CN110348111B - 一种基于耦合线和环形微带线的负群时延电路及其设计方法 - Google Patents

一种基于耦合线和环形微带线的负群时延电路及其设计方法 Download PDF

Info

Publication number
CN110348111B
CN110348111B CN201910612779.5A CN201910612779A CN110348111B CN 110348111 B CN110348111 B CN 110348111B CN 201910612779 A CN201910612779 A CN 201910612779A CN 110348111 B CN110348111 B CN 110348111B
Authority
CN
China
Prior art keywords
microstrip line
circuit
line
group delay
microstrip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910612779.5A
Other languages
English (en)
Other versions
CN110348111A (zh
Inventor
万发雨
李宁东
顾韬琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201910612779.5A priority Critical patent/CN110348111B/zh
Publication of CN110348111A publication Critical patent/CN110348111A/zh
Application granted granted Critical
Publication of CN110348111B publication Critical patent/CN110348111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明公开了一种基于耦合线和环形微带线的负群时延电路及其设计方法,该电路为左右对称结构,包括微带线ILi,i={1,2,3,4}、耦合微带线IL0、输入端口和输出端口,信号从输入端口流入分为两路分别流入微带线IL1和微带线IL2左半部,信号在流出微带线IL2左半部后分别流入微带线IL2的右半部和微带线IL3,一路信号流出微带线IL1和微带线IL2的右半部后汇合流入输出端口;另一路信号流出微带线IL2左半部,经过微带线IL3和微带线IL4至耦合微带线。

Description

一种基于耦合线和环形微带线的负群时延电路及其设计方法
技术领域
本发明属于微波工程的技术领域,具体涉及一种基于耦合线和环形微带线的负群时延电路及其设计方法。
背景技术
20世纪早期,美国科学家A.Sommerfeld和L.Brillouin提出了群时延为负的可能性后,在相当长的一段时间内“负群时延”颇受争议,直到贝尔实验室的Chu和Wong第一次在激光脉冲穿过GaP:N样品的实验中观察到了负群速。此后,在其他光学、量子试验中,群速为负或大于光速也被多次被证实。进入二十世纪后,随着左手材料等新型材料的发展和对通信系统性能的要求越来越高,更多的研究人员开始对群时延展开研究。尤其是近些年来,负群时延电路因其特殊的性能和在前馈放大器、天线阵列等领域的广泛应用,吸引了世界各国研究者的注意,成为又一个研究热点。
近年来,负群时延电路从最简单的RLC谐振单元开始,但基于RLC的基本负群时延电路的损耗比较大,所以常用RLC谐振网络和放大器组合的方式可将电路的损耗降低。此外,除了上述利用RLC和放大器的组成的有源负群时延电路外,近来,利用微带线相关的结构形成的无源负群时延电路由于其损耗低,可往高频发展的特征,相关的一些无源结构被提出。诸如此类的一些工作大多数由外国研究者所探索,在国内负群时延电路却很少被探索。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,基于微波工程理论,为了降低负群时延电路的损耗和反射,提高群时延,提供一种基于耦合线和环形微带线的负群时延电路及其设计方法。
为实现上述技术目的,本发明采取的技术方案为:
一种基于耦合线和环形微带线的负群时延电路,所述电路为左右对称结构,包括微带线ILi,i={1,2,3,4}、耦合微带线IL0、输入端口和输出端口,所述微带线IL2和IL4包括对称的左半部和右半部,其中微带线IL2左半部连接输入端口,其中微带线IL2右半部连接输出端口,所述微带线IL2与微带线IL1并联,所述微带线IL4的左半部和右半部分别与耦合微带线IL0的两个导带连接;所述微带线IL3串联在微带线IL2和微带线IL4之间;微带线IL1和微带线IL2组合形成环形,微带线IL4的左半部与微带线IL4的右半部组合形成环形,信号从输入端口流入分为两路分别流入微带线IL1和微带线IL2左半部,信号在流出微带线IL2左半部后分别流入微带线IL2的右半部和微带线IL3,第一路信号流出微带线IL1和微带线IL2的右半部后汇合流入输出端口;第二路信号流出微带线IL2左半部,经过微带线IL3和微带线IL4至耦合微带线IL0
为优化上述技术方案,采取的具体措施还包括:
上述的微带线IL1为弧形微带线,微带线IL1的半径R1和宽度w为11.5mm,微带线IL2的长度l1为10.7mm,微带线IL3的l2长度为9.45mm,微带线IL4的左半部与微带线IL4的右半部均为弧形微带线,微带线IL4的左半部与微带线IL4的右半部的半径R2均为7mm,微带线IL4的左半部与微带线IL4的右半部通过连接线连接,连接线长度l3为2.13mm,耦合微带线IL0的左半部和右半部的长度l4均为16.25mm,该耦合微带线IL0两导带之间的距离S为1.23mm,微带线IL2左半部的左端通过第一端口连接线与输入端口连接,微带线IL2右半部的右端通过第二端口连接线与输出端口连接,第一端口连接线和第二端口连接线的长度w1和宽度l5都为3mm。
上述的电路工作于S频段,在中心频率2.36GHz时,电路的群时延为-1.5ns,电路的损耗S21为-3.5dB,电路的反射系数S11为-10dB。
一种基于耦合线和环形微带线的负群时延电路的设计方法,包括以下步骤:
S1:基于微波工程领域中的偶模-奇模分析方法,分析得到该群时延电路的奇模输入导纳Yo、偶模输入导纳Ye
S2:利用S参数矩阵推导出该电路的S参数,从而得到电路的插入损耗S21和反射系数S11,其反射系数与传输系数的关系如下式(1),当信号穿过微带线时,产生的时延如下式(2)所示;
Figure GDA0004105603290000021
Figure GDA0004105603290000022
其中:其中τi,v分别是信号通过微带线的时延和速度,di为六条微带线的物理长度,i={1,2,3,4,5,6},ω为角频率;
S3:由公式
Figure GDA0004105603290000031
求出电路相位函数,再由群时延定义/>
Figure GDA0004105603290000032
求出群时延函数τ(ω);
S4:通过HFSS仿真软件对电路的S11、S21和τ(ω)进行仿真,经过一系列电磁参数优化之后确定各个电磁参数的尺寸。
上述的步骤S1具体为:
S11:根据奇偶模法进行电路等效以及理论分析可知:微带线的A参数矩阵和耦合线的Y参数矩阵分别为:
奇模激励时的输入导纳为:
Figure GDA0004105603290000033
偶模激励时的输入导纳为:
Figure GDA0004105603290000034
其中:
Figure GDA0004105603290000035
Figure GDA0004105603290000036
Figure GDA0004105603290000037
ZK=-jZ0e cotθ0 (8)
Figure GDA0004105603290000038
其中:ZC、k分别为耦合线的特征阻抗和耦合系数,Z和θi分别为六条微带线的特征阻抗和电长度,Zin、ZL、ZM、ZK为输入阻抗,Z0o和Z0e分别为平行耦合微带线的奇模阻抗和偶模阻抗。
上述的步骤S2具体为:
S21:当电路的奇偶模激励时的输入导纳Yo、Ye确定时,该电路的S参数可作如下表示:
Figure GDA0004105603290000041
其中Y0=1/Z0,Z0为端口参考阻抗,Z0=50Ω。
S22:根据(1)~(10)式,电路的反射系数S11(jω)、传输系数S21(jω)可以表示成:
Figure GDA0004105603290000042
其中B,C=C1-C2i如下所示:
C1=-2Zcotθ1 (12)
Figure GDA0004105603290000043
Figure GDA0004105603290000044
θi=ωτi,(i=0,1,2,3,4) (15)
上述步骤S3的具体公式为:
S31:该电路的传输相位
Figure GDA0004105603290000045
可以表示成:
Figure GDA0004105603290000046
也即:
Figure GDA0004105603290000047
S32:根据群时延的定义
Figure GDA0004105603290000048
可得该电路的群时延:
Figure GDA0004105603290000051
其中B'、C'分别是等式B、C关于ω的导数。
由等式(18)可知,该电路存在负群时延应满足:
Figure GDA0004105603290000052
本发明的有益效果:
为了实现电路的小型化,降低电路的损耗和反射,提高群时延带宽和时延,设计了一种基于耦合线和环形微带线的负群时延电路及其设计方法,并对设计的电路进行优化设计,最终可得:该电路工作于S频段,在中心频率2.36GHz时,电路的群时延为-1.5ns,电路的损耗S21为-3.5dB,电路的反射系数S11为-10dB。可被用于前馈线性放大器中减小尺寸以及提高效率,可解决阵列天线中消除波束倾斜问题。
附图说明
图1本发明的电路原理图;
图2为本发明电路的奇模等效电路原理图;
图3为本发明电路的偶模等效电路原理图;
图4为本发明电路结构示意图;
图5为本发明电路HFSS模型;
图6为本发明电路的群时延仿真结果示意图;
图7为本发明电路的S21仿真结果示意图;
图8为本发明电路的S11仿真结果示意图。
具体实施方式
以下结合附图对本发明的实施例作进一步详细描述。
如图1所示,本发明为一种基于耦合线和环形微带线的负群时延电路,所述电路为左右对称结构,包括微带线ILi,i={1,2,3,4}、耦合微带线IL0、输入端口和输出端口,所述微带线IL2和IL4包括对称的左半部和右半部,其中微带线IL2左半部连接输入端口,其中微带线IL2右半部连接输出端口,所述微带线IL2与微带线IL1并联,所述微带线IL4的左半部和右半部分别与耦合微带线IL0的两个导带连接;所述微带线IL3串联在微带线IL2和微带线IL4之间;信号从输入端口流入分为两路分别流入微带线IL1和微带线IL2左半部,信号在流出微带线IL2左半部后分别流入微带线IL2的右半部和微带线IL3,第一路信号流出微带线IL1和微带线IL2的右半部后汇合流入输出端口;第二路信号流出微带线IL2左半部,经过微带线IL3和微带线IL4至耦合微带线IL0
一种基于耦合线和环形微带线的负群时延电路的设计方法,包括以下步骤:
S1:基于微波工程领域中的偶模-奇模分析方法,分析得到该群时延电路的奇模输入导纳Yo、偶模输入导纳Ye
本实施例中,步骤S1具体为:
S11:根据奇偶模法进行电路等效以及理论分析可知:微带线的A参数矩阵和耦合线的Y参数矩阵分别为:
奇模激励时的输入导纳为:
Figure GDA0004105603290000061
偶模激励时的输入导纳为:
Figure GDA0004105603290000062
其中:
Figure GDA0004105603290000063
Figure GDA0004105603290000064
Figure GDA0004105603290000065
ZK=-jZ0e cotθ0 (8)
Figure GDA0004105603290000071
其中:ZC、k分别为平行耦合微带线的特征阻抗和耦合系数,Z和θi分别为六条微带线的特征阻抗和电长度,Zin、ZL、ZM、ZK为输入阻抗,Z0o和Z0e分别为平行耦合微带线的奇模阻抗和偶模阻抗;
S2:利用S参数矩阵推导出该电路的S参数,从而得到电路的插入损耗S21和反射系数S11,其反射系数与传输系数的关系如下式(1),当信号穿过微带线时,产生的时延如下式(2)所示:
Figure GDA0004105603290000072
Figure GDA0004105603290000073
其中:
Figure GDA0004105603290000074
其中τi,v分别是信号通过微带线的时延和速度,di为六条微带线的物理长度,i={1,2,3,4,5,6},ω为角频率;
本实施例中,步骤S2具体为:
S21:当电路的奇偶模激励时的输入导纳Yo、Ye确定时,该电路的S参数可作如下表示:
Figure GDA0004105603290000075
其中Y0=1/Z0,Z0为端口参考阻抗,Z0=50Ω。
S22:根据(1)~(10)式,电路的反射系数S11(jω)、传输系数S21(jω)可以表示成:
Figure GDA0004105603290000076
其中B,C=C1-C2i如下所示:
C1=-2Zcotθ1 (12)
Figure GDA0004105603290000081
Figure GDA0004105603290000082
θi=ωτi,(i=0,1,2,3,4) (15)
S3:由公式
Figure GDA0004105603290000083
求出电路相位函数,再由群时延定义/>
Figure GDA0004105603290000084
求出群时延函数τ(ω);
本实施例中,步骤S3具体为:
S31:该电路的传输相位
Figure GDA0004105603290000085
可以表示成:
Figure GDA0004105603290000086
也即:
Figure GDA0004105603290000087
S32:根据群时延的定义
Figure GDA0004105603290000088
可得该电路的群时延:
Figure GDA0004105603290000089
其中B'、C'分别是等式B、C关于ω的导数。
由等式(18)可知,该电路存在负群时延应满足:
Figure GDA00041056032900000810
如图2和图3所示,本发明电路结构是对称结构。
HFSS对该电路尺寸的优化结果如下表所示:
表1.电路基本参数尺寸
Figure GDA0004105603290000091
对于环形微带线IL1而言,w和R1分别是该环形微带线的宽度和半径;对于微带线IL2而言,l1是该微带线长度;对于环形微带线IL3而言,l2是该微带线长度;对于环形微带线IL4而言,R2是该环形微带线的半径,L3是连接两个环形微带线的微带连接线的长度;对于耦合微带线IL0而言,l4是该耦合微带线的长度,S是该耦合微带线两个导带之间的距离;l5和w1分别是两端口连接线的长度和宽度。
本实施例中,电路HFSS模型,采用FR4板材,该板材的厚度是1.6mm,尺寸是22mm×55mm,介电常数是4.4,正切损耗角为0.02,且铜厚为0.035mm。
利用仿真软件HFSS对提出的电路进行仿真设计优化,可得到如表1所示的电路基本参数尺寸。
根据前面推导的群时延、S21、S11的相关公式,可以得到该电路模型的群时延、S21、S11结果示意图,由图4、图5、图6可知,该电路工作于S频段,在中心频率2.36GHz时,电路的群时延为-1.5ns,电路的损耗S21为-3.5dB,电路的反射系数S11为-10dB。
由HFSS仿真结果和模型本身的仿真结果可知,除了频率的偏移外,电路的性能没有太大变化,从理论和仿真结果从可以验证该电路的可行性。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (4)

1.一种基于耦合线和环形微带线的负群时延电路,其特征在于:所述电路为左右对称结构,包括微带线ILi,i={1,2,3,4}、耦合微带线IL0、输入端口和输出端口,所述微带线IL2和IL4包括对称的左半部和右半部,其中微带线IL2左半部连接输入端口,其中微带线IL2右半部连接输出端口,所述微带线IL2与微带线IL1并联,所述微带线IL4的左半部和右半部分别与耦合微带线IL0的两个导带连接;所述微带线IL3串联在微带线IL2和微带线IL4之间;微带线IL1和微带线IL2组合形成环形,微带线IL4的左半部与微带线IL4的右半部组合形成环形,信号从输入端口流入分为两路分别流入微带线IL1和微带线IL2左半部,信号在流出微带线IL2左半部后分别流入微带线IL2的右半部和微带线IL3,第一路信号流出微带线IL1和微带线IL2的右半部后汇合流入输出端口;第二路信号流出微带线IL2左半部,经过微带线IL3和微带线IL4至耦合微带线IL0;所述的微带线IL1为弧形微带线,微带线IL1的半径R1和宽度w为11.5mm,微带线IL2的长度l1为10.7mm,微带线IL3的l2长度为9.45mm,微带线IL4的左半部与微带线IL4的右半部均为弧形微带线,微带线IL4的左半部与微带线IL4的右半部的半径R2均为7mm,微带线IL4的左半部与微带线IL4的右半部通过连接线连接,连接线长度l3为2.13mm,耦合微带线IL0的左半部和右半部的长度l4均为16.25mm,该耦合微带线IL0两导带之间的距离S为1.23mm,微带线IL2左半部的左端通过第一端口连接线与输入端口连接,微带线IL2右半部的右端通过第二端口连接线与输出端口连接,第一端口连接线和第二端口连接线的长度w1和宽度l5都为3mm;所述电路工作于S频段,在中心频率2.36GHz时,电路的群时延为-1.5ns,电路的损耗S21为-3.5dB,电路的反射系数S11为-10dB。
2.如权利要求1所述的一种基于耦合线和环形微带线的负群时延电路的设计方法,其特征在于:包括以下步骤:
S1:基于微波工程领域中的偶模-奇模分析方法,分析得到该群时延电路的奇模输入导纳Yo、偶模输入导纳Ye
S2:利用S参数矩阵推导出该电路的S参数,从而得到电路的插入损耗S21和反射系数S11,其反射系数与传输系数的关系如下式(1),当信号穿过微带线时,产生的时延如下式(2)所示,
Figure FDA0004105603270000021
其中:
Figure FDA0004105603270000022
其中τi,v分别是信号通过微带线的时延和速度,di为六条微带线的物理长度,i={1,2,3,4,5,6},ω为角频率;
S3:由公式
Figure FDA0004105603270000023
求出电路相位函数,再由群时延定义/>
Figure FDA0004105603270000024
求出群时延函数τ(ω);
S4:通过HFSS仿真软件对电路的S11、S21和τ(ω)进行仿真,经过一系列电磁参数优化之后确定各个电磁参数的尺寸;步骤S1具体为:
S11:根据奇偶模法进行电路等效以及理论分析可知:微带线的A参数矩阵和耦合线的Y参数矩阵分别为:
奇模激励时的输入导纳为:
Figure FDA0004105603270000025
偶模激励时的输入导纳为:
Figure FDA0004105603270000026
其中:
Figure FDA0004105603270000027
Figure FDA0004105603270000028
Figure FDA0004105603270000029
ZK=-jZ0ecotθ0 (8)
Figure FDA00041056032700000210
其中:ZC、k分别为平行耦合微带线的特征阻抗和耦合系数,Z和θi分别为六条微带线的特征阻抗和电长度,Zin、ZL、ZM、ZK为输入阻抗,Z0o和Z0e分别为平行耦合微带线的奇模阻抗和偶模阻抗。
3.根据权利要求2所述的一种基于耦合线和环形微带线的负群时延电路的设计方法,其特征在于:步骤S2具体步骤如下:
S21:当电路的奇偶模激励时的输入导纳Yo、Ye确定时,该电路的S参数可作如下表示:
Figure FDA0004105603270000031
其中Y0=1/Z0,Z0为端口参考阻抗,Z0=50Ω,
S22:根据(1)~(10)式,电路的反射系数S11(jω)、传输系数S21(jω)可以表示成:
Figure FDA0004105603270000032
其中B,C=C1-C2i如下所示:
C1=-2Z cotθ1 (12)
Figure FDA0004105603270000033
Figure FDA0004105603270000034
θi=ωτi,(i=0,1,2,3,4) (15)
其中,ω为角频率。
4.根据权利要求3所述的一种基于耦合线和环形微带线的负群时延电路的设计方法,其特征在于:步骤S3所述群时延函数τ(ω)公式如下;
S31:该电路的传输相位
Figure FDA0004105603270000041
可以表示成:
Figure FDA0004105603270000042
也即:
Figure FDA0004105603270000043
S32:根据群时延的定义
Figure FDA0004105603270000044
可得该电路的群时延:
Figure FDA0004105603270000045
其中B'、C'分别是等式B、C关于ω的导数,
由等式(18)可知,该电路存在负群时延应满足:
Figure FDA0004105603270000046
CN201910612779.5A 2019-07-08 2019-07-08 一种基于耦合线和环形微带线的负群时延电路及其设计方法 Active CN110348111B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910612779.5A CN110348111B (zh) 2019-07-08 2019-07-08 一种基于耦合线和环形微带线的负群时延电路及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910612779.5A CN110348111B (zh) 2019-07-08 2019-07-08 一种基于耦合线和环形微带线的负群时延电路及其设计方法

Publications (2)

Publication Number Publication Date
CN110348111A CN110348111A (zh) 2019-10-18
CN110348111B true CN110348111B (zh) 2023-07-14

Family

ID=68178591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910612779.5A Active CN110348111B (zh) 2019-07-08 2019-07-08 一种基于耦合线和环形微带线的负群时延电路及其设计方法

Country Status (1)

Country Link
CN (1) CN110348111B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768642B (zh) * 2019-11-08 2023-05-19 大连海事大学 一种具有平坦群时延特性的宽带负群时延微波电路
CN111934075B (zh) * 2020-02-27 2022-02-11 南京信息工程大学 基于多耦合线的三频带负群时延电路及实现方法
CN111611758B (zh) * 2020-05-26 2023-07-21 南京信息工程大学 一种Ti型低损耗负群时延电路及设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100223375B1 (ko) * 1997-06-11 1999-10-15 윤종용 마이크로웨이브 시스템에 사용하기 위한 주파수변환기
CN108566175B (zh) * 2018-03-26 2021-08-10 西南电子技术研究所(中国电子科技集团公司第十研究所) 可调负群时延电路
CN109918864B (zh) * 2019-05-05 2022-12-20 南京信息工程大学 基于扇形短截线和耦合微带线的负群时延电路及设计方法

Also Published As

Publication number Publication date
CN110348111A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN110348111B (zh) 一种基于耦合线和环形微带线的负群时延电路及其设计方法
CN103022715B (zh) 相位校准的平面喇叭天线
CN103022716B (zh) 相位幅度校准的平面喇叭天线
CN106992346B (zh) 一种具有双传输零点的毫米波矩形腔体滤波器
CN103022708B (zh) 内嵌金属化过孔相位校准的基片集成波导天线
CN103904391A (zh) 多层混合模六边形基片集成波导滤波器
CN104779424A (zh) 一种微带双通带耦合滤波器
CN110334470B (zh) 一种基于耦合线的多频段负群时延电路
CN104659451B (zh) 基于1/3等边三角形基片集成谐振器的四模带通滤波器
CN105552483A (zh) 一种TE○0n/TE○1n模式激励器
CN103647123B (zh) 半模基片集成波导横向对称滤波器
CN113764850B (zh) 一种接地共面波导-矩形波导滤波过渡结构
CN110175432B (zh) 一种基于四条并联微带线的负群时延电路及其设计方法
CN108346845B (zh) 一种超宽带高功率小型化功分器
CN102377005B (zh) 一种电抗调节的t型端口平面集成波导环行器
CN103022681B (zh) 内嵌金属化过孔幅度校准的基片集成波导天线
CN103594804B (zh) 薄基片槽线平面喇叭天线
CN110378015B (zh) 一种基于环形微带线的低损耗负群时延电路
CN110348113B (zh) 一种基于并联微带线的低损耗负群时延电路及其设计方法
CN101667675A (zh) 一种适用于毫米波功率合成及分配的波导结构
CN205621822U (zh) 高隔离度低通带通三工器
CN110175433B (zh) 一种基于扇形短截线和耦合线的负群时延电路
CN103594816B (zh) 薄基片相位校正槽线平面喇叭天线
CN110362915B (zh) 一种基于耦合线和环形微带线的双频负群时延电路
CN208570879U (zh) X波段大型混合平面电路功分器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant