、温度场以及组分浓度场,其中求解组分浓度场的组分输运方程为:
方程(1)为组分输运方程的具体形式,其中:
ρ——混合物的密度,kg/m3
Yi——混合物中的第i相质量份额,%;
——混合物的速度,m/s;
t——时间,s;
Di,m——混合物中第i相的层流扩散系数m2·s-1
Di,t——混合物中第i相的湍流扩散系数m2·s-1
步骤4-4:在求得的混合物速度场、温度场与组分浓度场的基础上计算得到压水反应堆安全壳内部流体域网格模型与压水反应堆安全壳本体结构固体域网格模型的网格交界面处的蒸汽冷凝率为:
其中:
——蒸汽的冷凝率,kg/s;
ρ——混合物的密度,kg/m3
Dm——层流扩散系数m2·s-1
ws——蒸汽质量份额,%;
n——面法向量;
步骤4-5:由步骤4-4中求得的蒸汽冷凝率计算蒸汽冷凝向压水反应堆安全壳本体结构释放的热量,并得到包括网格交界面处温度分布的压水反应堆安全壳内部流体域的温度场;具体地,蒸汽冷凝释热功率为:
其中:
——蒸汽的质量流量,kg/s;
hfg——蒸汽汽化潜热,J/kg;
QE——蒸汽冷凝释热功率W;
步骤5:计算压水反应堆安全壳本体结构固体域内的温度分布,并得到压水反应堆安全壳本体结构固体域和压水反应堆安全壳外部流体域的交界面上的温度分布,具体地,在压水反应堆安全壳本体结构的固体域内,热量主要通过热传导的方式传递,根据傅里叶导热定律:
其中:
QE——蒸汽冷凝释热功率W;
λ——安全壳本体结构的导热系数,W/m2·K;
A——安全壳内部流体域和安全壳本体结构的交界面面积,m2
t——安全壳本体结构温度,K;
x——安全壳本体结构由内指向外的位置坐标,m;
由(4)式得到压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布;
步骤6:以步骤5中得到的压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布,采用ANSYS-FLUENT中的欧拉液膜模型计算安全壳外部流体域内面液膜的速度场和温度场。具体步骤如下:
步骤6-1:将压水反应堆安全壳外部流体域上部面设置为蒸发液膜的进口,并设置初始的液膜高度为5m;
步骤6-2:求解液膜的质量、动量和能量守恒方程,得到压水反应堆安全壳外部流体域内的速度场与温度场分布,从而确定外部液膜是否会蒸干而失去冷却压水反应堆安全壳本体结构的能力;具体地,液膜的质量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
ms——质量源项,kg/m3
ρl——液膜的密度,kg/m3
液膜的动量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
——液膜的平均速度,m/s;
PL——液膜内的压力,Pa;
ρl——液膜的密度,kg/m3
——重力加速度,m2/s2
vl——液膜的运动粘度,m2/s;
液膜的能量守恒方程为:
其中:
h——液膜高度m;
Tf——液膜温度,K;
——液膜的平均速度,m/s;
t——流体流动时间,s;
ρl——液膜的密度,kg/m3
Cp——定压比热容,J/kg·K;
λf——液膜的热导率,J/kg·m2
Ts——液膜与气体间交界面的温度,K;
Tw——压水反应堆安全壳外部流体域与压水反应堆安全壳本体结构固体域交界面的温度,K;
L——液膜蒸发的相变潜热,J/kg;
通过求解液膜的质量、动量和能量守恒方程,得到液膜的厚度变化情况,并评估压水反应堆安全壳外部流体域内液膜的冷却能力以及压水反应堆安全壳内部冷却剂蒸汽的冷凝情况。

Claims (1)

1.一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法,其特征在于:包括如下步骤:
步骤1:建立压水反应堆安全壳计算域简化模型,包括压水反应堆安全壳内部流体域,压水反应堆安全壳外部流体域以及压水反应堆安全壳的本体结构固体域模型,具体步骤如下:
步骤1-1:运用几何模型建立软件建立压水反应堆安全壳内部流体域的简化几何模型,在计算中可将该流体域简化为长方体;
步骤1-2:运用几何模型建立软件建立压水反应堆安全壳本体结构的固体域简化几何模型,同步骤1-1,基于简化目的,将该固体域模型建立为与步骤1-1中建立的长方体流体域等长、等宽的长方体薄板;
步骤1-3:运用几何模型建立软件建立压水反应堆安全壳外部流体域的简化几何模型,同步骤1-1,基于简化的目的,将该流体域模型建立为与步骤1-1中建立的压水反应堆安全壳内部流体域简化几何模型全等的长方体;
步骤2:在步骤1中得到的压水反应堆安全壳内部流体域简化几何模型、压水反应堆安全壳的本体结构固体域简化几何模型以及压水反应堆安全壳外部流体域简化几何模型的基础上进行网格划分,具体步骤如下:
步骤2-1:进行压水反应堆安全壳内部流体域的网格划分,得到压水反应堆安全壳内部流体域网格模型,具体地,运用网格划分软件在步骤1-1中得到的压水反应堆安全壳内部流体域的简化几何模型的基础上进行六面体结构化网格划分;
步骤2-2:进行压水反应堆安全壳本体结构的固体域网格划分,得到压水反应堆安全壳本体结构固体域网格模型,具体地,运用网格划分软件在步骤1-2中得到的压水反应堆安全壳本体结构的固体域简化几何模型的基础上进行六面体结构化网格划分;
步骤2-3:进行压水反应堆安全壳外部流体域的网格划分,得到压水反应堆安全壳外部流体域网格模型,具体地,运用网格划分软件在步骤1-3中得到的压水反应堆安全壳外部流体域的简化几何模型的基础上进行六面体结构化网格的划分;
步骤3:将步骤2得到的三部分网格模型进行网格拼接得到完整的计算网格,具体地,将步骤2中得到的压水反应堆安全壳本体结构固体域网格模型和压水反应堆安全壳内部流体域网格模型的交界面,以及压水反应堆安全壳本体结构固体域网格模型和压水反应堆安全壳外部流体域网格模型的交界面设置为网格交界面,通过插值算法实现交界面两侧的网格模型的通讯;
步骤4:在压水反应堆安全壳内部流体域网格模型范围内进行蒸汽冷凝计算,具体步骤如下:
步骤4-1:将压水反应堆安全壳内部流体域网格模型的下部表面设置为流体域入口,并依据事故条件下的真实条件设置入口位置处混合物中空气和蒸汽的浓度、混合物的速度、压力以及混合物的温度;
步骤4-2:将压水反应堆安全壳内部流体域网格模型的上部表面设置为流体域的出口,并设置出口处混合物的压力;
步骤4-3:求解混合物的质量、动量、能量及组分输运方程,得到安全壳内部流体域的混合物速度场、温度场以及组分浓度场,其中求解组分浓度场的组分输运方程为:
方程(1)为组分输运方程的具体形式,其中:
ρ——混合物的密度,kg/m3
Yi——混合物中的第i相质量份额,%;
——混合物的速度,m/s;
t——时间,s;
Di,m——混合物中第i相的层流扩散系数m2·s-1
Di,t——混合物中第i相的湍流扩散系数m2·s-1
步骤4-4:在求得的混合物速度场、温度场与组分浓度场的基础上计算得到压水反应堆安全壳内部流体域网格模型与压水反应堆安全壳本体结构固体域网格模型的网格交界面处的蒸汽冷凝率为:
其中:
——蒸汽冷凝率,kg/s;
ρ——混合物的密度,kg/m3
Dm——层流扩散系数m2·s-1
ws——蒸汽质量份额,%;
n——面法向量;
步骤4-5:由步骤4-4中求得的蒸汽冷凝率计算蒸汽冷凝向压水反应堆安全壳本体结构释放的热量,并得到包括网格交界面处温度分布的压水反应堆安全壳内部流体域的温度场;具体地,蒸汽冷凝释热功率为:
其中:
——蒸汽的质量流量,kg/s;
hfg——蒸汽汽化潜热,J/kg;
QE——蒸汽冷凝释热功率W;
步骤5:计算压水反应堆安全壳本体结构固体域内的温度分布,并得到压水反应堆安全壳本体结构固体域和压水反应堆安全壳外部流体域的交界面上的温度分布,具体地,在压水反应堆安全壳本体结构的固体域内,热量主要通过热传导的方式传递,根据傅里叶导热定律:
其中:
QE——蒸汽冷凝释热功率W;
λ——安全壳本体结构的导热系数,W/m2·K;
A——安全壳内部流体域和安全壳本体结构的交界面面积,m2
t——安全壳本体结构温度,K;
x——安全壳本体结构由内指向外的位置坐标,m;
由(4)式得到压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布;
步骤6:以步骤5中得到的压水反应堆安全壳本体结构固体域与压水反应堆安全壳外部流体域交界面处的温度分布,采用液膜模型计算安全壳外部流体域内面液膜的速度场和温度场;具体步骤如下:
步骤6-1:将压水反应堆安全壳外部流体域上部面设置为蒸发液膜的进口,并设置初始的液膜高度;
步骤6-2:求解液膜的质量、动量和能量守恒方程,得到压水反应堆安全壳外部流体域内的速度场与温度场分布,从而确定外部液膜是否会蒸干而失去冷却压水反应堆安全壳本体结构的能力;具体地,液膜的质量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
ms——质量源项,kg/m3
ρl——液膜的密度,kg/m3
液膜的动量守恒方程为:
其中:
h——液膜高度m;
t——流体流动时间,s;
——液膜的平均速度,m/s;
PL——液膜内的压力,Pa;
ρl——液膜的密度,kg/m3
——重力加速度,m2/s2
vl——液膜的运动粘度,m2/s;
液膜的能量守恒方程为:
其中:
h——液膜高度m;
Tf——液膜温度,K;
——液膜的平均速度,m/s;
t——流体流动时间,s;
ρl——液膜的密度,kg/m3
Cp——定压比热容,J/kg·K;
λf——液膜的热导率,J/kg·m2
Ts——液膜与气体间交界面的温度,K;
Tw——压水反应堆安全壳外部流体域与压水反应堆安全壳本体结构固体域交界面的温度,K;
L——液膜蒸发的相变潜热,J/kg;
通过求解液膜的质量、动量和能量守恒方程,得到液膜的厚度变化情况,并评估压水反应堆安全壳外部流体域内液膜的冷却能力以及压水反应堆安全壳内部冷却剂蒸汽的冷凝情况。
CN201910629903.9A 2019-07-12 2019-07-12 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法 Active CN110362918B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910629903.9A CN110362918B (zh) 2019-07-12 2019-07-12 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910629903.9A CN110362918B (zh) 2019-07-12 2019-07-12 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法

Publications (2)

Publication Number Publication Date
CN110362918A true CN110362918A (zh) 2019-10-22
CN110362918B CN110362918B (zh) 2020-12-22

Family

ID=68219037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910629903.9A Active CN110362918B (zh) 2019-07-12 2019-07-12 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法

Country Status (1)

Country Link
CN (1) CN110362918B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241761A (zh) * 2020-02-05 2020-06-05 中国海洋大学 一种风力机叶片防冰涂料涂抹位置的确定方法
CN111261232A (zh) * 2020-01-14 2020-06-09 西安热工研究院有限公司 反应堆一回路冷却剂流场、温度场和应力场耦合计算方法
CN111724924A (zh) * 2020-05-28 2020-09-29 西安交通大学 一种热工水力程序与安全壳程序的耦合方法
CN111832201A (zh) * 2020-06-23 2020-10-27 西安交通大学 液态金属螺旋管蒸汽发生器两侧冷却与蒸发耦合计算方法
CN113486483A (zh) * 2021-07-12 2021-10-08 西安交通大学 一种反应堆小破口多维度耦合分析方法
CN113609795A (zh) * 2021-08-02 2021-11-05 西安交通大学 一种高温气冷堆螺旋管蒸汽发生器热工水力特性三维计算方法
CN114528734A (zh) * 2022-02-18 2022-05-24 中国核动力研究设计院 具有注水冷却系统的反应堆压力容器保温层热损评估方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063549A (zh) * 2011-01-07 2011-05-18 西安交通大学 一种机床主轴的流固热耦合数值仿真方法
CN102831276A (zh) * 2012-08-31 2012-12-19 中国能源建设集团广东省电力设计研究院 环境风对超大型自然通风冷却塔热力性能影响的计算方法
JP2015215772A (ja) * 2014-05-12 2015-12-03 株式会社東芝 伝熱シミュレーション装置および伝熱シミュレーション方法
CN105526729A (zh) * 2015-12-01 2016-04-27 中国科学院上海技术物理研究所 基于cfd技术的轻量微型同轴脉冲管制冷机的模拟分析方法
CN105677994A (zh) * 2016-01-12 2016-06-15 北京航空航天大学 流体-固体耦合传热的松耦合建模方法
CN107291969A (zh) * 2016-12-19 2017-10-24 沈阳工业大学 一种变压器绕组温升计算的体网耦合分析法
CN107506562A (zh) * 2017-09-29 2017-12-22 西安科技大学 一种水润滑橡胶轴承双向热流固耦合计算方法
US20180053571A1 (en) * 2013-10-28 2018-02-22 Bwxt Mpower, Inc. Pwr decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
CN108563840A (zh) * 2018-03-23 2018-09-21 西安交通大学 一种核反应堆蒸汽爆炸综合分析方法
CN109190229A (zh) * 2018-08-24 2019-01-11 西安交通大学 一种核电厂钢制安全壳内蒸汽冷凝回流模拟方法
CN109670216A (zh) * 2018-11-30 2019-04-23 中国船舶重工集团公司第七〇九研究所 基于cfd技术的非能动余热排出冷凝器位置优化设计方法
CN109711105A (zh) * 2019-01-31 2019-05-03 西安交通大学 计算汽水分离干燥器系统内波形板干燥器组件蒸汽湿度负荷分布不均匀系数的方法
CN109902433A (zh) * 2019-03-15 2019-06-18 西安交通大学 压水堆非能动安全壳余热排出系统跨维度耦合方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063549A (zh) * 2011-01-07 2011-05-18 西安交通大学 一种机床主轴的流固热耦合数值仿真方法
CN102831276A (zh) * 2012-08-31 2012-12-19 中国能源建设集团广东省电力设计研究院 环境风对超大型自然通风冷却塔热力性能影响的计算方法
US20180053571A1 (en) * 2013-10-28 2018-02-22 Bwxt Mpower, Inc. Pwr decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
JP2015215772A (ja) * 2014-05-12 2015-12-03 株式会社東芝 伝熱シミュレーション装置および伝熱シミュレーション方法
CN105526729A (zh) * 2015-12-01 2016-04-27 中国科学院上海技术物理研究所 基于cfd技术的轻量微型同轴脉冲管制冷机的模拟分析方法
CN105677994A (zh) * 2016-01-12 2016-06-15 北京航空航天大学 流体-固体耦合传热的松耦合建模方法
CN107291969A (zh) * 2016-12-19 2017-10-24 沈阳工业大学 一种变压器绕组温升计算的体网耦合分析法
CN107506562A (zh) * 2017-09-29 2017-12-22 西安科技大学 一种水润滑橡胶轴承双向热流固耦合计算方法
CN108563840A (zh) * 2018-03-23 2018-09-21 西安交通大学 一种核反应堆蒸汽爆炸综合分析方法
CN109190229A (zh) * 2018-08-24 2019-01-11 西安交通大学 一种核电厂钢制安全壳内蒸汽冷凝回流模拟方法
CN109670216A (zh) * 2018-11-30 2019-04-23 中国船舶重工集团公司第七〇九研究所 基于cfd技术的非能动余热排出冷凝器位置优化设计方法
CN109711105A (zh) * 2019-01-31 2019-05-03 西安交通大学 计算汽水分离干燥器系统内波形板干燥器组件蒸汽湿度负荷分布不均匀系数的方法
CN109902433A (zh) * 2019-03-15 2019-06-18 西安交通大学 压水堆非能动安全壳余热排出系统跨维度耦合方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L. SAVOLDI ET AL.,: "CFD Analysis of Different Cooling Options for a Gyrotron Cavity", 《EEE TRANSACTIONS ON PLASMA SCIENCE》 *
左巧林,秋穗正,王明军: "恰希玛核电厂压力容器各关键部位在PTS瞬态下的温度场研究", 《原子能科学技术》 *
袁昭君: "非能动安全壳冷却系统热工水力数值方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑 工业通用技术及设备》 *
赵方瑜: "双层安全壳内工质流动与传热的数值模拟", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261232A (zh) * 2020-01-14 2020-06-09 西安热工研究院有限公司 反应堆一回路冷却剂流场、温度场和应力场耦合计算方法
CN111241761A (zh) * 2020-02-05 2020-06-05 中国海洋大学 一种风力机叶片防冰涂料涂抹位置的确定方法
CN111241761B (zh) * 2020-02-05 2022-10-28 中国海洋大学 一种风力机叶片防冰涂料涂抹位置的确定方法
CN111724924A (zh) * 2020-05-28 2020-09-29 西安交通大学 一种热工水力程序与安全壳程序的耦合方法
CN111832201A (zh) * 2020-06-23 2020-10-27 西安交通大学 液态金属螺旋管蒸汽发生器两侧冷却与蒸发耦合计算方法
CN113486483A (zh) * 2021-07-12 2021-10-08 西安交通大学 一种反应堆小破口多维度耦合分析方法
CN113486483B (zh) * 2021-07-12 2022-12-09 西安交通大学 一种反应堆小破口多维度耦合分析方法
CN113609795A (zh) * 2021-08-02 2021-11-05 西安交通大学 一种高温气冷堆螺旋管蒸汽发生器热工水力特性三维计算方法
CN114528734A (zh) * 2022-02-18 2022-05-24 中国核动力研究设计院 具有注水冷却系统的反应堆压力容器保温层热损评估方法

Also Published As

Publication number Publication date
CN110362918B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN110362918A (zh) 一种压水反应堆安全壳两侧冷凝与蒸发耦合计算方法
Zhong et al. Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces
CN109902433B (zh) 压水堆非能动安全壳余热排出系统跨维度耦合方法
Wang et al. A comprehensive parametric study on integrated thermal and mechanical performances of molten-salt-based thermocline tank
CN109190229B (zh) 一种核电厂钢制安全壳内蒸汽冷凝回流模拟方法
Chen et al. Experimental study of the steam condensate dripping behavior on the containment dome
Gu et al. Analysis of convective condensation heat transfer for moist air on a three-dimensional finned tube
Lu et al. Numerical and experimental investigation on the baffle design in secondary side of the PRHR HX in AP1000
Kanani et al. Numerical modelling of film cooling with and without mist injection
Carlucci Computations of flow and heat transfer in power plant condensers
Stefan et al. Jet type model for the three‐dimensional thermal plume in a crosscurrent and under wind
Song et al. Optimization of flue gas turbulent heat transfer with condensation in a tube
Ragui et al. Natural convection heat transfer in a differentially heated enclosure with adiabatic partitions and filled with a Bingham fluid
Yang et al. Experimental investigation on steam bubble interfacial heat transfer in large range Reynolds number and water subcooling
Li et al. Simulations for cooling effect of PCCS in hot leg SB-LOCA of 1000 MW PWR
Wang et al. Development of CHF models for inner and outer RPV gaps in a meltdown severe accident
Cao et al. Effects of wall fins patterns on the flue gas performance of condensing heat exchanger
Wang et al. A study of GOTHIC 8.0 code application to AP1000 containment response
Qi et al. Experimental and CFD investigation of liquid flow outside evaporation tubes and its influence on heat transfer
Cai et al. Numerical study on the condensation characteristics of vapor with non-condensable gas on inclined walls inside containment
Iordanou et al. Computational Fluid Dynamics (CFD) Investigations of the Effect of Placing a Metallic Mesh in the Channels of a Passive Solar Collector Model
Zhao et al. An efficient modeling method for thermal stratification simulation in a BWR suppression pool
Yufeng et al. Data Analysis of 64 Rod Bundles Reflood Heat Transfer Experiment
Li et al. CFD Simulation of Passive Containment Cooling System in Hot Leg SB-LOCA for 1000MW PWR
LIANG et al. Numerical simulation study on drifts and salt deposition in the huge salt water cooling tower group

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant