CN1103443C - 非对称转子的全息动平衡方法 - Google Patents

非对称转子的全息动平衡方法 Download PDF

Info

Publication number
CN1103443C
CN1103443C CN 00113755 CN00113755A CN1103443C CN 1103443 C CN1103443 C CN 1103443C CN 00113755 CN00113755 CN 00113755 CN 00113755 A CN00113755 A CN 00113755A CN 1103443 C CN1103443 C CN 1103443C
Authority
CN
China
Prior art keywords
rotor
balance
test mass
rank
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 00113755
Other languages
English (en)
Other versions
CN1264035A (zh
Inventor
屈梁生
徐宾刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN 00113755 priority Critical patent/CN1103443C/zh
Publication of CN1264035A publication Critical patent/CN1264035A/zh
Application granted granted Critical
Publication of CN1103443C publication Critical patent/CN1103443C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Abstract

一种涉及旋转机械振动诊断与控制领域的非对称转子全息动平衡方法,基于全息谱技术及信息论原理,在获取转子全部传感器信息的基础上,集成幅、频、相信息,以全面地描述转子的振动行为,实现在任意非临界转速下,转子振动模态及不平衡量的对应分解,进而以一次试重起车,同时实现转子两阶模态的平衡。该平衡方法为可靠、高效地实施转子现场动平衡提供了科学的依据和手段。

Description

非对称转子的全息动平衡方法
本发明属于转子动平衡技术领域,进一步涉及旋转机械的振动诊断与控制领域。
由于转子动平衡技术对于各类工业的普遍重要意义,历年来它始终是学术界研究关注的焦点,也是工业部门投资发展的重点。其中,如何提高转子动平衡的精度与效率,以便更好地应用于工程实践,始终是该项技术发展的根本动力。
目前转子动平衡技术,在原理上基本可以归为两大类:模态平衡法和影响系数法。模态平衡法要求对转子系统的主振型、临界转速等参数有先验的了解,以确定合理的转子正交试重组,其过程繁琐复杂,增大了平衡难度。模态平衡法要求转子在临界转速附近进行平衡,增大了机组运行的风险性,并且对于运行与第1、2阶临界转速之间的转子来说,它至少需要2次试重起车才能求取转子的平衡配重量,从而影响了平衡效率与精度。影响系数平衡法是一个非常耗时的过程,它需要反复多次加重试车(对于运行于第1、2阶临界转速之间的转子而言,需要2次以上试重起车),以测定反映转子不平衡响应全貌的影响系数矩阵,同时如果平衡面选择不当,将会产生影响系数矩阵的病态化,导致平衡失败。由此可见,以上两种平衡方法都需要大量的人工参与,过多地依赖平衡专家的经验,基本上还是一种在理论指导下的反复手工试凑过程。其缺点是平衡过程费时、费力、费钱。
“转子全息动平衡方法”(参阅中国发明专利申请,申请号97108694.X)将全息谱技术与信息论原理应用于动平衡领域,实现了转子振动信息的高度集成与融合,并以一次试重起车,在任意平衡转速下实现了转子的平衡。该平衡方法在对称转子的平衡精度与效率两方面,均实现了动平衡技术的重大突破。本专利申请旨在将“转子全息动平衡方法”的理论与实践推广到更为广阔的领域,使其适用于结构非对称转子的平衡。
本发明的目的是克服上述现有技术的缺点与不足,提供一种非对称转子动平衡方法,采用全息谱技术原理,将转子多向振动信息加以集成与融合,以全面描述转子的振动行为,作为评定非对称转子失衡状态和试重影响的依据,从而为选择转子最佳平衡面和加重质量及方位提供科学依据,同时,该方法将信息论原理应用于模态分析领域,对转子振动的模态进行了集成与融合,并在任意非临界转速下将转子振动的1、2阶模态进行了分解,可以一次试重起车,同时实现转子两阶模态的平衡,极大地简化了平衡操作的过程,降低了平衡难度。
图1是非对称转子不平衡响应的工频三维全息谱分解示意图。
1(a)为转子原始振动的三维全息谱,1(b)所示为分解后所得的1阶模态响应的三维全息谱,1(c)所示为分解后所得的2阶模态响应的三维全息谱。
图2是非对称转子不平衡响应的模态分解示意图。
图3是非对称转子添加试重的模态分解示意图。
图4是不平衡量及其响应模态分解方位的相位关系。
图5是悬臂转子实验台布置。
图6是悬臂转子前两阶模态函数。
图7是悬臂转子全息动平衡结果。
下面结合附图对本发明的方法作详细的说明。本发明的具体实施步骤如下:
1、采集故障机组数据,利用全息谱技术能准确判别故障的性质,判明机组是否以不平衡故障为主导故障。若是,则进行下一步。
2、根据现场实际机组的情况,确定转子的平衡面及测量面。
3、将采集的故障数据进行数据预处理,并与键相信号归一化。
4、利用信号处理技术,精确地求出各个传感器拾取信号的幅值、频率和相位,作出转子工频下的三维全息谱图,如图1(a)所示。
5、计算两测量面处的转子测点模态比(也可通过实验来获取测点模态比),并利用它将转子工频原始振动信号分解为1阶、2阶模态响应,如图2所示,其三维全息谱分解结果分别如图1(b)和1(c)所示。比较这两阶模态响应的大小,根据比较的结果决定平衡方案,方案主要包括优先平衡1阶不平衡量,优先平衡2阶不平衡量和1、2阶不平衡量同时平衡。
6、根据平衡方案,确定机组的平衡转速(可在非临界转速下平衡,与模态平衡法相比,降低了机组起车的风险性),确定添加试重的大小和方位(确定试重时不需要先验的模态信息,降低了平衡难度)。
7、采集机组加重后振动数据,并利用第5步中计算的测量面处的测点模态比,将试重所引起的工频振动量分解为1、2阶模态分量。
8、比较第5、7步中,原始不平衡振动与试重所引起振动的模态分解结果,分别修正试重产生的1、2阶模态响应,使之与原始不平衡模态响应大小相等,方向相反。
9、计算两平衡面处的测点模态比(也可通过实验来获取测点模态比),利用它将两平衡面上所加的试重量分解为1、2阶模态不平衡量,如图3所示,利用不平衡响应与不平衡量模态分解方位之间的相位关系(如图4所示),并根据第8步中不平衡响应的比较结果修正所加试重量,结果即为两个平衡面所应加的校正配重。
10、平衡配重加上后,测试再次加重后的结果,如果满足平衡要求,则平衡结束。否则,重复第3~10步。
以上是通过计算来获取转子测量面及平衡面处的测点模态比,我们也可通过实验来获取测量面及平衡面处的测点模态比,但需增加一次试重起车。即在上述第7步一次试重起车的基础上,再次在平衡面上添加试重(与第一次试重量不同),二次起车,测量两个非临界转速下转子的振动量,然后联立两次试重起车的振动数据,获取测点模态比。
附图说明:图1中,1为轴承A端附近测量面,2为轴承B端附近测量面。图2中,RA、RB是所测转子两端轴承A与B附近测量面处的不平衡响应,γA,B 1、γA,B 2分别是两测量面处的1阶和2阶测点模态比。其中RAA,B 2RB是1阶不平衡响应的分解方位,RA-RA,B 1RB是2阶不平衡响应的分解方位。RAf、RBf是分解后所得的1阶模态不平衡响应,RAc、RBc是分解后所得的2阶模态不平衡响应。图3中,TC、TD是在两平衡面C与D上添加的试重量,γC,D 1、γC,D 2分别是两平衡面处的1阶和2阶测点模态比。其中TCγC,D 1+TD是1阶不平衡量的分解方位,TCγC,D 2+TD是2阶不平衡量的分解方位。TCf、TDf是分解后所得的1阶模态不平衡量,TCc、TDc是分解后所得的2阶模态不平衡量。图4中,1是1阶不平衡响应相位滞后角,2是2阶不平衡响应相位滞后角。图5中,3~6是测量转子横向振动的位移传感器,7是测量转子时标的键相传感器,8~9是两加重平衡面,10是柔性联轴节,11是电机,A、B是两端轴承,(1)~(11)是该悬臂转子数学模型的节点,Ω是转子转速。图6中,横坐标是转子轴向坐标,纵坐标是转子模态函数,12是转子1阶模态函数,13是转子2阶模态函数。图7中,14~15为测量转子横向振动的位移传感器,16是测量转子时标的键相传感器,17是转子时标,18~19是转子原始不平衡量,20~21是所求转子平衡配重量。
本发明提供的非对称转子全息动平衡方法,为非对称转子动平衡领域开辟了新的思路,显示了如下的优越性:
1.充分利用了转子多向振动信息,提高了平衡精度。该方法考虑了转子-轴承系统各向刚度不等的因素,采用全息谱参数,如椭圆长短轴、偏心率、初相点矢量等来表征振动的强度,更加全面也更加真实。
2.采用两平衡面同时加重,可一次试重起车,在任意一个非临界转速下同时实现转子两阶模态的平衡,减少了转子试重起车次数,提高了平衡效率,并降低了模态平衡法要求在临界转速处进行平衡所带来机组起车的风险。
3.确定所添加的转子试重时,不需要对转子模态信息有先验的了解,简化了平衡操作过程,降低了平衡难度。
4.对平衡人员经验的依赖性低。本发明用于现场动平衡时,大量的计算和角度判定均由软件在后台实现。一方面可以减少人为判断的失误,另一方面工厂的技术人员通过简单的学习就可以掌握,使工厂的设备管理有更大的自主性。
本发明多次在生产现场和本研究所的转子实验台上进行验证。实验台布置如图5所示,实验转子采用本特利RK4型转子实验台,其构造取为单盘悬臂模型。该转子的工作转速为3100r/min,1阶临界转速约为ω1=2400r/min,其原始不平衡振动甚小。
以下根据转子测点模态比获取途径的不同(通过计算或实验求取),分别采用两种方案进行转子平衡。平衡转速选为:Ω2=3100r/min。采用实验方法求解测点模态比时,所用两个非临界转速为:Ω1=1900r/min及Ω2=3100r/min。
悬臂转子全息动平衡操作步骤如下:
方案一:
1.分别在盘8、9(悬臂端)上,添加模拟的原始不平衡质量:
Ec=0.6g∠180,Ed=0.6g∠45  起车测量转子在转速Ω2下的原始不平衡振动量;
2.添加试重质量:
Tc=0.3g∠225,Td=0.3g∠270,起车测量转子在转速Ω2下的不平衡振动量;
3.计算测点模态比:我们建立了该转子相应的理论模型来计算测点模态比。将该转子划分为11个节点,如图5中黑点所示,其中节点(3)、(7)代表两测量面,(4)、(10)代表两平衡面。图6所示为求解所得的该转子前两阶模态函数,其中“o”表示1阶模态函数,“Δ”表示2阶模态函数。计算所得测点模态比列于表一。
4.配重的求取:利用所求测点模态比在平衡转速Ω2下,将转子原始振动量、纯试重引起的振动量和试重量进行1、2阶模态的分解,然后根据分解结果修正试重矢量,进而求取配重质量,所求配重为:
Pc=0.599g∠0,Pd=0.659g∠-139。
5.取下试重质量,添加配重质量PC,PD,平衡操作完毕。
方案二:
1.同方案一第1步,但测量转速为两个,即Ω1及Ω2
2.同方案一第2步,但测量转速为两个,即Ω1及Ω2
3.取下第一次试重质量,添加第二次试重质量:
T′c=0.4g∠90,T′d=0.4g∠337.5,起车测量转子在Ω2下的不平衡振动量;
4.获取测点模态比:利用两次试重量和转子在Ω1、Ω2下的振动量(包括原始及添加试重后)联立求解测点模态比,计算所得测点模态比列于表一。
5.同方案一第4步,所求配重为:Pc=0.599g∠0,Pd=0.659g∠-139。
6.同方案一第5步。从表一所列的计算方法和实验方法获取的测点模态比,可以看出,两者是非常接近的。表一
测点模态比    轴承A、B附近测点模态比   平衡面8、9处测点模态比
  1阶γA,B 1   2阶γA,B 2   1阶γC,D 1   2阶γC,D 2
实验方法 1.0193-0.2323i  1.4374+0.0784i -0.7402-0.1952i  1.5794-0.1822i
计算方法 1.2848  1.5216 -0.5636  1.5657
实验中传感器的布置及原始不平衡量与平衡配重的分布如图7所示,由此可见平衡结果是准确、合理的。最后我们将两种实验方案的过程及数据列入表二和表三。
表二                    测量振动量:mv∠度    加重质量:g@度
平衡步骤     全息动平衡方法:方案一
1 分别在两个平衡面8,9上,添加原始不平衡质量:Ec=0.6g∠180,Ed=0.6g∠45。
2 在选定的非临界转速Ω2=3100Rpm下,测量转子两端轴承A、B附近的原始不平衡振动量:转速Ω2下:RA=39.6∠81.3、RB=37.7∠101.5。
3 停车;分别在两个平衡面8,9上,同时添加试重质量:Tc=0.3g∠225,Td=0.3g∠270。
4 试重起车;测量转速Ω2下,转子两端轴承A、B附近的不平衡振动量:转速Ω2下:R′A=37.9∠120.2、R′B=42.7∠133.3。
    5 停车;建立转子模型,求取转子两测量面及平衡面处的测点模态比。
6 利用所求测点模态比在平衡转速Ω2下,将转子原始振动量、纯试重引起的振动量和试重量进行1、2阶模态分解,然后根据分解结果修正试重,求解平衡配重量为:Pc=0.599g∠0,Pd=0.659g∠-139
7 取下试重;分别在平衡面8、9上添加配重质量PC、PD;平衡操作完毕。
表三            测量振动量:mv∠度    加重质量:g@度
平衡步骤     全息动平衡方法:方案二
1 分别在两个平衡面8,9上,添加原始不平衡质量:Ec=0.6g∠180,Ed=0.6g∠45。
2 在两个选定的非临界转速Ω1=1900Rpm、Ω2=3100Rpm下,测量转子两端轴承A、B附近的原始不平衡振动量:转速Ω1下:RA=38.8∠-75.8、RB=36.8∠-65.9转速Ω2下:RA=39.6∠81.3、RB=37.7∠101.5。
3 停车;第一次分别在两个平衡面8,9上,同时添加试重质量:Tc=0.3g∠225,Td=0.3g∠270
4 第一次试重起车;测量转速Ω1、Ω2下,转子两端轴承A、B附近的不平衡振动量:转速Ω1下:R′A=47.3∠-71.6、R′B=42.9∠-59.9转速Ω2下:R′A=37.9∠120.2、R′B=42.7∠133.3。
5 停车;取下试重质量TC、TD;第二次分别在两个平衡面8、9上,同时添加试重质量:T′c=0.4g∠90,T′d=0.4g∠337.5。
6 第二次试重起车;测量平衡转速Ω2下,转子两端轴承A、B附近的不平衡振动量:R″A=51.1∠104.5、R″B=42.7∠46.9∠125.1。
   7 停车;根据第2、4、6步所测振动量及所加试重量,联立求取测点模态比。
8 利用所求测点模态比在平衡转速Ω2下,将转子原始振动量、第一次纯试重引起的振动量和第一次试重量进行1、2阶模态分解,然后根据分解结果修正试重,求解平衡配重量为:Pc=0.599g∠0,Pd=0.659g∠-139。
9 取下第二次试重质量TC′、TD′;分别在平衡面8、9上添加配重质量PC、PD;平衡操作完毕。

Claims (3)

1、非对称转子全息动平衡方法,首先采集故障机组数据,判明机组是否以不平衡为主导故障,若是,则根据故障机组转子的情况,确定转子的加重面及测量面,并将采集的数据进行数据预处理,与键相信号规一化,利用全息谱软件,精确地求出各传感器拾取信号的幅值、频率和相位,作出各个数据采集面的二维全息谱及转子工频下的三维全息谱;其特征在于,采用全息谱能快速辨明非对称转子是否是以不平衡为主导故障,并:
(1)通过添加试重方法或计算方法,求取转子测量面及平衡面处的测点模态比
(2)利用测点模态比,将转子在工作转速下的原始振动进行1、2阶模态的分解,并根据分解的结果,确定相应的平衡方案;
(3)利用测点模态比,将试重量及其引起的振动进行1、2阶模态的分解。比较原始振动与试重所引起振动的模态分解结果,修正试重的大小及方位,进而求解转子平衡配重;
(4)加上校正配重,再次测试加重的结果,如满足要求,则平衡结束;否则,重复上述步骤。
2.根据权利要求1所述的非对称转子全息动平衡方法,其特征在于,所说的平衡方案包括优先平衡1阶模态不平衡,优先平衡2阶模态不平衡和1、2阶模态不平衡同时平衡。
3.根据权利要求1所述的非对称转子全息动平衡方法,其特征在于,首先获取转子测点模态比,然后实现在任意非临界转速下,转子振动和不平衡量的1、2阶模态分解,进而修正试重,求取平衡配重量,以一次试重起车,同时实现转子两阶模态的平衡。
CN 00113755 2000-03-09 2000-03-09 非对称转子的全息动平衡方法 Expired - Fee Related CN1103443C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00113755 CN1103443C (zh) 2000-03-09 2000-03-09 非对称转子的全息动平衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00113755 CN1103443C (zh) 2000-03-09 2000-03-09 非对称转子的全息动平衡方法

Publications (2)

Publication Number Publication Date
CN1264035A CN1264035A (zh) 2000-08-23
CN1103443C true CN1103443C (zh) 2003-03-19

Family

ID=4583512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00113755 Expired - Fee Related CN1103443C (zh) 2000-03-09 2000-03-09 非对称转子的全息动平衡方法

Country Status (1)

Country Link
CN (1) CN1103443C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434890C (zh) * 2005-12-12 2008-11-19 西安交通大学 基于经验模态分解的柔性转子全息动平衡方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929908B (zh) * 2008-12-08 2012-11-14 广东省电力工业局试验研究所 基于全息谱技术的不平衡方位估计方法
CN101639395B (zh) * 2009-08-31 2011-06-22 西安交通大学 一种改进的高速主轴全息动平衡方法
CN105403364B (zh) * 2015-12-03 2019-01-15 天津大学 非对称转子双试重平衡法
CN105547591A (zh) * 2015-12-03 2016-05-04 天津大学 非对称转子无相位平衡法
CN114427933A (zh) * 2021-12-13 2022-05-03 中国石油化工股份有限公司 一种基于复合矢量的转子系统全息动平衡方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434890C (zh) * 2005-12-12 2008-11-19 西安交通大学 基于经验模态分解的柔性转子全息动平衡方法

Also Published As

Publication number Publication date
CN1264035A (zh) 2000-08-23

Similar Documents

Publication Publication Date Title
CN109029689B (zh) 一种基于转子两端运动轨迹的旋转机械振动分析方法
CN1103443C (zh) 非对称转子的全息动平衡方法
CN1204385C (zh) 柔性转子低速全息动平衡方法
CN111209639B (zh) 一种叶轮-轴承-转子系统的高效定量建模方法
CN1067765C (zh) 转子全息动平衡方法
CN1141567C (zh) 柔性转子轴系全息动平衡方法
JPS6321849B2 (zh)
Klanner et al. Quasi-analytical solutions for the whirling motion of multi-stepped rotors with arbitrarily distributed mass unbalance running in anisotropic linear bearings
CN116754134A (zh) 基于试验与仿真数据融合的转子不平衡状态识别方法
CN1067764C (zh) 旋转机械动平衡的动刚度系数平衡方法及平衡装置
CN112556931B (zh) 基于粒子群算法的高速轴承转子系统模态动平衡方法
Al-Khazali et al. The experimental analysis of vibration monitoring in system rotor dynamic with validate results using simulation data
CN1395085A (zh) 高速旋转机械半速涡动在线稳定性特征提取与监测方法
Yu General influence coefficient algorithm in balancing of rotating machinery
CN114577397A (zh) 一种高速永磁电机转子动平衡方法及系统
CN109847952B (zh) 一种基于驱动电流的双轴精密离心机回转台动平衡方法
Hamisu et al. FEA and modal analysis of a damped flywheel with unbalanced masses
Hong et al. Vibration Failure Analysis of Multi-Disk High-Speed Rotor Based on Rotary Inertia Load Model
CN1587944A (zh) 多轴、多转子动平衡试验方法
Huang et al. Dynamic balance two-dimensional measuring of crankshaft assembly in motorcycle engine
CN111767671B (zh) 一种适用于多面转子的不平衡参数辨识方法
Zhu et al. A Model-data Combined Driven Vibration Digital Twin Model for Magnetically Suspended Motor
CN113588232B (zh) 一种水电机组群轴系振动故障全息识别方法
CN116464673A (zh) 一种基于旋转电磁矢量场的磁悬浮分子泵在线动平衡方法
Guo et al. Dynamic balancing of multispeed multidisk rotor

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1059475

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030319

Termination date: 20120309