CN110340528A - 机载小型火箭壳体的焊接方法 - Google Patents

机载小型火箭壳体的焊接方法 Download PDF

Info

Publication number
CN110340528A
CN110340528A CN201910641507.8A CN201910641507A CN110340528A CN 110340528 A CN110340528 A CN 110340528A CN 201910641507 A CN201910641507 A CN 201910641507A CN 110340528 A CN110340528 A CN 110340528A
Authority
CN
China
Prior art keywords
welding
shell
airborne
cylinder
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910641507.8A
Other languages
English (en)
Other versions
CN110340528B (zh
Inventor
卢启辉
徐海升
和玉晓
杜利亚
余天雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Sanjiang Space Jiangbei Mechanical Engineering Co Ltd
Original Assignee
Hubei Sanjiang Space Jiangbei Mechanical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Sanjiang Space Jiangbei Mechanical Engineering Co Ltd filed Critical Hubei Sanjiang Space Jiangbei Mechanical Engineering Co Ltd
Priority to CN201910641507.8A priority Critical patent/CN110340528B/zh
Publication of CN110340528A publication Critical patent/CN110340528A/zh
Application granted granted Critical
Publication of CN110340528B publication Critical patent/CN110340528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种机载小型火箭壳体的焊接方法,所述机载小型火箭壳体直径小于200mm、材料为30CrMnSiA低合金高强度钢,机载小型火箭壳体包括前封头壳体和圆筒后接头壳体,前封头壳体和圆筒后接头壳体的加工‑对接焊试样左段和对接焊试样右段的加工‑淬火及回火‑装配、定位焊‑壳体预制件及焊接试样预制件对接焊‑焊缝射线探伤、补焊、再射线探伤并去应力退火。采用壳体零件淬火+回火后焊接,焊缝强度损失小,可以达到母材基体强度的95~100%(母材基体抗拉强度1080~1240MPa,焊接接头试样抗拉强度1026~1180MPa);焊缝韧性好,弯曲角40°无裂纹。

Description

机载小型火箭壳体的焊接方法
技术领域
本发明涉及固体火箭燃烧室壳体焊接技术领域,具体涉及一种机载小型火箭壳体的焊接方法。
背景技术
随着无人机、直升机等技术的快速发展,机载的以固体火箭为动力的防务产品、环境探测产品应用越来越多,其特点是要求数量多、加工效率高、制造成本低。
中大型的固体火箭发动机作为战略导弹、战术导弹、军民用卫星的发射动力装置,其固体火箭燃烧室壳体的产品价值高,加工周期长。其传统的对接焊采用铜衬内撑具调圆撑紧焊接,焊接后取出铜衬内撑具后,操作者钻到壳体内打磨焊缝背面,这种焊接方法效率较低、周期较长、成本较高。采用传统的中大型的固体火箭燃烧室壳体的对接焊方法,难于满足机载小型火箭壳体数量多、加工效率高、制造成本低的新要求。
直径小于260mm、材料为30CrMnSiA低合金高强度钢的小型火箭壳体,要求I级对接焊缝,焊接接头抗拉强度不得小于母材基体最小抗拉强度的90%(σb焊≥972MPa),接头弯曲角α≥40°,焊缝背面不允许有凹陷,且焊缝余高不得大于0.3mm,装配、焊接、拆卸、修磨总时间不得大于20分钟,采用传统的对接焊方法不能满足要求。
传统的火箭壳体焊接采用氩气保护电弧焊接方法,这种焊接方法的缺点是焊接效率较低、焊接变形较大。如果要提高加工效率,零件在淬火+回火后进行焊接,焊缝强度损失大,一般小于基体强度的70~80%,不能满足不小于基体强度90%的性能要求。另外,壳体在焊接后进行淬火+回火热处理,工艺流程长,需要经过焊接、探伤、退火、淬火、回火、校形、机械加工等工序,不适应小型火箭壳体批量生产的要求。
发明内容
本发明的目的就是针对上述技术的不足,提供一种精密度高、强度损失低的机载小型火箭壳体的焊接方法。
为实现上述目的,本发明所设计的机载小型火箭壳体的焊接方法,所述机载小型火箭壳体直径小于200mm、材料为30CrMnSiA低合金高强度钢,机载小型火箭壳体包括前封头壳体和圆筒后接头壳体,所述焊接方法包括如下步骤:
1)前封头壳体和圆筒后接头壳体的加工
将圆柱体原材料粗加工成前封头壳体,前封头壳体的前端设有精车工艺夹头,前封头壳体的后端设有与圆筒后接头壳体对接焊的前圆筒段,前圆筒段的后端面为前对接端面;
将圆管原材料粗加工成圆筒后接头壳体,其中,圆筒后接头壳体的前端为与前圆筒段对接焊的后圆筒段;
2)对接焊试样左段和对接焊试样右段的加工
将圆管原材料粗加工成对接焊试样左段和对接焊试样右段,其中,对接焊试样左段的壁厚和尺寸与前圆筒段相同;同理,对接焊试样右段的壁厚和尺寸与圆筒后接头壳体相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
6)焊缝射线探伤、补焊、再射线探伤并去应力退火
焊接后对壳体及焊接试样焊缝进行进行探伤,然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;并对壳体及焊接试样在焊接后进行去应力退火。
进一步地,所述步骤1)中,前圆筒段长度L1为5~10mm。
进一步地,所述步骤1)中,前圆筒段的前对接端面与前封头壳体的轴线垂直度误差不大于0.1mm;后对接端面与圆筒后接头壳体的轴线垂直度误差不大于0.1mm。
进一步地,所述步骤1)中,前圆筒段、后圆筒段外径公差为D1(+0.03,-0.03),壁厚公差为t(+0.05,0)。
进一步地,所述步骤1)中,前圆筒段内外壁与端面相交边均为前尖边,后圆筒段内外壁与端面相交边均为后尖边。
进一步地,所述步骤3)中,淬火温度均为890~910℃,淬火时间均为30~50分钟,回火温度均为480~520℃,回火时间均为50~70分钟。
进一步地,所述步骤4)中,激光深熔定位焊参数为:焊接功率2000~2500W,焊接速度2.5~3m/min。
进一步地,所述步骤5)中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体;
且激光深熔焊接参数为:打底焊焊接功率2500~3500W,焊接速度0.8~1.2m/min;加丝盖面焊焊接功率2500~3500W,焊接速度0.5~0.8m/min。
进一步地,所述步骤6)中,焊接合格后进行去应力回火的参数为:加热500~550℃,保温60~90min,随炉冷却到300℃后出炉空冷到室温。
本发明与现有技术相比,具有以下优点:
1)本发明机载小型火箭壳体的焊接方法采用定位套对接环缝定位结构,使得壳体对接焊安装定位快速准确,时间小于2分钟,传统方法安装定位时间大于15分钟;不需要拆卸焊接芯轴,传统方法拆卸焊接芯轴需要10分钟以上;本发明的焊接方法不仅可用于小型火箭壳体的高效焊接,也可以用于其它类似产品零件的高效焊接;
2)采用壳体零件淬火+回火后焊接,焊缝强度损失小,可以达到母材基体强度的95~100%(母材基体抗拉强度1080~1240MPa,焊接接头试样抗拉强度1026~1180MPa);焊缝韧性好,弯曲角40°无裂纹;
3)焊缝变形小,焊缝均匀收缩量0.03~0.06mm,而传统焊接一般收缩量为0.5~1.0mm。
附图说明
图1为前封头壳体结构示意图;
图2为圆筒后接头壳体结构示意图;
图3为机载小型火箭壳体结构示意图;
图4为对接焊试样左段结构示意图;
图5为对接焊试样右段结构示意图;
图6为焊接试样结构示意图。
其中:前封头壳体1、圆筒后接头壳体2、精车工艺夹头3、前圆筒段4、前对接端面5、前尖边6、后对接端面7、后尖边8、对接焊试样左段9、对接焊试样右段10。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
机载小型火箭壳体的焊接方法,机载小型火箭壳体直径小于200mm、材料为30CrMnSiA低合金高强度钢,机载小型火箭壳体包括前封头壳体1和圆筒后接头壳体2,焊接方法如下:
1)前封头壳体1和圆筒后接头壳体2的加工
结合图1、图2将圆柱体原材料粗加工成前封头壳体1,前封头壳体1的前端设有精车工艺夹头3,前封头壳体1的后端设有与圆筒后接头壳体2对接焊的前圆筒段4,前圆筒段4的后端面为前对接端面5;
按照GJB2608A-2008《航空用结构钢厚壁无缝钢管规范》选取厚壁钢管原材料,保证圆筒后接头壳体的最大外圆和最小内孔的单边有1~2mm的加工余量,将圆管原材料粗加工成圆筒后接头壳体2,其中,圆筒后接头壳体2的前端为与前圆筒段对接焊的后圆筒段;
其中,前圆筒段4长度L1为5~10mm,将机载小型火箭壳体的圆筒段长度的绝大部分放在圆筒后接头壳体上,既保证对接良好,又不过长增加原材料消耗和加工成本;
前圆筒段4的前对接端面5与前封头壳体1的轴线垂直度误差不大于0.1mm,以保证装配精度好,焊接质量好;后对接端面7与圆筒后接头壳体2的轴线垂直度误差不大于0.1mm,以保证装配精度好,焊接质量好;
前圆筒段、后圆筒段外径公差为D1(+0.03,-0.03),壁厚公差为t(+0.05,0);
前圆筒段内外壁与端面相交边均为前尖边6,以保证焊缝融合良好;后圆筒段内外壁与端面相交边均为后尖边8,以保证焊缝融合良好;保持尖边是为了保证对接面不缺材料,在焊接时充分熔合不产生超标缺陷;
2)对接焊试样左段9和对接焊试样右段10的加工
结合图4、图5按照GJB2608A-2008《航空用结构钢厚壁无缝钢管规范》选取厚壁钢管原材料,保证对接焊试样左段9和对接焊试样右段10的最大外圆和最小内孔的单边有1~2mm的加工余量;将圆管原材料粗加工成对接焊试样左段9和对接焊试样右段10,其中,对接焊试样左段9的壁厚和尺寸与前圆筒段4相同;同理,对接焊试样右段10的壁厚和尺寸与圆筒后接头壳体2相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火,淬火温度均为890~910℃,淬火时间均为30~50分钟,回火温度均为480~520℃,回火时间均为50~70分钟;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
且激光深熔定位焊参数为:焊接功率2000~2500W,焊接速度2.5~3m/min;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
其中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样如图6所示,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体,如图3所示;
且激光深熔焊接参数为:打底焊焊接功率2500~3500W,焊接速度0.8~1.2m/min;加丝盖面焊焊接功率2500~3500W,焊接速度0.5~0.8m/min;
6)焊缝射线探伤、补焊、再射线探伤
焊接后对壳体及焊接试样焊缝进行DR直接数字化X射线摄影系统进行探伤,以提高检测效率和检测灵敏度,缩短检测时间,保证在焊接后8小时内进行去应力退火;然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;
7)去应力退火
对壳体及焊接试样在焊接后8小时内进行去应力退火。焊接合格后进行去应力回火的参数为:加热500~550℃,保温60~90min,随炉冷却到300℃后出炉空冷到室温。
实施例1
针对某型号30CrMnSiA低合金高强度钢小型壳体,其外形直径D1为140mm,壳体长度L0为550mm,壁厚t为2mm,本发明机载小型火箭壳体的焊接方法如下:
1)前封头壳体和圆筒后接头壳体的加工
将圆柱体原材料粗加工成前封头壳体,前封头壳体的前端设有精车工艺夹头,前封头壳体的后端设有与圆筒后接头壳体对接焊的前圆筒段,前圆筒段的后端面为前对接端面;
将圆管原材料粗加工成圆筒后接头壳体,其中,圆筒后接头壳体的前端为与前圆筒段对接焊的后圆筒段;
其中,前圆筒段长度L1为5mm;且前圆筒段的前对接端面与前封头壳体的轴线垂直度误差不大于0.1mm;后对接端面与圆筒后接头壳体的轴线垂直度误差不大于0.1mm;前圆筒段、后圆筒段外径一致为140mm,外径公差为140±0.03;前圆筒段、后圆筒段壁厚为2mm、公差为2(+0.05,0);
前圆筒段内外壁与端面相交边均为前尖边;后圆筒段内外壁与端面相交边均为后尖边;
2)对接焊试样左段和对接焊试样右段的加工
将圆管原材料粗加工成对接焊试样左段和对接焊试样右段,其中,对接焊试样左段的壁厚和尺寸与前圆筒段相同;同理,对接焊试样右段的壁厚和尺寸与圆筒后接头壳体相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火,淬火温度均为890℃,淬火时间均为50分钟,回火温度均为520℃,回火时间均为50分钟;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
且激光深熔定位焊参数为:焊接功率2000W,焊接速度3m/min;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
其中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体;
且激光深熔焊接参数为:打底焊焊接功率2500W,焊接速度1.2m/min;加丝盖面焊焊接功率2500W,焊接速度0.8m/min;
6)焊缝射线探伤、补焊、再射线探伤
焊接后对壳体及焊接试样焊缝进行DR直接数字化X射线摄影系统进行探伤,以提高检测效率和检测灵敏度,缩短检测时间,保证在焊接后8小时内进行去应力退火;然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;
7)去应力退火
对壳体及焊接试样在焊接后8小时内进行去应力退火。焊接合格后进行去应力回火的参数为:加热500℃,保温60min,随炉冷却到300℃后出炉空冷到室温。
实施例2
针对某型号30CrMnSiA低合金高强度钢小型壳体,其外形直径D1为180mm,壳体长度L0为850mm,壁厚t为2.5mm,本发明机载小型火箭壳体的焊接方法如下:
1)前封头壳体和圆筒后接头壳体的加工
将圆柱体原材料粗加工成前封头壳体,前封头壳体的前端设有精车工艺夹头,前封头壳体的后端设有与圆筒后接头壳体对接焊的前圆筒段,前圆筒段的后端面为前对接端面;
将圆管原材料粗加工成圆筒后接头壳体,其中,圆筒后接头壳体的前端为与前圆筒段对接焊的后圆筒段;
其中,前圆筒段长度L1为7mm;且前圆筒段的前对接端面与前封头壳体的轴线垂直度误差不大于0.1mm;后对接端面与圆筒后接头壳体的轴线垂直度误差不大于0.1mm;前圆筒段、后圆筒段外径一致为180mm,外径公差为180±0.03;前圆筒段、后圆筒段壁厚为2.5mm、公差为2.5(+0.05,0);
前圆筒段内外壁与端面相交边均为前尖边;后圆筒段内外壁与端面相交边均为后尖边;
2)对接焊试样左段和对接焊试样右段的加工
将圆管原材料粗加工成对接焊试样左段和对接焊试样右段,其中,对接焊试样左段的壁厚和尺寸与前圆筒段相同;同理,对接焊试样右段的壁厚和尺寸与圆筒后接头壳体相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火,淬火温度均为900℃,淬火时间均为40分钟,回火温度均为500℃,回火时间均为60分钟;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
且激光深熔定位焊参数为:焊接功率2200W,焊接速度2.7m/min;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
其中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体;
且激光深熔焊接参数为:打底焊焊接功率3000W,焊接速度1m/min;加丝盖面焊焊接功率3000W,焊接速度0.7m/min;
6)焊缝射线探伤、补焊、再射线探伤
焊接后对壳体及焊接试样焊缝进行DR直接数字化X射线摄影系统进行探伤,以提高检测效率和检测灵敏度,缩短检测时间,保证在焊接后8小时内进行去应力退火;然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;
7)去应力退火
对壳体及焊接试样在焊接后8小时内进行去应力退火。焊接合格后进行去应力回火的参数为:加热525℃,保温80min,随炉冷却到300℃后出炉空冷到室温。
实施例3
针对某型号30CrMnSiA低合金高强度钢小型壳体,其外形直径D1为220mm,壳体长度L0为1150mm,壁厚t为3mm,本发明机载小型火箭壳体的焊接方法如下:
1)前封头壳体和圆筒后接头壳体的加工
将圆柱体原材料粗加工成前封头壳体,前封头壳体的前端设有精车工艺夹头,前封头壳体的后端设有与圆筒后接头壳体对接焊的前圆筒段,前圆筒段的后端面为前对接端面;
将圆管原材料粗加工成圆筒后接头壳体,其中,圆筒后接头壳体的前端为与前圆筒段对接焊的后圆筒段;
其中,前圆筒段长度L1为10mm;且前圆筒段的前对接端面与前封头壳体的轴线垂直度误差不大于0.1mm;后对接端面与圆筒后接头壳体的轴线垂直度误差不大于0.1mm;前圆筒段、后圆筒段外径一致为220mm,外径公差为220±0.03;前圆筒段、后圆筒段壁厚为3mm、公差为3(+0.05,0);
前圆筒段内外壁与端面相交边均为前尖边;后圆筒段内外壁与端面相交边均为后尖边;
2)对接焊试样左段和对接焊试样右段的加工
将圆管原材料粗加工成对接焊试样左段和对接焊试样右段,其中,对接焊试样左段的壁厚和尺寸与前圆筒段相同;同理,对接焊试样右段的壁厚和尺寸与圆筒后接头壳体相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火,淬火温度均为910℃,淬火时间均为30分钟,回火温度均为480℃,回火时间均为70分钟;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
且激光深熔定位焊参数为:焊接功率2500W,焊接速度2.5m/min;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
其中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体;
且激光深熔焊接参数为:打底焊焊接功率3500W,焊接速度0.8m/min;加丝盖面焊焊接功率3500W,焊接速度0.5m/min;
6)焊缝射线探伤、补焊、再射线探伤
焊接后对壳体及焊接试样焊缝进行DR直接数字化X射线摄影系统进行探伤,以提高检测效率和检测灵敏度,缩短检测时间,保证在焊接后8小时内进行去应力退火;然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;
7)去应力退火
对壳体及焊接试样在焊接后8小时内进行去应力退火。焊接合格后进行去应力回火的参数为:加热550℃,保温90min,随炉冷却到300℃后出炉空冷到室温。
本发明机载小型火箭壳体的焊接方法,采用专用定位套对接环缝定位结构,使得壳体对接焊安装定位快速准确,时间小于2分钟,传统方法安装定位时间大于15分钟;采用先进的焊接方法和优化的工艺参数,壳体淬火+回火后焊接强度损失小,可以达到母材基体强度的95~100%;焊缝韧性好,弯曲角40°无裂纹;焊缝变形小,焊缝均匀收缩量小于0.06mm。

Claims (9)

1.一种机载小型火箭壳体的焊接方法,所述机载小型火箭壳体直径小于200mm、材料为30CrMnSiA低合金高强度钢,机载小型火箭壳体包括前封头壳体和圆筒后接头壳体,其特征在于:所述焊接方法包括如下步骤:
1)前封头壳体和圆筒后接头壳体的加工
将圆柱体原材料粗加工成前封头壳体,前封头壳体的前端设有精车工艺夹头,前封头壳体的后端设有与圆筒后接头壳体对接焊的前圆筒段,前圆筒段的后端面为前对接端面;
将圆管原材料粗加工成圆筒后接头壳体,其中,圆筒后接头壳体的前端为与前圆筒段对接焊的后圆筒段;
2)对接焊试样左段和对接焊试样右段的加工
将圆管原材料粗加工成对接焊试样左段和对接焊试样右段,其中,对接焊试样左段的壁厚和尺寸与前圆筒段相同;同理,对接焊试样右段的壁厚和尺寸与圆筒后接头壳体相同;
3)淬火及回火
对步骤1)中的前封头壳体和圆筒后接头壳体进行淬火及回火,对步骤2)中的对接焊试样左段和对接焊试样右段进行淬火及回火;
4)装配、定位焊
将步骤3)中的前封头壳体和圆筒后接头壳体清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得壳体预制件,同理,将步骤3)中的对接焊试样左段和对接焊试样右段清洗后装入定位套夹具中,试装合格后在在定位套夹具的环上周向的开口处进行激光定位焊获得焊接试样预制件;
5)壳体预制件及焊接试样预制件对接焊
采用自动氩气保护激光焊接方法进行壳体试样预制件及壳体预制件对接焊;
6)焊缝射线探伤、补焊、再射线探伤并去应力退火
焊接后对壳体及焊接试样焊缝进行进行探伤,然后采用氩气保护激光焊接方法对壳体对接焊缝缺陷处进行补焊合格,并对补焊焊缝进行射线探伤;并对壳体及焊接试样在焊接后进行去应力退火。
2.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤1)中,前圆筒段长度L1为5~10mm。
3.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤1)中,前圆筒段的前对接端面与前封头壳体的轴线垂直度误差不大于0.1mm;后对接端面与圆筒后接头壳体的轴线垂直度误差不大于0.1mm。
4.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤1)中,前圆筒段、后圆筒段外径公差为D1(+0.03,-0.03),壁厚公差为t(+0.05,0)。
5.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤1)中,前圆筒段内外壁与端面相交边均为前尖边,后圆筒段内外壁与端面相交边均为后尖边。
6.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤3)中,淬火温度均为890~910℃,淬火时间均为30~50分钟,回火温度均为480~520℃,回火时间均为50~70分钟。
7.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤4)中,激光深熔定位焊参数为:焊接功率2000~2500W,焊接速度2.5~3m/min。
8.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤5)中,先在焊接试样预制件上进行焊接参数优化焊接试验获得焊接试样,保证焊缝射线检测合格,并且焊缝背面无凹陷、焊缝余高不大于0.3,再按照试验得到的焊接参数焊接壳体预制件获得壳体;
且激光深熔焊接参数为:打底焊焊接功率2500~3500W,焊接速度0.8~1.2m/min;加丝盖面焊焊接功率2500~3500W,焊接速度0.5~0.8m/min。
9.根据权利要求1所述机载小型火箭壳体的焊接方法,其特征在于:所述步骤6)中,焊接合格后进行去应力回火的参数为:加热500~550℃,保温60~90min,随炉冷却到300℃后出炉空冷到室温。
CN201910641507.8A 2019-07-16 2019-07-16 机载小型火箭壳体的焊接方法 Active CN110340528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910641507.8A CN110340528B (zh) 2019-07-16 2019-07-16 机载小型火箭壳体的焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910641507.8A CN110340528B (zh) 2019-07-16 2019-07-16 机载小型火箭壳体的焊接方法

Publications (2)

Publication Number Publication Date
CN110340528A true CN110340528A (zh) 2019-10-18
CN110340528B CN110340528B (zh) 2021-07-06

Family

ID=68176515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910641507.8A Active CN110340528B (zh) 2019-07-16 2019-07-16 机载小型火箭壳体的焊接方法

Country Status (1)

Country Link
CN (1) CN110340528B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110732844A (zh) * 2019-10-25 2020-01-31 湖北三江航天江北机械工程有限公司 多接头火箭壳体加工方法
CN111515620A (zh) * 2020-04-10 2020-08-11 湖北三江航天江北机械工程有限公司 固体火箭发动机壳体的成型方法
CN112453640A (zh) * 2020-11-15 2021-03-09 西安长峰机电研究所 一种小锥角薄壁筒形壳体焊接错位变形控制方法
CN113369645A (zh) * 2021-05-26 2021-09-10 湖北三江航天江北机械工程有限公司 大厚度航弹壳体焊接与热处理方法
CN115401407A (zh) * 2022-08-01 2022-11-29 宜昌江峡船用机械有限责任公司 一种同时保证40CrNiMoA焊缝强度及硬度的焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342017B (zh) * 2009-09-22 2013-02-27 上海航天精密机械研究所 运载火箭的箭体筒段环缝焊接支撑装置
CN103567649A (zh) * 2013-10-16 2014-02-12 孙建康 一种壳体及其制造方法和应用
CN105345262A (zh) * 2015-12-31 2016-02-24 上海第一机床厂有限公司 核反应堆内导向筒半壳体的激光焊接方法
JP6048659B2 (ja) * 2012-12-27 2016-12-21 株式会社ノーリツ タンクおよびその製造方法
CN106392325A (zh) * 2016-11-15 2017-02-15 湖北三江航天红阳机电有限公司 一种不锈钢厚壁压力容器的激光焊接方法
CN107571027A (zh) * 2017-10-17 2018-01-12 广东正业科技股份有限公司 一种壳体及其加工方法和加工设备
CN109014790A (zh) * 2018-09-04 2018-12-18 湖北三江航天江北机械工程有限公司 固体火箭发动机壳体焊接成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342017B (zh) * 2009-09-22 2013-02-27 上海航天精密机械研究所 运载火箭的箭体筒段环缝焊接支撑装置
JP6048659B2 (ja) * 2012-12-27 2016-12-21 株式会社ノーリツ タンクおよびその製造方法
CN103567649A (zh) * 2013-10-16 2014-02-12 孙建康 一种壳体及其制造方法和应用
CN105345262A (zh) * 2015-12-31 2016-02-24 上海第一机床厂有限公司 核反应堆内导向筒半壳体的激光焊接方法
CN106392325A (zh) * 2016-11-15 2017-02-15 湖北三江航天红阳机电有限公司 一种不锈钢厚壁压力容器的激光焊接方法
CN107571027A (zh) * 2017-10-17 2018-01-12 广东正业科技股份有限公司 一种壳体及其加工方法和加工设备
CN109014790A (zh) * 2018-09-04 2018-12-18 湖北三江航天江北机械工程有限公司 固体火箭发动机壳体焊接成型方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110732844A (zh) * 2019-10-25 2020-01-31 湖北三江航天江北机械工程有限公司 多接头火箭壳体加工方法
CN110732844B (zh) * 2019-10-25 2020-10-09 湖北三江航天江北机械工程有限公司 多接头火箭壳体加工方法
CN111515620A (zh) * 2020-04-10 2020-08-11 湖北三江航天江北机械工程有限公司 固体火箭发动机壳体的成型方法
CN112453640A (zh) * 2020-11-15 2021-03-09 西安长峰机电研究所 一种小锥角薄壁筒形壳体焊接错位变形控制方法
CN113369645A (zh) * 2021-05-26 2021-09-10 湖北三江航天江北机械工程有限公司 大厚度航弹壳体焊接与热处理方法
CN115401407A (zh) * 2022-08-01 2022-11-29 宜昌江峡船用机械有限责任公司 一种同时保证40CrNiMoA焊缝强度及硬度的焊接方法

Also Published As

Publication number Publication date
CN110340528B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN110340528A (zh) 机载小型火箭壳体的焊接方法
CN110064813B (zh) 机载小型火箭壳体的焊接方法
CN106975826B (zh) 一种镍基合金换热管对接自动焊接工艺
CN105537791B (zh) 一种现场焊接大型卧式转炉筒体同轴度的方法
CN106238939B (zh) 一种喷水推进装置中导叶喷嘴的支撑工装及焊接方法
AU2016101922A4 (en) A method for cladding an inner hole of an upright cylinder
CN106944723B (zh) 一种填充熔化环的低合金钢换热管对接自动焊接工艺
CN105665898A (zh) 一种珠光体耐热钢复合板埋弧自动焊焊接方法
CN110453213A (zh) 一种飞机300m钢起落架活塞杆唇口裂纹激光熔覆修复方法
Savchenko et al. Simulation of new multilayer waveguides by explosion welding
CN110732844B (zh) 多接头火箭壳体加工方法
RU2613256C1 (ru) Способ изготовления сварных титановых труб
CN111136398A (zh) 一种锅炉管道对接焊接工艺
RU2584622C1 (ru) Способ изготовления сварных осесимметричных корпусов сосудов, работающих под высоким давлением
Nakasato et al. Hot spinning formability of aluminum alloy tube
CN111687605B (zh) 一种控制棒系统用连接环链的制备方法及连接环链
RU2449870C1 (ru) Способ изготовления стальной сложнокомбинированной осесимметричной сварной конструкции, работающей под давлением
CN115555687A (zh) 一种薄壁机匣组件氩弧焊修复变形控制方法
RU2605877C1 (ru) Способ изготовления сварных корпусов сосудов высокого давления из высокопрочных легированных сталей
CN105345262A (zh) 核反应堆内导向筒半壳体的激光焊接方法
CN107695154B (zh) 一种提高铝合金筒体高温内压成形合格率的方法
CN106353116B (zh) 密闭式热强度试验系统之试验舱制备方法
RU2454307C1 (ru) Способ изготовления высокопрочных осесимметричных оболочек, работающих под высоким давлением
CN207372528U (zh) 一种卧螺机螺旋焊接装置
CN115647566A (zh) 一种提高惯性摩擦焊接头高温持久寿命的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant