CN110359022A - 一种优化载流子传导层电荷分离效率的方法 - Google Patents

一种优化载流子传导层电荷分离效率的方法 Download PDF

Info

Publication number
CN110359022A
CN110359022A CN201910612490.3A CN201910612490A CN110359022A CN 110359022 A CN110359022 A CN 110359022A CN 201910612490 A CN201910612490 A CN 201910612490A CN 110359022 A CN110359022 A CN 110359022A
Authority
CN
China
Prior art keywords
transparent conductive
target
substrate
conducting shell
charge efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910612490.3A
Other languages
English (en)
Other versions
CN110359022B (zh
Inventor
云山
郭探
洪坤
陈静
李彦兴
李华举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201910612490.3A priority Critical patent/CN110359022B/zh
Publication of CN110359022A publication Critical patent/CN110359022A/zh
Application granted granted Critical
Publication of CN110359022B publication Critical patent/CN110359022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种优化载流子传导层电荷分离效率的方法,包括以下步骤:S1.用清洗剂超声清洗基材,清洗后干燥得透明导电衬底;S2.将S1中透明导电衬底送入沉积室中,通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与透明导电衬底的距离为8cm,沉积载流子传输层,沉积时间15min;沉积完成之后将样品托盘送入刻蚀室,将采用直流等离子刻蚀透明导电衬底。与现有技术相比,工艺方面更加简单,同时能够与磁控溅射结合连续制备,不需要增加过多的成本,经济上可行;性能方面,界面处面积增加即可以提供更多的载流子分离与传输通道,抑制界面处的电子‑空穴对复合,从而提升样品的光电化学性能。

Description

一种优化载流子传导层电荷分离效率的方法
技术领域
本发明涉及功能材料技术领域,特别涉及一种优化载流子传导层电荷分离效率的方法。
背景技术
载流子传输层一般具有以下几个作用:首先,与钙钛矿吸收材料形成欧姆接触,降低电极和吸收层能级势垒;其次,及时有效的分离光生电子并传输到电极,同时阻挡光生空穴传输,减少载流子在界面处的复合。通常采用n型半导体作为电子传输层,电子在n型半导体中传输受晶格热振动造成的散射作用和电池内建电场驱动产生的定向漂移这两个过程决定。对于禁带宽度较小的直接带隙半导体,电子的有效质量较小,因而载流子迁移率高。因此在无机半导体中,缺陷和杂质会对它的电子传输能力产生很大的影响。例如使用范围最广,使用率最高的TiO2,薄膜中引入适量的氧空位可以减小电子的有效质量和散射概率,增加它的电子迁移率。而在有机半导体中,本身的能带是不连续的,电子的传递主要靠π-π*共轭体系,电子在有机物分子中靠跳跃完成迁移。由于电子的传递过程伴随着有核运动,所以有机半导体材料中的载流子迁移率正常低于无机半导体材料。
目前提高载流子传输层方法往往通过调整制备参数改善薄膜本身的性质,例如构造晶面,掺杂元素,界面工程,引入有机物等。这些方法往往需要复杂的和精细的参数调控,对操作人员,操作设备都很高的要求,不适用于产业化推广。为此,我们提出一种优化载流子传导层电荷分离效率的方法。
发明内容
本发明的主要目的在于提供一种优化载流子传导层电荷分离效率的方法,可以有效解决背景技术中的问题。
为实现上述目的,本发明采取的技术方案为:
一种优化载流子传导层电荷分离效率的方法,包括以下步骤:
S1.用清洗剂超声清洗基材,清洗后干燥得透明导电衬底;
S2.将S1中透明导电衬底送入沉积室中,通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与透明导电衬底的距离为8cm,沉积载流子传输层,沉积时间15min;沉积完成之后将样品托盘送入刻蚀室,将采用直流等离子刻蚀透明导电衬底。
进一步地,所述基材为FTO、ITO、AZO或ATO透明导电电极。
进一步地,所述清洗剂为无水乙醇和丙酮,所述干燥方法为压缩空气吹干。
进一步地,所述靶材为纯Ti靶材、纯Zn靶材、纯Sn靶材、纯Ni靶材或纯Co靶材。
进一步地,S2中所述刻蚀室条件为:刻蚀室真空度抽至5 Pa以下,气氛为氩气,气体流速为100 sccm,气体压力为10 Pa,电极与基底的距离为7-20 cm,初始基底温度为15-35℃,刻蚀功率为100-500 W,刻蚀时间为5-30min。
进一步地,所述氧气和氩气纯度大于99.99%。
进一步地,所述载流子传输层为TiO2、ZnO、SnO2、NiOx或CoOx
与现有技术相比,本发明具有如下有益效果:
一、本发明通过等离子刻蚀,在载流子传导层表面构造缺陷,增加比表面积。与现有技术相比,工艺方面更加简单,同时能够与磁控溅射结合连续制备,不需要增加过多的成本,经济上可行;性能方面,界面处面积增加即可以提供更多的载流子分离与传输通道,抑制界面处的电子-空穴对复合,从而提升样品的光电化学性能。
二、直流电源刻蚀功耗低,工艺简单,操作过程简单,工艺参数明确,容错率高,能够连续大尺寸制备。
附图说明
图1未刻蚀透明FTO导电电极AFM及粗糙度;
图2刻蚀之后FTO透明导电电极AFM及粗糙度;
图3刻蚀之后基于SnO2载流子传输层BiVO4光电流。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
以下实施例所用的设备为北京创世威纳科技有限公司组装的型号为MSP-3200三靶共溅射镀膜机,且设备置于22℃恒温房间内,所以以下实施例涉及到的初始基底温度均为22℃,不做重复限定;
粗糙度检测方法:参照GB/T 31227-2014 原子力显微镜测量溅射薄膜表面粗糙度的方法。
实施例 1
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30分钟后,送入溅射腔体,然后打开闸门装载到真空度(本底真空度)已达到10-4 Pa以下的沉积腔室中。通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与基材的距离为8cm,沉积载流子传输层。溅射纯Sn靶材,沉积时间5min。沉积完成之后将样品托盘送入刻蚀沉积室。首先将本地真空度抽至5 Pa以下。采用直流等离子刻蚀透明导电衬底,气氛为高纯氩气,气体流速为100sccm,气体压力为10 Pa,电极与基底的距离为15 cm,刻蚀功率为150 W,刻蚀时间为30min。刻蚀完成之后,继续送入腔体沉积后续薄膜。
实施例 2
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30分钟后,送入溅射腔体,然后打开闸门装载到真空度(本底真空度)已达到10-4 Pa Pa以下的沉积腔室中。通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与基材的距离为8cm,沉积载流子传输层。溅射纯Ti靶材,沉积时间15min。沉积完成之后将样品托盘送入刻蚀沉积室。首先将本地真空度抽至5 Pa以下。采用直流等离子刻蚀透明导电衬底,气氛为高纯氩气,气体流速为100 sccm,气体压力为10 Pa,电极与基底的距离为15 cm,刻蚀功率为150 W,刻蚀时间为30min。刻蚀完成之后,继续送入腔体沉积后续薄膜。
实施例 3
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30分钟后,送入溅射腔体,然后打开闸门装载到真空度(本底真空度)已达到10-4 Pa Pa以下的沉积腔室中。通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与基材的距离为8cm,沉积载流子传输层。溅射纯Sn靶材,沉积时间5min。沉积完成之后将样品托盘送入刻蚀沉积室。首先将本地真空度抽至5 Pa以下。采用直流等离子刻蚀透明导电衬底,气氛为高纯氩气,气体流速为100 sccm,气体压力为10 Pa,电极与基底的距离为15 cm,刻蚀功率为50 W,刻蚀时间为30min。刻蚀完成之后,继续送入腔体沉积后续薄膜。
实施例 4
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30分钟后,送入溅射腔体,然后打开闸门装载到真空度(本底真空度)已达到10-4 Pa Pa以下的沉积腔室中。通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与基材的距离为8cm,沉积载流子传输层。溅射纯Sn靶材,沉积时间5min。沉积完成之后将样品托盘送入刻蚀沉积室。首先将本地真空度抽至5 Pa以下。采用直流等离子刻蚀透明导电衬底,气氛为高纯氩气,气体流速为100 sccm,气体压力为10 Pa,电极与基底的距离为15 cm,刻蚀功率为150 W,刻蚀时间为10min。刻蚀完成之后,继续送入腔体沉积后续薄膜。
实施例5
将基材(FTO玻璃)超声清洗,分别用丙酮和无水乙醇超声清洗基材各30分钟后,送入溅射腔体,然后打开闸门装载到真空度(本底真空度)已达到10-4 Pa Pa以下的沉积腔室中。通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与基材的距离为8cm,沉积载流子传输层。溅射纯Sn靶材,沉积时间5min。沉积完成之后将样品托盘送入刻蚀沉积室。首先将本地真空度抽至5 Pa以下。采用直流等离子刻蚀透明导电衬底,气氛为高纯氩气,气体流速为180 sccm,气体压力为10 Pa,电极与基底的距离为15 cm,刻蚀功率为150 W,刻蚀时间为30min。刻蚀完成之后,继续送入腔体沉积后续薄膜。
以实施例4处理后的导电电极为例,说明继续送入腔体沉积后续薄膜的过程:
实施例4处理后的FTO导电电极固定在样品托盘上送入沉积室,采用直流磁控溅射法沉积钒酸铋薄膜,具体条件如下:沉积室真空抽至10-4Pa以下时,溅射气压为纯氩气,钒酸铋陶瓷靶材与FTO导电电极的距离为10cm,气压为0.6 Pa,溅射功率为150 W,沉积时间30min,沉积结束后,等温度降回到室温,处理好的钒酸铋薄膜进行性能测试,性能测试方法是由标准三电极电化学工作站测试,对电极是铂丝,参比电极银/氯化银,工作电极钒酸铋薄膜。光强是标准太阳能光谱,电解液是0.5 mol/L NaSO4溶液。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种优化载流子传导层电荷分离效率的方法,其特征在于:包括以下步骤:
S1.用清洗剂超声清洗基材,清洗后干燥得透明导电衬底;
S2.将S1中透明导电衬底送入沉积室中,通入比例为1:6的氧气与氩气,控制总压强为1Pa,靶材与透明导电衬底的距离为8cm,沉积载流子传输层,沉积时间15min;沉积完成之后将样品托盘送入刻蚀室,将采用直流等离子刻蚀透明导电衬底。
2.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:所述基材为FTO、ITO、AZO或ATO透明导电电极。
3.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:所述清洗剂为无水乙醇和丙酮,所述干燥方法为压缩空气吹干。
4.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:所述靶材为纯Ti靶材、纯Zn靶材、纯Sn靶材、纯Ni靶材或纯Co靶材。
5.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:S2中所述刻蚀室条件为:刻蚀室真空度抽至5 Pa以下,气氛为氩气,气体流速为100 sccm,气体压力为10 Pa,电极与基底的距离为7-20 cm,初始基底温度为15-35℃,刻蚀功率为100-500 W,刻蚀时间为5-30min。
6.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:所述氧气和氩气纯度大于99.99%。
7.根据权利要求1所述的一种优化载流子传导层电荷分离效率的方法,其特征在于:所述载流子传输层为TiO2、ZnO、SnO2、NiOx或CoOx
CN201910612490.3A 2019-07-09 2019-07-09 一种优化载流子传导层电荷分离效率的方法 Active CN110359022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910612490.3A CN110359022B (zh) 2019-07-09 2019-07-09 一种优化载流子传导层电荷分离效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910612490.3A CN110359022B (zh) 2019-07-09 2019-07-09 一种优化载流子传导层电荷分离效率的方法

Publications (2)

Publication Number Publication Date
CN110359022A true CN110359022A (zh) 2019-10-22
CN110359022B CN110359022B (zh) 2020-10-27

Family

ID=68218384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910612490.3A Active CN110359022B (zh) 2019-07-09 2019-07-09 一种优化载流子传导层电荷分离效率的方法

Country Status (1)

Country Link
CN (1) CN110359022B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308882A (zh) * 2008-07-22 2008-11-19 东莞宏威数码机械有限公司 透明导电氧化物绒面的制备方法
CN104576775A (zh) * 2014-12-11 2015-04-29 浙江大学 一种具有高绒度的fzo透明导电薄膜的制备方法
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
KR20180090475A (ko) * 2017-02-03 2018-08-13 세종대학교산학협력단 그래핀 양자점 중간층을 포함하는 전자 소자 및 그의 제조방법
CN109301093A (zh) * 2018-09-30 2019-02-01 华南理工大学 一种导电可透光钙钛矿量子点薄膜的制备方法
CN109768165A (zh) * 2019-01-11 2019-05-17 电子科技大学 一种钙钛矿太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308882A (zh) * 2008-07-22 2008-11-19 东莞宏威数码机械有限公司 透明导电氧化物绒面的制备方法
CN104576775A (zh) * 2014-12-11 2015-04-29 浙江大学 一种具有高绒度的fzo透明导电薄膜的制备方法
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
KR20180090475A (ko) * 2017-02-03 2018-08-13 세종대학교산학협력단 그래핀 양자점 중간층을 포함하는 전자 소자 및 그의 제조방법
CN109301093A (zh) * 2018-09-30 2019-02-01 华南理工大学 一种导电可透光钙钛矿量子点薄膜的制备方法
CN109768165A (zh) * 2019-01-11 2019-05-17 电子科技大学 一种钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN110359022B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN102625953B (zh) 太阳能电池前接触件掺杂
Delahoy et al. Transparent conducting oxides for photovoltaics
CN101567395B (zh) 表面织构化n型ZnO基透明导电薄膜及其制备方法
CN104795498A (zh) 一种柔性钙钛矿太阳能电池的制备工艺
CN102482796A (zh) 掺杂的透明导电氧化物
CN108123000A (zh) 一种纳米棒型硒化锑太阳电池及其制备方法
CN105826425A (zh) 一种铜锌锡硫薄膜太阳电池的制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
CN104377261B (zh) 一种制备CdTe薄膜太阳能电池板方法
CN102637777A (zh) 一种太阳电池光吸收层Cu2O纳米薄膜的化学制备工艺
CN103227286A (zh) 硫掺杂的MoO3薄膜作为阳极界面层的有机光伏电池及其制备方法
CN107217232A (zh) 一种提高氧化锌透明导电薄膜化学稳定性的方法
CN103855229B (zh) 一种增强光电效应的石墨烯基半导体光电器件及其制备方法
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN106449795A (zh) 一种具有ITO/Pd双层结构复合电极的MoS2/Si光伏器件及其制备方法
CN104241439A (zh) 一种碲化镉薄膜太阳能电池的制备方法
CN101705473B (zh) 一种用于硅薄膜电池陷光结构研究的物理气相沉积设备
CN101838794A (zh) 应用中气压气流反应溅射制备二氧化钛薄膜的方法以及制备太阳能电池的方法
CN104377252B (zh) 一种柔性铜基硫属半导体薄膜太阳电池窗口层结构
CN110359022A (zh) 一种优化载流子传导层电荷分离效率的方法
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
US10103282B2 (en) Direct texture transparent conductive oxide served as electrode or intermediate layer for photovoltaic and display applications
CN105405900B (zh) 一种碲化镉太阳能电池及其制备方法
WO2020000599A1 (zh) Cigs太阳能电池及其制备方法
CN114744052B (zh) 太阳能电池及光伏组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant