CN110352393A - 多地形考察机器人装置及其配置及引导方法 - Google Patents

多地形考察机器人装置及其配置及引导方法 Download PDF

Info

Publication number
CN110352393A
CN110352393A CN201880010397.9A CN201880010397A CN110352393A CN 110352393 A CN110352393 A CN 110352393A CN 201880010397 A CN201880010397 A CN 201880010397A CN 110352393 A CN110352393 A CN 110352393A
Authority
CN
China
Prior art keywords
robot device
robot
investigate
landform
landform according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880010397.9A
Other languages
English (en)
Other versions
CN110352393B (zh
Inventor
G·M·弗雷塔斯
F·A·S·罗沙
M·P·托雷
A·F·丰特斯·尤尼奥尔
V·R·拉莫斯
L·E·D·C·诺盖拉
A·S·桑托斯
E·科塔
W·苗拉
M·A·多斯雷斯
B·L·S·科斯塔
L·C·M·雷德兹马
R·P·埃万热利斯塔
P·X·阿尔坎塔拉
R·T·利马
T·P·德苏扎
I·V·布兰迪
R·N·阿劳若
M·F·M·戈梅斯
G·C·加西亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Industrial Apprenticeship Service Of Bahia District
Vale SA
Original Assignee
National Industrial Apprenticeship Service Of Bahia District
Vale SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Industrial Apprenticeship Service Of Bahia District, Vale SA filed Critical National Industrial Apprenticeship Service Of Bahia District
Publication of CN110352393A publication Critical patent/CN110352393A/zh
Application granted granted Critical
Publication of CN110352393B publication Critical patent/CN110352393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/04Endless track vehicles with tracks and alternative ground wheels, e.g. changeable from endless track vehicle into wheeled vehicle and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/022Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members consisting of members having both rotational and walking movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas

Abstract

本发明提出一种用于多地形考察的机器人装置,其由机器人主体、快速可重新配置的运动模块及能够通过3D彩色点云对被考察环境进行建模的制图单元组成。所述机器人具有可快速更换的不同运动机构,借此改变所述机器人的移动性特性。所述装置通过远程操作或自主地控制。当处于远程操作模式时,操作辅助模块向操作员提供相关运动信息,其包含展示所述机器人不可跨越或倾翻的区域的地图。此模块还向所述操作员建议其它运动配置以克服所述地图中呈现的障碍物。当处于自主模式时,导航模块提供一种策略来探索未知环境并且考虑行进距离,倾翻风险及能量消耗来跟踪最优运动路径。关于上文描述的发明特性,主要目的是对受限及风险区域即洞穴、下水道及大坝溢洪道地道以及有坍塌风险的区域执行考察。

Description

多地形考察机器人装置及其配置及引导方法
技术领域
本发明涉及一种能够考察受限及风险区域的机器人装置。机器人应用可重新配置的运动模块,以便在不规则及不平整地形中操作,携带能够将被覆盖地形建模为3D彩色点云的制图单元。地形模型充当操作辅助模块的输入,其指示不可跨越及倾翻风险区域并且建议适当运动配置以跨越每一障碍物。考虑行进距离、倾翻风险及能量消耗,自主导航模块还使用地形模型来产生最优路径。
背景技术
自然洞穴通常见于铁形成区域中。为经济地探索这些区域,在环境及法律上要求对洞穴进行考察。考虑此情境,内部调查对评估洞穴的相关性以及因此确定其保护或开发至关重要。洞穴学者小组通常会聚集在一起进行所述研究。然而,由于存在有毒动物、有毒气体、蝙蝠排泄物、冒顶风险等,自然洞穴可能是危险的环境。人类在此类区域的存在总是与健康危害有关。考虑到这一点,使用机器人装置进入洞穴并执行这些考察可能是适当技术解决方案。
从机器人的角度来看,自然洞穴可能极具挑战性。其可能呈现如下特性:不规则地形;封闭环境;无线通信困难;不存在GPS信号。一个特殊挑战在于地势,所述地势通常较复杂。地形未结构化,呈现出平坦区域及凹凸不平的区域的混合。考虑到此类特性,探索装置必须具有高效运动系统,结合障碍物跨越而不会倾翻,能量效率及有效载荷能力。
探测装置必须具有进入洞穴的能量自主权,在所有内部区段中执行考察并返回到工作基地。这样,具有能量消耗友好的运动配置(例如轮)是有效解决方案。另一方面,与腿相比,轮跨越障碍物的效率较低。虽然基于腿的运动配置消耗额外的能量,但其在粗糙地形跨越上更有效。
与洞穴的考察有关的另一问题是机器人的稳定性。此处的稳定性是指装置通过其自己的构件维持自身向上而不会倾翻的能力。未执行特殊考察及3D制图,必须在装置中嵌入额外传感器,从而向系统添加有效载荷。通常,硬件是易感的,并且不应受到机械冲击,其最终会在翻滚事件发生。鉴于此,在所有考察期间维持装置的稳定性是经验性的。
尽管通常发现计划将机器人装置用于执行环境考察,但仅有少数机器人装置经专门设计用于自然洞穴考察。一些作者声称,经设计用于地下矿井考察的机器人适合这项工作,但将这种环境的条件与自然洞穴进行比较,第二者需要截然不同的移动性能力。
特定来说,针对地下矿井考察,卡内基梅隆大学(Carnegie Mellon University)的研究提出开发土拨鼠机器人。其重700kg,高1m,宽1.2m,并且能够在远程操作或自主模式下对地下矿井进行制图。然而,其大尺寸使其不适合自然洞穴考察。机器人装置可能卡在受限区域或破坏周围环境脆弱的结构。
仍然在卡内基梅隆大学,第7,069,124号美国专利描述一种用于空隙制图的机器人方法。作者揭示两种机器人,主要取决于空隙入口针对特定任务选择这两种机器人,而将地形结构条件作为背景。这是一种看似合理的方法,因为地下矿井通常具有结构化地形,路上很少存在障碍物或极端不平整的地形。正如作者所声称的那样,机器人可在平坦及半崎岖地形上方移动,能够克服一些障碍物;然而,更不平整的地形是不可跨越的,并且对所述区域进行制图的策略是将传感器安装在装置的机器人手臂处,并将手臂伸展到其工作空间边界。
由SPAWAR太平洋系统中心(SPAWAR Systems Center Pacific)开发的应对隧道开采机器人(CTER)是一种经设计以考察走私隧道的小型机器人。其具有较小的尺寸,并使用基于转向轨道的运动配置。其主体长而灵活,从而允许装置行进通过小的空间及洞,以便进入隧道。尽管如此,CTER的设计考虑进入具有进入约束的受限区域的能力,而不是跨越不平整的地形。
专门设计用于自然洞穴考察的来自SILES,I.及WALKER,I.D的机器人FREESE具有小尺寸、星形运动机构并且组装在柔性框架上。所述特性保证自然洞穴中的极大移动性;然而,其具有较小有效载荷能力,不允许其携带额外传感器或其它装备来执行环境的全3D彩色制图。
与被认为是最先进的移动性解决方案相比,此文献中提出的发明通过提供快速改变考察装置的移动性特性的解决方案来解决若干运动限制,并且评估周围环境的地势图以便指示哪些运动配置能够跨越地形的每一部分。
关于用于3D制图的装置,大多数商用3D激光扫描仪是由专家设置在三脚架上以执行扫掠的固定装备,其中需要制图。它们曾经与激光传感器、镜阵列、高清摄像机、GPS及惯性测量单元(IMU)复合。因此,在扫描时,收集点云及RGB成像以使其与软件相关联并在软件上进行后处理以产生3D彩色地图。
尽管有所述装备,但由澳大利亚的CSIRO在AU2016205004下申请专利的名为西庇太(Zebedee)的3D激光扫描中存在特定解决方案。其由安装在弹簧机构上的2D LiDAR及微机电系统(MEMS)IMU组成。当操作员移动通过预期环境时,扫描仪在弹簧周围松散地振荡,产生将2D测量转换成3D视场的旋转。与其它解决方案类似,为提供结果,有必要进行直接的人工交互。
发明内容
本发明的目的在于一种机器人装置,其能够考察受限及风险区域(即洞穴、下水道及大坝溢洪道地道),以及具有坍塌风险的区域并对所述区域进行制图,能够克服非结构化地形并通过3D彩色点云对周围环境进行建模。所述装置依赖于可重新配置的运动模块,其特定配置基于地形模型来定义。地形模型还提供信息以指示不可跨越及倾翻风险区域,并考虑行进距离、倾翻风险及能量消耗来产生最优路径。
附图说明
图1.分解的机器人装置框架的正交视图;
图2.机器人装置框架的前视图;
图3.机器人装置框架的侧视图;
图4(A)到(E).快速改变运动机构的步骤顺序;
图5.弧形腿运动机构的详细视图;
图6.普通轮运动机构的详细视图;
图7.星形轮运动机构的详细视图;
图8.转向轨道运动机构的详细视图;
图9.六个普通轮运动配置;
图10.六个弧形腿运动配置;
图11.四个普通轮及两个弧形腿运动配置;
图12.四个普通轮及两个星形轮运动配置;
图13.六个星形轮运动配置;
图14.带有转向轨道运动配置的四个普通轮;
图15.制图单元的详细视图;
图16.制图单元尖端的分解视图;
图17.制图单元操作工作流程;
图18.点云及所产生的网格;
图19.装置的远程操作方案;
图20.来自洞穴的地势图,展示可通过实际运动配置跨越的区域,可通过另一运动配置跨越的区域及倾翻风险区域;
图21.描述自主导航模块操作的流程图;
图22.具有基于移动性策略计算的不同路径的地势图的演示。
具体实施方式
自然洞穴具有非常特殊的地形地势。取决于地质构造,其可呈现从平滑及结构化地形到不平整及高度非结构化地形。此外,单个洞穴通常具有不同类型的地形,其构成非同质地势,针对最优地形跨越具有不同要求。
考虑到这一点,本发明在于单个机器人装置,其运动特性可根据洞穴中呈现的每一种地形容易且快速地修改。操作辅助模块分析地形的地势,并基于此评估倾翻风险区域,提出可能的运动配置以沿地形跨越障碍物。下文解释本发明中存在的每一组件及模块。
机器人装置的构造
机器人框架具有矩形主体形状,如可在图1、图2及图3中见到。机器人携载核心计算机1、无线通信模块2及两个电池3。还有一组摄像机及照明模块位于机器人的前部4及后部5上。照明模块由白光明亮led及红外灯组成。所述摄像机是全高清的,具有广角透镜。
运动机构致动使用六个旋转接头,在主体的每一侧上为三个。每一接头轴6由DC电动机7致动,DC电动机7具有总共六个独立电动机,其可在位置、速度或扭矩模式下受到控制。每一电动机通过行星齿轮8及传动带9耦合到轴。
快速可重新配置的运动模块
所提出的机器人装置具有可快速更换的不同运动机构。其允许同一装置具有不同运动特性及能力。图4演示此模块如何工作。其基于快速释放/附接销来改变运动机构。第一个框展示通过销附接到接头轴的运动机构(图4.A)。为改变特定机构,有必要释放销(图4.B),释放运动机构(图4.C),在轴中插入所需运动机构(图4.D)并最终附接销(图4.E)。
此模块省去使用任何额外工具。这是非常理想的,因为自然洞穴通常见于难以进入的区,并且所有硬件必须由操作员携带;考虑到这一点,需要携带的重量越轻越好。
本发明提出的运动机构是:弧形腿10(图5)、普通轮11(图6)、星形轮12(图7)及转向轨道13(图8)。组装配置图案可单一的,仅使用一种类型的运动机构,或为混合的,一起使用不同类型。组装模式可经配置为但不限于:六(6)个普通轮11(图9);六(6)个弧形腿10(图10);角上的四(4)个普通轮11及两(2)个中央腿10(图11);角上的四(4)个普通轮11及两个(2)中央星形轮12(图12);六(6)个星形轮12(图13);角上的四(4)个轮11,其中转向轨道13耦合在其上(图14)。在特殊情况下,转向轨道不能直接附接在接头轴上;代替地,其耦合到两个普通轮。在此情况下,任何可用运动机构都可附接到中央轴,以便帮助进行运动。
在此文献中将组装模式称为“运动配置”;因此,每一配置是运动机构的组合。每一运动配置具有其自己的优点及局限性。作为实例,基于普通轮的配置消耗更少能量但对于障碍物跨越效率较低。当使用腿时,特性是最相反的,使装置能够在较不平整地形上方移动但消耗更多能量。与普通轮及腿相比,星形轮呈现中等性能。转向轨道最适用于泥泞的地形,并且呈现大于轮的功耗。简单地说,每一运动配置适用于不同种类的地形,并且决定在任务中应使用哪一者是优化机器人的行进距离、稳定性及能量消耗的基础。
制图单元
制图单元14在图15中说明并且可在图16中看到其尖端的分解图。其安装在机器人的顶部以产生表示周围环境的3D彩色点云数据集,将三维几何数据与来自洞穴壁的彩色高分辨率图像组合。使用DC伺服电动机,制图单元围绕机器人连续旋转360°,从而收集及管理来自传感器的数据。为此,制图单元由超紧凑的计算机单元及传感器组成,所述传感器包含激光扫描仪-LiDAR 15、具有大视场透镜的RGB摄像机16、高亮度LED外部照明器17及惯性测量单元(IMU)。所有组件均防水防尘,IP代码为从54到67。替代地,所有组件均可安装在机器人或制图单元机箱内部,其完全免受外部影响。
出于软件开发的目的,制图过程被分成子功能性:扫描管理器、单元旋转、图像捕获及点捕获(图17)。
·扫描管理器
扫描管理器负责协调由LiDAR执行的数据收集过程。通过命令接口发送命令之后,状态机执行开始。状态机的第一个动作是检查电池的状态,以评估进行拍摄的可行性。稍后,状态机发送命令以连接LiDAR、两个摄像机、4个LED及DC伺服电动机。执行将旋转的零点标识为针对拍摄的初始参考。随后,LiDAR点存储开始。图像捕获在08(八)个旋转点处完成(制图单元角度:0°、45°、90°、135°、180°、225°、270°、315°、360°)。如果失败,将显示警告消息,并且用户决定何时重新启动扫描管理器。用户还可在任何阶段停止扫描。在成功完成的情况下,关闭组件并重新定位制图单元。
所提出的系统可在不同操作条件(其包含机器人停止或移动)下对环境进行制图。为衰减在机器人移动时在制图期间引起的振动,制图单元可通过由弹簧及/或气囊制成的悬架连接到机器人装置。
·制图单元旋转
制图单元应使用直齿轮传动装置及DC伺服电动机绕垂直安置的轴旋转。制图单元的360°转动由DC伺服电动机的4个完整转动组成;归因于齿轮的存在,DC伺服电动机的每一完整旋转表示单元的90°旋转。DC伺服电动机编码器在第4转动结束之后指示制图单元旋转的结束,随后完成数据获取。针对图像存储步骤,此功能性应在捕获时发送DC伺服电动机及象限的编码器角度。
·图像捕获
针对图像捕获,根据图16定位两个摄像机,可能调整其定位。在开始拍摄之后,同时从两个摄像机捕获图像。在执行拍摄期间存储此数据。
·3D点捕获
LiDAR提供3D几何数据以产生具有其相应深度的点的表面。其将返回参考LiDAR坐标系的点坐标(X,Y,Z)。此句柄数据编译称为点云的文件,所述文件在拍摄结束时产生。在此步骤之后,执行校准以将点云与由HD摄像机拍摄的照片相关联。针对每一3D点,具有在拍摄执行期间收集的照片的对应颜色的像素是相关的,使得产生彩色3D点云。
可从点云产生3D网格。3D网格是平面的集合,在本发明的情况下是三角形,其表示三维形状。因此,从点云(图18.B)获得的3D网格(图18.A)表示机器人周围环境的地势。
操作辅助模块
远程操作考察机器人通常与向操作员提供命令接口相关,其中可向装置发送命令,并且接收摄像机及其它传感器反馈以便使机器人周围环境可视化。在本发明的情况下,由两个嵌入式摄像机提供的图像在用户接口20处向操作员展示,并且操纵杆21用于向机器人发送命令。
与本地操作相比,远程操作的主要缺点是操作员丧失周围环境概念。因此,操作辅助模块是合乎需要的,因为其促进任务执行并允许操作员将其注意力集中在高级任务上。所提出的辅助模块帮助操作员指示机器人可能倾翻的区域,并且建议能够跨越每一段地形的适当运动配置。
操作辅助模块使用机器人周围环境的地势图22作为输入而不考虑洞穴的壁及顶板23。基于此,针对已知地图的每一段,辅助模块估计机器人姿势(位置及定向)以及与倾翻风险相关的稳定性。为此,可采用不同移动性度量,其包括由埃万盖洛斯·帕帕多普洛斯(Evangelos Papadopoulos)及丹尼尔A.雷伊(Daniel A.Rey)提出的倾翻稳定性裕度的力角测量,以及由梅苏利(Messuri)及克莱因(Klein)提出的能量稳定性裕度。机器人稳定性预测允许突出显示在所有操作期间应避开的地图的倾翻风险区域24。
针对剩余地图区域,分析地势以识别可通过使用中的运动配置跨越的区域22。鉴于被归类为不可跨越的区域25,评估其它可用运动机构以识别用于跨越此类障碍物的适当的运动机构。此评估通过在线或离线模拟完成,所述模拟使用所有可能的运动配置分析机器人移动性性能,同时跨越类似障碍物。如果没有可用运动机构能够克服这些区,那么其也应在地图中突出显示为在操作期间要避开的区域。
操作辅助模块使用信息来产生地形的经修改地图,其明确地向用户指示应避开的不可跨越或翻滚风险区域,以及更多地指示另一个运动机构可跨越的障碍物。
因此,本发明还提出一种用于引导多地形考察机器人装置的方法。根据以下步骤引导机器人装置:获得机器人周围环境的更新地势图;考虑所有可能运动配置,估计众多地图位置上方的机器人姿势;计算所有那些估计姿势的稳定性度量;识别地图中机器人在使用运动机构的情况下可能倾翻的区域,分析用其它运动机构获得的度量结果,并识别在跨越此类障碍物时不倾翻的配置;并且产生具有在使用运动机构的情况下可跨越、具有倾翻风险及不可跨越的区域的地图,还指示用以跨越受限区域的其它运动配置。
自主导航模块
自主模式下的操作也是可用的。此策略与经典方法不同,因为其考虑机器人运动配置以计算其稳定性及障碍物跨越能力以进行最优路径规划。
在任务开始之前,操作员向模块指示应优化哪个移动性度量:最短路径、最小倾翻风险或最小能量消耗。此信息对应于操作员设置的特定增益,还允许在不同移动性度量之间建立折衷。
克服高障碍物通常意味着走捷径,然后执行更快考察。然而,覆盖不平整地形使机器人的倾翻风险更高,并且考虑到电动机施加额外功率来跨越环境中的障碍物,这会消耗更多能量。这样,行进通过较平坦地形应更安全,并且能量消耗更友好。
自主导航模块需要来自周围环境的更新地势图作为输入。使用稳定性度量及关于使用中的运动配置的信息,模块从地图抽出倾翻风险及不可跨越区域;这样,路径规划将不会考虑风险区域。
计算到目标点的三个路径-最短,根据倾翻风险更安全,以及节能。选择将执行哪一者将取决于先前定义的移动性策略。
此策略(图21)实施如下:机器人位于开始点26并且应移动下一个目标点27,这可由操作员直接通知或者经由例如单元分解的探索算法获得以用于完整的覆盖路径规划。使用中的运动配置不可跨越的障碍物25及倾翻风险区域24不被路径规划算法考虑在内。计算最短30,最安全31及能量最友好32路径;根据先前定义的移动性策略来定义执行路径。
在探索实际运动配置可跨越的所有可能区之后,机器人返回到基地并向操作员指示能够进入未考察区域的替代运动机构。使用推荐运动配置,机器人能够重新进入任务区域,直接进入未覆盖区域,以便完成被考察环境的3D地图。
因此,本发明进一步提供一种用于引导多地形考察机器人装置的方法。根据以下步骤引导机器人装置:获得机器人周围环境的更新地势图;获得表示移动性策略的增益值,所述增益值指示待优化的度量:最短路径,最小倾翻风险或最小能量消耗;获得机器人装置的下一个目标点,其可直接通知或经由例如单元分解的探索算法获得以用于完整的覆盖路径规划以考察整个环境;从地势图移除具有倾翻风险及使用中的运动机构不可跨越的区域;考虑所产生的经修改地图,使用例如A*或D*的路径规划算法跟踪到目标点的最短路径;考虑经修改地图,使用基于例如倾翻稳定性裕度或基于能量的稳定性裕度的力角测量来跟踪到目标点的具有较小倾翻风险的路径;考虑经修改地图,使用基于机器人电动机的能量消耗的路径规划算法来跟踪到目标点的最优能量消耗路径;取决于针对自主导航系统的移动性策略,选择将使用所获得路径中的哪一者;命令机器人装置达到目标点。
虽然上文已经描述各种实例实施例,但应理解,其是通过实例的方式而非限制来呈现的。对于相关领域的技术人员显而易见的是,可在其中进行形式及细节上的各种改变。

Claims (20)

1.一种多地形考察机器人装置,其包括:
机器人框架,其包括具有照明系统(4、5)的多个摄像机;
制图单元(14),其附接到所述机器人框架,所述制图单元包括多个传感器(15);
可重新配置的运动模块,其包括根据可选择组装模式布置的多个运动机构;
操作辅助模块,用于从所述传感器及摄像机接收数据,并识别运动机构的适当组装模式;及
自主导航模块,其用于确定针对所述机器人装置的最优路径规划,
其中所述自主导航模块进一步经配置以指示运动机构的替代组装模式。
2.根据权利要求1所述的多地形考察机器人装置,其中所述机器人框架具有矩形形状,其具有六个旋转接头(6),每一侧为三个。
3.根据权利要求2所述的多地形考察机器人装置,其中每一接头(6)具有其自身的独立可控电动机。
4.根据权利要求1所述的多地形考察机器人装置,其中所述可重新配置的运动模块的所述运动机构选自由以下各者组成的群组:普通轮(11);星形轮(12);弧形腿(10);及转向轨道(13)。
5.根据权利要求4所述的多地形考察机器人装置,其中所述可重新配置的运动模块的所述运动机构使用快速释放销被迅速且一体地更换。
6.根据权利要求4所述的多地形考察机器人装置,其中所述可重新配置的运动模块使用仅一种类型的运动机构使所述组装模式为同质的,或一起使用不同类型的可用运动机构使所述组装模式为非同质的,所述组装模式可经配置为但不仅限于:6个普通轮(11);6个星形轮(12个);6个弧形腿(10);角上的4个普通轮(11)及2个中央腿(10);角上的4个普通轮(11)及2个中央星形轮(12);角上的4个普通轮(11),其中所述转向轨道(13)耦合在其上。
7.根据权利要求1所述的多地形考察机器人装置,其中所述制图单元(14)包括作为传感器的3D激光扫描仪(15)、全高清彩色摄像机(16)、高亮度LED外部发光器(17)及惯性测量单元。
8.根据权利要求1所述的多地形考察机器人装置,其中所述制图单元(14)具有处于垂直位置的激光扫描仪(15),并且其尖端具有完全360°旋转机构,这使得所述传感器能够扫描所有机器人周围环境。
9.根据权利要求7所述的多地形考察机器人装置,其中由所述制图单元传感器提供的原始数据包含3D点云及彩色图像。
10.根据权利要求9所述的多地形考察机器人装置,其中所述点云及彩色图像数据经融合以产生所考察区域的彩色3D点云。
11.根据权利要求8所述的多地形考察机器人装置,其中所述点云用于产生所述区域的3D网格,所述3D网格进一步用作所述机器人装置周围环境的地势图。
12.根据权利要求1所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于在采矿活动中操作。
13.根据权利要求1所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于在洞穴学活动中操作。
14.根据权利要求16所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于洞穴学活动中的洞穴考察。
15.根据权利要求1所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于在受限区域中操作。
16.根据权利要求18所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于在下水道及大坝溢洪道地道中操作。
17.根据权利要求1所述的多地形考察机器人装置,其中所述机器人装置经专门设计用于在具有坍塌风险的区域中操作。
18.一种用于引导根据权利要求1所述的多地形考察机器人装置的方法,所述方法包括以下步骤:
获得所述机器人周围环境的更新地势图;
考虑所有可能运动配置,估计众多地图位置上方的机器人姿势;
计算针对所有那些估计姿势的稳定性度量;
识别所述地图中所述机器人使用所述运动机构可能倾翻的区域,分析用其它运动机构获得的所述度量结果,并识别在跨越此类障碍物时不倾翻的配置;以及
产生具有在使用所述运动机构的情况下可跨越、具有倾翻风险及不可跨越区域的地图,还指示用以跨越所述受限区域的其它运动配置。
19.根据权利要求18所述的方法,其中所述倾翻风险估计是基于稳定性度量,所述度量应用于所述周围环境的所述地势图,考虑根据给定运动配置及估计姿势的所述机器人的几何形状,且其中待考虑的所述稳定性度量是倾翻稳定性裕度及能量稳定性裕度的力角测量。
20.一种用于引导根据权利要求1所述的多地形考察机器人装置的方法,所述方法包括以下步骤:
获得所述机器人周围环境的更新地势图;
获得表示移动性策略的增益值,其指示待优化的度量:最短路径、最小倾翻风险或最小能量消耗;
获得机器人装置的下一个目标点,其为直接通知或经由探索算法获得,例如针对完整覆盖路径规划的单元分解以考察整个环境;
从所述地势图移除具有倾翻风险的区域及通过使用中的所述运动机构不可跨越的区域;
考虑所产生的经修改地图,使用路径规划算法来跟踪到所述目标点的最短路径;
考虑所述经修改地图,使用基于例如倾翻稳定性裕度或基于能量的稳定性裕度的力角测量来跟踪到所述目标点的具有较小倾翻风险的路径;
考虑所述经修改地图,使用基于所述机器人电动机的所述能量消耗的路径规划算法来跟踪到所述目标点的所述最优能量消耗路径;
取决于针对所述自主导航系统所定义的移动性策略,选择将使用所获得路径中的哪一者;
命令所述机器人装置达到所述目标点。
CN201880010397.9A 2017-02-13 2018-02-09 多地形考察机器人装置及其配置及引导方法 Active CN110352393B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762458463P 2017-02-13 2017-02-13
US201762458311P 2017-02-13 2017-02-13
US62/458,463 2017-02-13
US62/458,311 2017-02-13
PCT/BR2018/050025 WO2018145183A1 (en) 2017-02-13 2018-02-09 Multi-terrain inspection robotic device and methods for configuring and guiding the same

Publications (2)

Publication Number Publication Date
CN110352393A true CN110352393A (zh) 2019-10-18
CN110352393B CN110352393B (zh) 2022-09-23

Family

ID=63106809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880010397.9A Active CN110352393B (zh) 2017-02-13 2018-02-09 多地形考察机器人装置及其配置及引导方法

Country Status (7)

Country Link
US (1) US11372409B2 (zh)
CN (1) CN110352393B (zh)
AU (1) AU2018217444B2 (zh)
BR (1) BR112019016646B1 (zh)
CA (1) CA3049695C (zh)
CL (1) CL2019002217A1 (zh)
WO (1) WO2018145183A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059568A (zh) * 2021-04-07 2021-07-02 哈尔滨理工大学 一种多功能足端
CN113589403A (zh) * 2021-10-08 2021-11-02 深圳市联志光电科技有限公司 一种基于图像通信的增强现实显示方法及系统
CN116069031A (zh) * 2023-01-28 2023-05-05 武汉理工大学 基于车体扫掠模型的地下无人矿车路径优化方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467274B2 (en) 2015-09-29 2022-10-11 Tyco Fire & Security Gmbh Search and rescue UAV system and method
WO2018145183A1 (en) * 2017-02-13 2018-08-16 Vale S.A. Multi-terrain inspection robotic device and methods for configuring and guiding the same
CN109279244A (zh) * 2018-09-10 2019-01-29 安徽灵翔智能机器人技术有限公司 一种可自主扫码识别的仓储搬运机器人
US11953312B2 (en) * 2019-02-01 2024-04-09 Mit Semiconductor (Tian Jin) Co., Ltd System and method of object inspection using multispectral 3D laser scanning
WO2020184318A1 (ja) * 2019-03-14 2020-09-17 ソニー株式会社 情報処理装置、移動体及び移動体の状態判別方法
WO2020220093A1 (en) * 2019-05-02 2020-11-05 Commonwealth Scientific And Industrial Research Organisation Inspection vehicle
CN110962956B (zh) * 2019-11-28 2020-10-20 北京理工大学 一种基于并联式模块化结构的可重构轮足机器人
CN111609814B (zh) * 2020-06-02 2021-09-10 惠安建设监理有限公司 应用于建设监理的项目进度辅助机器人及监理检测方法
US20230390939A1 (en) * 2020-10-30 2023-12-07 Kawasaki Jukogyo Kabushiki Kaisha Work system and work method
CN112476449B (zh) * 2020-11-23 2022-04-05 西安工业大学 一种用于灾后救援的机械狗系统
CN113393657A (zh) * 2021-06-15 2021-09-14 江苏劲步科技有限公司 一种基于物联网软件开发的数据采集机器人及其采集方法
CN114313039B (zh) * 2021-11-30 2023-05-16 杭州申昊科技股份有限公司 一种巡检机器人的传动装置
CN114894167B (zh) * 2022-04-06 2024-01-30 西北工业大学 一种基于多传感器技术的洞穴自动测绘系统及方法
CN115032995B (zh) * 2022-06-17 2023-07-14 未岚大陆(北京)科技有限公司 运动控制方法、装置、电子设备及计算机存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017687B1 (en) * 2002-11-21 2006-03-28 Sarcos Investments Lc Reconfigurable articulated leg and wheel
US20100152944A1 (en) * 2008-12-11 2010-06-17 Kabushiki Kaisha Yaskawa Denki Robot system
US20120239191A1 (en) * 2006-07-05 2012-09-20 Battelle Energy Alliance, Llc Real time explosive hazard information sensing, processing, and communication for autonomous operation
CN103287523A (zh) * 2013-05-06 2013-09-11 中国科学技术大学 一种弹性足与轮式运动机构结合的复合变形移动机器人
CN204546509U (zh) * 2015-03-23 2015-08-12 绍兴文理学院 一种多功能救援机器人
CN105652873A (zh) * 2016-03-04 2016-06-08 中山大学 一种基于Kinect的移动机器人避障方法
CN106023657A (zh) * 2015-03-30 2016-10-12 国际商业机器公司 用于实现受限操作区域的系统、方法和交通工具

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006847A (en) * 1997-02-18 1999-12-28 Knight; Doyle D Endless track structure for light wheeled vehicle
US5999865A (en) * 1998-01-29 1999-12-07 Inco Limited Autonomous vehicle guidance system
DE69915156T2 (de) * 1998-04-24 2004-10-28 Inco Ltd., Toronto Automatische Führungs- und Meßvorrichtung
US7069124B1 (en) * 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
CA2591755C (en) * 2004-12-21 2009-05-26 Bombardier Recreational Products Inc. Endless belt drive for vehicle
US8577538B2 (en) * 2006-07-14 2013-11-05 Irobot Corporation Method and system for controlling a remote vehicle
US9373149B2 (en) * 2006-03-17 2016-06-21 Fatdoor, Inc. Autonomous neighborhood vehicle commerce network and community
US7719222B2 (en) * 2006-03-30 2010-05-18 Vecna Technologies, Inc. Mobile extraction-assist robot
US8326469B2 (en) * 2006-07-14 2012-12-04 Irobot Corporation Autonomous behaviors for a remote vehicle
US8108092B2 (en) * 2006-07-14 2012-01-31 Irobot Corporation Autonomous behaviors for a remote vehicle
US8355818B2 (en) * 2009-09-03 2013-01-15 Battelle Energy Alliance, Llc Robots, systems, and methods for hazard evaluation and visualization
US7798264B2 (en) * 2006-11-02 2010-09-21 Hutcheson Timothy L Reconfigurable balancing robot and method for dynamically transitioning between statically stable mode and dynamically balanced mode
DE202007008557U1 (de) * 2007-06-19 2008-10-30 Liebherr-Werk Bischofshofen Ges.M.B.H. System zum automatischen Bewegen von Material
EP2918212B1 (en) * 2008-04-24 2016-06-08 iRobot Corporation Application of localization, positioning & navigation systems for robotic enabled mobile products
US7926598B2 (en) * 2008-12-09 2011-04-19 Irobot Corporation Mobile robotic vehicle
CA2701662C (en) * 2009-04-29 2018-08-21 Camoplast Inc. Track assembly for an all-terrain vehicle (atv) or other tracked vehicle
TWI370796B (en) * 2009-10-29 2012-08-21 Univ Nat Taiwan Leg-wheel hybrid mobile platform
US8430192B2 (en) * 2010-01-04 2013-04-30 Carla R. Gillett Robotic omniwheel vehicle
CA2737895A1 (en) * 2010-04-27 2011-10-27 Robert Bessette Traction assembly
WO2012012819A1 (en) 2010-07-26 2012-02-02 Commonwealth Scientific And Industrial Research Organisation Three dimensional scanning beam system and method
CA3036155C (en) * 2010-11-09 2021-01-05 Soucy International Inc. Traction system for a vehicle
EP3211449B1 (en) * 2011-05-06 2021-10-27 Hadal, Inc. Systems and methods for synthetic aperture sonar
US9463574B2 (en) * 2012-03-01 2016-10-11 Irobot Corporation Mobile inspection robot
US20150329154A1 (en) * 2013-01-25 2015-11-19 Bombardier Recreational Products Inc. Track system for a vehicle
US9283674B2 (en) * 2014-01-07 2016-03-15 Irobot Corporation Remotely operating a mobile robot
US9989967B2 (en) * 2014-03-04 2018-06-05 Cybernet Systems Corporation All weather autonomously driven vehicles
US9676430B2 (en) * 2014-09-16 2017-06-13 David Owen Mattson Vehicle track assembly
US10165722B2 (en) * 2014-12-05 2019-01-01 Deere & Company Scouting systems
NL2014781B1 (en) * 2015-05-08 2017-01-26 Zuidberg Techniek Holding B V Combination of a drive wheel and a gearbox for a continuous track system.
US10059004B2 (en) * 2015-06-22 2018-08-28 Ricoh Company, Ltd. Robot, information processing system, and storage medium
US9789607B1 (en) * 2015-11-03 2017-10-17 Google Inc. Achieving a target gait in a legged robot based on steering commands
US10578447B2 (en) * 2015-11-24 2020-03-03 Nova Dynamics, Llc Method for identifying safe and traversable paths
US9798327B2 (en) * 2016-01-08 2017-10-24 King Fahd University Of Petroleum And Minerals Apparatus and method for deploying sensors
US10358177B2 (en) * 2016-08-11 2019-07-23 Glen Brazier Transformable track assembly
WO2018145183A1 (en) * 2017-02-13 2018-08-16 Vale S.A. Multi-terrain inspection robotic device and methods for configuring and guiding the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017687B1 (en) * 2002-11-21 2006-03-28 Sarcos Investments Lc Reconfigurable articulated leg and wheel
US20120239191A1 (en) * 2006-07-05 2012-09-20 Battelle Energy Alliance, Llc Real time explosive hazard information sensing, processing, and communication for autonomous operation
US20100152944A1 (en) * 2008-12-11 2010-06-17 Kabushiki Kaisha Yaskawa Denki Robot system
CN103287523A (zh) * 2013-05-06 2013-09-11 中国科学技术大学 一种弹性足与轮式运动机构结合的复合变形移动机器人
CN204546509U (zh) * 2015-03-23 2015-08-12 绍兴文理学院 一种多功能救援机器人
CN106023657A (zh) * 2015-03-30 2016-10-12 国际商业机器公司 用于实现受限操作区域的系统、方法和交通工具
CN105652873A (zh) * 2016-03-04 2016-06-08 中山大学 一种基于Kinect的移动机器人避障方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059568A (zh) * 2021-04-07 2021-07-02 哈尔滨理工大学 一种多功能足端
CN113589403A (zh) * 2021-10-08 2021-11-02 深圳市联志光电科技有限公司 一种基于图像通信的增强现实显示方法及系统
CN116069031A (zh) * 2023-01-28 2023-05-05 武汉理工大学 基于车体扫掠模型的地下无人矿车路径优化方法及系统
CN116069031B (zh) * 2023-01-28 2023-08-11 武汉理工大学 基于车体扫掠模型的地下无人矿车路径优化方法及系统

Also Published As

Publication number Publication date
CA3049695C (en) 2023-01-03
CA3049695A1 (en) 2018-08-16
AU2018217444A1 (en) 2019-07-25
CN110352393B (zh) 2022-09-23
AU2018217444B2 (en) 2022-01-20
WO2018145183A1 (en) 2018-08-16
BR112019016646A2 (pt) 2020-04-07
US11372409B2 (en) 2022-06-28
BR112019016646B1 (pt) 2023-10-17
CL2019002217A1 (es) 2019-11-15
US20190377346A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
CN110352393A (zh) 多地形考察机器人装置及其配置及引导方法
Whitman et al. Snake robot urban search after the 2017 mexico city earthquake
Bayer et al. On autonomous spatial exploration with small hexapod walking robot using tracking camera intel realsense t265
Doroodgar et al. The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots
CN109917786A (zh) 一种面向复杂环境作业的机器人感知系统及系统运行方法
Armbrust et al. RAVON: The robust autonomous vehicle for off-road navigation
CN113848208B (zh) 一种植物表型平台及其控制系统
Heppner et al. Laurope-six legged walking robot for planetary exploration participating in the spacebot cup
Wettergreen et al. Science autonomy for rover subsurface exploration of the atacama desert
Nüchter et al. Irma3D—An intelligent robot for mapping applications
JP2018128640A (ja) 情報処理装置、情報処理システム及びプログラム
Berns et al. Chapter unmanned ground robots for rescue tasks
Koval et al. A subterranean virtual cave world for gazebo based on the darpa subt challenge
Wedler et al. Preliminary results for the multi-robot, multi-partner, multi-mission, planetary exploration analogue campaign on mount etna
Kadous et al. Caster: A robot for urban search and rescue
Nakaoka et al. Development of an indirect-type teleoperation interface for biped humanoid robots
Valente Aerial coverage path planning applied to mapping
Rossi et al. DAEDALUS-Descent And Exploration in Deep Autonomy of Lava Underground Structures: Open Space Innovation Platform (OSIP) Lunar Caves-System Study
Rose Design of a helicopter deployable ground robotic system for hazardous environments
Ikeuchi et al. Development of mobile robots for search and rescue operation systems
Novotny et al. Design and Implementation of a Mobile Search and Rescue Robot
Tikanmaki et al. Development of Mörri, a high performance and modular outdoor robot
Schwendner et al. Entern: Environment modelling and navigation for robotic space-exploration
Francis Cooperative Path Planning for Autonomous Ground Vehicles using 3D Sensor in Cluttered Environment
Watanabe et al. Robocup rescue 2018 team description paper ait pickers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant