CN110329113A - 一种汽车综合热管理系统的控制方法 - Google Patents
一种汽车综合热管理系统的控制方法 Download PDFInfo
- Publication number
- CN110329113A CN110329113A CN201910765573.6A CN201910765573A CN110329113A CN 110329113 A CN110329113 A CN 110329113A CN 201910765573 A CN201910765573 A CN 201910765573A CN 110329113 A CN110329113 A CN 110329113A
- Authority
- CN
- China
- Prior art keywords
- temperature
- battery
- thermal management
- integrated thermal
- cooling circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00271—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
- B60H1/00278—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00357—Air-conditioning arrangements specially adapted for particular vehicles
- B60H1/00385—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
- B60H1/00392—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/66—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
- H01M10/663—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00271—HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
- B60H2001/00307—Component temperature regulation using a liquid flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
一种汽车综合热管理系统的控制方法,包括如下步骤:综合热管理控制器获取电机冷却回路中冷却液的温度,以及动力电池的平均温度;若电机冷却回路中冷却液的温度达到电机高温温度,或者动力电池的平均温度达到电池高温温度,则开启制冷模式,对电机冷却回路中和/或电池冷却回路中的冷却液进行冷却,直至电机冷却回路中冷却液的温度低于电机冷却截止限值,并且动力电池的平均温度低于电池冷却截止限值;若动力电池的平均温度低于电池低温温度,则开启加热模式,利用汽车综合热管理系统中产生的热量对电池加热回路中的冷却液进行加热,直至动力电池的平均温度大于电池加热截止限值,则执行关机模式。
Description
技术领域
本发明涉及新能源技术领域,特别涉及一种汽车综合热管理系统的控制方法。
背景技术
热管理技术是纯电动汽车的核心技术之一,其功用是使驱动电机和动力电池等部件在所有工况下都保持在适当的温度范围内。纯电动汽车热管理系统通常包括电机冷却系统和电池热管理系统,电机冷却系统负责在驱动电机、或者电机控制器等部件温度较高时对其进行冷却降温,电池热管理系统负责在环境温度低时对动力电池进行加热升温,在动力电池温度较高时对其进行冷却降温。虽然通过现有的热管理系统可对驱动电机和动力电池等部件进行有效的温度控制管理,但是其存在着以下缺陷:
其一,现有电机冷却系统大多由水泵、散热器、电子风扇、膨胀水箱等部件与驱动电机和电机控制器等部件串联成独立的电机冷却回路进行温度控制,回路中的冷却液吸收各部件的热量后,经过散热器将热量排放至外界环境中。显然,这种冷却方式无法实现整车废热循环利用,会造成能源浪费;并且其管路与电池热管理系统的管路均为独立的回路,管路布置较为分散,热管理控制不集中,需要多套管理控制系统,控制难度和成本较高。而且现在市场上普遍采用开关法控制,无法自适应调节热管理系统的制冷量,导致整车电耗偏高且部件使用寿命缩短。
其二,现有的电池热管理系统中,其电池制冷普遍采用空调水冷方案,而制热则大多采用水暖PTC加热器对冷却液进行升温从而提高动力电池的温度。这种PTC加热器不仅功耗大、可靠性低、寿命短,并且存在电芯间温差较大,加热速率慢的弊端,会增加电动汽车电耗,缩小整车的续航里程。
为此,我们提供一种汽车综合热管理系统的控制方法。
发明内容
本发明提供一种汽车综合热管理系统的控制方法,其主要目的在于解决现有汽车热管理系统存在的管路布置分散、热管理控制不集中、能源利用率低、加热器功耗大、控温效率低、控制难度和控制成本高等的问题。
本发明采用如下技术方案:
一种汽车综合热管理系统的控制方法,所述汽车综合热管理系统包括综合热管理控制器、电机冷却回路和电池热管理系统,该电池热管理系统包括电池冷却回路和电池加热回路;所述汽车综合热管理系统的控制方法包括如下步骤:
S1、综合热管理控制器获取电机冷却回路中冷却液的温度,以及动力电池的平均温度;
S2、判断电机冷却回路中冷却液的温度达到设定的电机高温温度,或者动力电池的平均温度是否达到设定的电池高温温度,若判定结果为是,则开启制冷模式,对电机冷却回路中和/或电池冷却回路中的冷却液进行冷却降温,直至电机冷却回路中冷却液的温度低于电机冷却截止限值,并且动力电池的平均温度低于电池冷却截止限值,则执行步骤S3;若判定结果为否,则执行步骤S3;
S3、判断动力电池的平均温度是否低于设定的电池低温温度,若判断结果为是,则开启加热模式,利用汽车综合热管理系统中产生的热量对电池加热回路中的冷却液进行加热,直至动力电池的平均温度大于电池加热截止限值,则执行关机模式;若判定结果为否,则执行关机模式。
进一步,所述电机冷却回路通过管路依次串联有第一水泵、多合一控制器、换热器、第一三通管、散热器和第一电子三通阀;所述电池冷却回路通过管路依次串联有动力电池、第二三通管、第二水泵、换热板块和第二电子三通阀;所述电池加热回路通过管路依次串联有所述动力电池、所述第二三通管、所述第一电子三通阀、所述第一水泵、所述多合一控制器、所述换热器、所述第一三通管和所述第二电子三通阀;在步骤S2和步骤S3中,所述综合热管理控制器通过控制所述第一电子三通阀和第二电子三通阀的接入位置,来切换电机冷却回路、电池冷却回路和电池加热回路三者的通路或者断路状态,进而控制汽车综合热管理系统进入制冷模式或者加热模式。
进一步,所述散热器旁边配设有散热风扇,所述第一水泵的入口端配设有第一膨胀水箱;在步骤S2中,综合热管理控制器通过控制散热风扇和第一水泵的转速从而间接控制电机冷却回路中冷却液的温度。
进一步,所述汽车综合热管理系统还包括油冷回路,该油冷回路通过管路依次串联有所述驱动电机、减速箱、油泵和所述换热器,并且该油冷回路通过换热器与电机冷却回路之间实现并联热交换;在步骤S2中,综合热管理控制器通过控制油泵的转速来间接控制油冷回路和电机冷却回路中冷却液的热交换速率,从而控制油冷回路和电机冷却回路中冷却液的温度。
进一步,电池热管理系统还包括冷媒回路,该冷媒回路通过管路依次串联有压缩机、冷凝器、膨胀阀和所述换热板块,并且该冷媒回路通过该换热板块与电池冷却回路之间实现并联热交换;所述冷凝器旁边配设有冷凝风扇;所述第二水泵的入口端配设有第二膨胀水箱;在步骤S2中,综合热管理控制器通过控制第二水泵、压缩机和冷凝风扇的转速来间接控制电池冷却回路中冷却液的温度,进而控制动力电池的平均温度。
进一步,在步骤S3中,汽车综合热管理系统中产生的热量包括汽车静态怠速时驱动电机定子绕组产生的热量或者汽车动态行驶时驱动电机产生的废热。
进一步,在步骤S3中,汽车综合热管理系统中产生的热量还包括动力电池脉冲充放电自加热产生的热量,以及多合一控制器运行时产生的热量。
进一步,所述多合一控制器包括相连接的电机控制器、第一DCAC变频器、第二DCAC变频器、DCDC变频器和高压配电箱;在步骤S3中,综合热管理控制器通过所述控制电机控制器开关管的工作频率来控制驱动电机产热,从而间接控制电池加热回路中冷却液的温度,进而控制动力电池的平均温度。
进一步,在步骤S3中,综合热管理控制器通过控制第一水泵的转速,从而间接控制电池加热回路中冷却液的温度,进而控制动力电池的平均温度。
进一步,所述电机冷却回路、电池冷却回路的管路上以及所述驱动电机、多合一控制器和动力电池的内部均设有温度传感器;在步骤S1中,综合热管理控制器与各个温度传感器相互通信连接,并读取各个温度传感器的温度值。
和现有技术相比,本发明产生的有益效果在于:
1、本发明提供一种汽车综合热管理系统的控制方法,该控制方法将汽车动力电池系统、动力传动系统和多合一控制系统的热管理系统进行综合集中控制与管理,并且充分利用整车动力传动系统的行车废热回收技术、动力电池脉冲充放电自加热技术和驱动电机定子绕组产热技术对电池加热回路中的冷却液温度进行有效的控制,满足汽车热管理需求,能提高整车综合热管理的效率,实现热量循环利用,从而提高汽车续航里程能力。
2、本发明通过综合热管理控制器控制第一电子三通阀和第二电子三通阀的接入位置,便可将汽车综合热管理系统切换至制冷模式或者加热模式,能够实现多回路集中控制管理,操作智能方便,热管理效率高。
3、本发明提供无需额外设置PTC加热器,便可对动力电池进行加热升温,不仅可以实现整车的热循环利用,而且能减少控制难度和控制成本。
附图说明
图1为本发明制冷模式的管路示意图。
图2为本发明加热模式的管路示意图。
图3为本发明的综合控制原理图。
图4为本发明制冷模式的控制原理图(上半部分)。
图5为本发明制冷模式的控制原理图(下半部分)。
图6为本发明加热模式的控制原理图。
图中:100、电机冷却回路;101、第一水泵;102、多合一控制器;103、第一三通管;104、散热器;105、第一电子三通阀;106、散热风扇;107、第一膨胀水箱;108、第一温度传感器;109、第二温度传感器;110、第三温度传感器;200、电池冷却回路;201、动力电池;202、第二三通管;203、第二水泵;204、第二电子三通阀;205、第二膨胀水箱;206、第四温度传感器;300、油冷回路;301驱动电机;302、减速箱;303、油泵;304、换热器;400、冷媒回路;401、压缩机;402、冷凝器;403、膨胀阀;404、换热板块;405冷凝风扇;500、电池加热回路。
具体实施方式
下面参照附图说明本发明的具体实施方式。为了全面理解本发明,下面描述到许多细节,但对于本领域技术人员来说,无需这些细节也可实现本发明。
参照图1和图2,一种汽车综合热管理系统,包括电机冷却回路100和电池热管理系统,电机冷却回路100包括首尾依次连接的第一水泵101、多合一控制器102、换热器304、第一三通管103、散热器104和第一电子三通阀105。电池热管理系统包括电池冷却回路200和电池加热回路500,其中,电池冷却回路200包括首尾依次连接的动力电池201、第二三通管202、第二水泵203、换热板块404和第二电子三通阀204;电池加热回路500包括首尾依次连接的动力电池201、第二三通管202、第一电子三通阀105、第一水泵101、多合一控制器102、换热器304、第一三通管103和第二电子三通阀204。由此可知,本发明公开的汽车综合热管理系统通过改变第一电子三通阀105和第二电子三通阀204的接入位置便可将动力电池201和多合一控制器102等部件串联成电池加热回路500,并且无需在电池加热回路500上额外设置PTC加热器,便可对动力电池201进行加热升温,能够实现综合控制与管理,并且有效避免了因使用PTC加热器而带来的电量损耗和汽车续航里程缩小等的问题。
参照图1和图2,汽车综合热管理系统还包括综合热管理控制器,该综合热管理控制器与第一电子三通阀105和第二电子三通阀204电连接。通过综合热管理控制器可控制第一电子三通阀105和第二电子三通阀204的接入位置,从而将汽车综合热管理系统切换至制冷模式或者加热模式,能够实现多回路集中控制管理,操作智能方便。
参照图1和图2,具体地,该汽车综合热管理系统还包括油冷回路300,该油冷回路300包括首尾依次连接的驱动电机301、减速箱302、油泵303和换热器304;并且油冷回路300和电机冷却回路100之间通过换热器304并联热交换。本实施例中的换热器304优选为油冷器。由于驱动电机301运行时产生的热量大,温度高,因此本发明通过设置油冷回路将驱动电机301、减速箱302、油泵303和换热器304组成强制油冷回流系统,在制冷模式下,通过换热器304与外部的电机冷却回路100进行热交换,从而可实现高效的冷却降温效果;在加热模式下,通过换热器304与外部的电池加热回路500进行热交换,可充分利用驱动电机301产生的热量对动力电池201进行加热处理,从而实现整车的热循环利用,不仅管理高效且绿色环保。
参照图1和图2,更具体地,散热器104旁边配设有散热风扇106,第一水泵101的入口端配设有第一膨胀水箱107,并且散热风扇106、第一水泵101和油泵303均与综合热管理控制器电连接。其中,散热风扇106可加快散热器104的散热速率;第一膨胀水箱107安装于电机冷却回路100的最高处,第一水泵101设置于电机冷却回路100的最低处,并且第一膨胀水箱107设置在第一水泵101的入水口,有助于将电机冷却回路100中的空气排出。
参照图1和图2,具体地,该汽车综合热管理系统还包括冷媒回路400,该冷媒回路400包括首尾依次连接的压缩机401、冷凝器402、膨胀阀403和换热板块404;并且冷媒回路400和电池冷却回路200之间通过换热板块404并联热交换。更具体地,冷媒回路400中运行的冷却液介质是制冷剂,低压制冷剂经过吸入压缩机401变成高温高压的气态制冷剂,之后经过冷凝器402进行降温逐渐冷凝成高温高压的液态制冷剂,再通过膨胀阀403的节流装置降压变成低温低压的液态的制冷剂,最后通过换热板块404与电池冷却回路200中的冷却液进行热交换,液态的制冷剂吸收电池冷却回路200中的冷却液的热量而不断汽化,从而间接使电池冷却回路200中冷却液的温度降低。
参照图1和图2,更具体地,冷凝器402旁边配设有冷凝风扇405,第二水泵203的入口端配设有第二膨胀水箱205,并且冷凝风扇405、第二水泵203和压缩机401均与综合热管理控制器电连接。其中,冷凝器405在工作时会产生大量热量,因此在冷凝器402旁边配设冷凝风扇405可对冷凝器402进行有效的散热,从而提高冷凝器的冷凝效率;第二膨胀水箱205安装于电池冷却回路200的最高处,第二水泵203设置于池冷却回路200的最低处,并且第二膨胀水箱205设置在第二水泵203的入水口,有助于将电池冷却回路200中的空气排出。
参照图1和图2,具体地,电机冷却回路100和电池冷却回路200上设有若干与综合热管理控制器通信连接的温度传感器,具体包括第一温度传感器108、第二温度传感器109、第三温度传感器110和第四温度传感器206。其中,第一温度传感器108设置于第一三通管103与散热器104之间;第二温度传感器109设置于第一水泵101与多合一控制器102之间;第三温度传感器110设置于多合一控制器102和换热器304之间;第四传感器206设置于第二电子三通阀204和动力电池201之间。此外,驱动电机301、多合一控制器102和动力电池201的内部也设有与综合热管理控制器通信连接的温度传感器,由此,综合热管理控制器可读取驱动电机的绕组温度T5,多合一控制器的平均温度和动力电池的平均温度T10。
参照图1和图2,更具体地,多合一控制器102包括相连接的电机控制器、第一DCAC变频器、第二DCAC变频器、DCDC变频器和高压配电箱。其中电机控制器、第一DCAC变频器、第二DCAC变频器、DCDC变频器和高压配电箱的外部均安装水冷板进行内外热交换;电机控制器、第一DCAC变频器、第二DCAC变频器和DCDC变频器内部均设有与综合热管理控制器通信连接的温度传感器。
参照图1至图6,该汽车综合热管理系统的控制方法包括如下步骤:
S1、综合热管理控制器获取电机冷却回路100中冷却液的温度,以及动力电池201的平均温度;
S2、判断电机冷却回路100中冷却液的温度是否达到设定的电机高温温度T2,或者动力电池201的平均温度是否达到设定的电池高温温度T101,若判定结果为是,则启动制冷模式,对电机冷却回路100中和/或电池冷却回路200中的冷却液进行冷却降温,直至电机冷却回路100中冷却液的温度低于电机冷却截止限值T14,并且动力电池201的平均温度低于电池冷却截止限值T103,则执行步骤S3;若判定结果为否,则执行步骤S3;
S3、判断动力电池201的平均温度是否低于设定的电池低温温度T102,若判断结果为是,则启动加热模式,利用汽车综合热管理系统中产生的热量对电池加热回路500中的冷却液进行加热,直至动力电池的平均温度T10大于电池加热截止限值T104,则执行关机模式;若判定结果为否时,则执行关机模式。
参照图1至图6,具体地,在步骤S1中综合热管理控制器可分别获取第一温度传感器108、第二温度传感器109、第三温度传感器110和第四温度传感器206的信号,同时综合热管理控制器还可获取驱动电机301的绕组温度,电机控制器的平均温度、第一DCAC变频器的平均温度、第二DCAC变频器的平均温度、DCAC变频器的平均温度以及动力电池的平均温度。并且综合热管理控制器以第一温度传感器108的温度T1作为判断电机冷却回路100中冷却液温度的主要判断依据。
参照图1至图6,具体地,在步骤S2和步骤S3中,综合热管理控制器通过控制第一电子三通阀105和第二电子三通阀204的接入位置,来切换电机冷却回路100、电池冷却回路200和电池加热回路500三者的通路或者断路状态,进而控制汽车综合热管理系统进入制冷模式或者加热模式。
参照图1至图6,具体地,在步骤S2中,制冷模式下,综合热管理控制器通过分别控制散热风扇106、第一水泵101和油泵303的转速从而间接控制电机冷却回路100中冷却液的温度。更具体地,综合热管理控制器通过控制散热风扇106的转速来控制散热器104的散热速率,并通过控制第一水泵101的转速来控制电机冷却回路100中冷却液的流速,从而实现间接控制电机冷却回路100中冷却液温度的目的;综合热管理控制器通过控制油泵303的转速来控制油冷回路300中冷却液的流速,从而间接控制油冷回路300和电机冷却回路100中冷却液的热交换速率,进而实现控制油冷回路300和电机冷却回路100中冷却液的温度。
参照图1至图6,具体地,在步骤S2中,制冷模式下,综合热管理控制器通过控制第二水泵203、压缩机401和冷凝风扇405的转速来间接控制电池冷却回路200中冷却液的温度,进而控制动力电池201的平均温度。更具体地,综合热管理控制器通过控制压缩机401的转速来控制冷媒回路400中冷却剂的流速,并通过控制冷凝风扇405的转速来控制冷凝器402的冷凝速率,从而间接控制冷媒回路400中冷却液的温度,并通过控制第二水泵203的转速来控制电池冷却回路200中冷却液的流速,从而控制冷媒回路400和电池冷却回路200中冷却液的热交换速率,由此控制电池冷却回路200中冷却液的温度,进而实现控制动力电池201平均温度的目的。
参照图1至图6,具体地,在步骤S3中,制热模式下,汽车综合热管理系统中产生的热量包括汽车静态怠速时驱动电机301定子绕组产生的热量或者汽车动态行驶时驱动电机301产生的废热;还包括动力电池201脉冲充放电自加热产生的热量,以及多合一控制器运行时产生的热量。
参照图1至图6,具体地,在步骤S3中,制热模式下,综合热管理控制器通过控制电机控制器开关管的工作频率来控制驱动电机301产热,从而间接控制电池加热回路500中冷却液的温度,进而控制动力电池201的平均温度。更具体地,综合热管理控制器通过控制电机控制器开关管的工作频率来控制驱动电机301产热,从而控制油冷回路300中冷却液的温度,并通过换热器304与电池加热回路500中的冷却液进行热交换,从而控制电池加热回路500中冷却液的温度,进而实现控制动力电池201平均温度的目的。
参照图1至图6,具体地,在步骤S3中,制热模式下,综合热管理控制器通过控制第一水泵101的转速,从而间接控制电池加热回路500中冷却液的温度,进而控制动力电池201的平均温度。更具体地,综合热管理控制器通过控制第一水泵101的转速来控制电池加热回路500中冷却液的流速,从而控制电池加热回路500中冷却液的温度,进而实现控制动力电池201平均温度的目的。
参照图3至图6,为了更具体地说明该汽车综合热管理控制系统的控制方法,下面对该汽车综合热管理控制系统的工作流程进行详细说明:
1、综合热管理控制器上电后,控制第一电子三通阀105和第二电子三通阀204复位,即控制第一电子三通阀105处于B1-P1位置,控制第二电子三通阀204处于B2-P2位置;同时,设定第一水泵101和油泵303的初始转速分别为Pm0和Om0。
2、综合热管理控制器获取第一温度传感器108、第二温度传感器109、第三温度传感器110和第四温度传感器206的信号,并分别标记为T1、T2、T3和T4。同时,综合热管理控制器获取驱动电机301的绕组温度T5,电机控制器的平均温度T6、第一DCAC变频器的平均温度T7、第二DCAC变频器的平均温度T8、DCAC变频器的平均温度T9以及动力电池201的平均温度T10。
3、当动力电池201的平均温度T10达到设定的电池高温温度T101时,或者当第一温度传感器108的温度T1达到电机高温温度T12时,综合热管理控制器控制汽车综合热管理系统进入制冷模式。
3.1、当动力电池201需要冷却时,即当动力电池201的平均温度T10达到设定的电池高温温度T01时,综合热管理控制器发送制冷指令和目标冷却温度T01。
3.1.1、综合热管理控制器控制压缩机401、冷凝风扇405和第二水泵203的初始转速分别为An0、Fn0和Pn0,同时将电池冷却回路200上的第四温度传感器206的温度T4与目标冷却温度T01作比较,实时计算两者的温差T401,并以T401作为控制目标。
3.1.2、当两者的温差T401大于设定的温差△T1时,综合热管理控制器控制压缩401、冷凝风扇405和第二水泵的203三者的转速每隔m个周期分别增加An1、Fn1和Pn1,直至达到最高工作转速。
3.1.3、当两者的温差T401小于设定的温差△T2时,综合热管理控制器控制压缩机401、冷凝风扇405和第二水泵203三者的转速每隔m个周期分别减小An2、Fn2和Pn2,直至分别达到初始设定的转速An0、Fn0和Pn0。
3.1.4、当两者的温差T401处于设定的温差△T1和△T2之间时,综合热管理控制器控制压缩机401、冷凝风扇405和第二水泵203保持当前转速,且不执行停机操作。
3.2、当第一温度传感器108的温度T1 达到设定的电机高温温度T12时,综合热管理控制器控制散热风扇106开始以初始转速Fm0运行。
3.2.1、当第一温度传感器108的温度T1 大于设定的电机高温温度T11时,综合热管理控制器控制散热风扇106每隔m个周期增大转速Fm1,散热风扇106的风量随着增大,直至达到最高转速。
3.2.2、当第一温度传感器108的温度T1小于设定的电机高温温度T12时,综合热管理控制器控制散热风扇106每隔m个周期增大减小转速Fm2,散热风扇106的风量随着减小,直至达到初始转速Fm0。
3.2.3、当第一温度传感器108的温度T1处于设定的电机高温温度T11和T12之间时,综合热管理控制器控制散热风扇保持当前的转速,且不执行停机操作。
3.3、对于第一水泵的转速控制,主要是基于第一温度传感器108的温度值T1、第二温度传感器109的温度值T2和第三温度传感器110的温度值T3,分别计算T3与T2的温差T32,以及T1与T3的温差T13,并以T32和T13作为控制目标。
3.3.1、当T3与T2的温差T32或者T1与T3的温差T13大于设定的温差△T3时,综合热管理控制器控制第一水泵101每隔m个周期增大转速Pm1,直至达到最高转速。
3.3.2、当T3与T2的温差T32或者T1与T3的温差T13小于设定的温差△T4时,综合热管理控制器控制第一水泵101每隔m个周期减小转速Pm2,直至达到初始转速Pm0。
3.3.3、当T32和T13均处于△T3和△T4之间时,综合热管理控制器控制第一水泵101维持当前的转速,且不执行停机操作。
3.4、油冷回路300中油泵303转速根据驱动电机301的绕组温度T5实时调节,从而及时将驱动电机301内部的热量散发出去。
3.4.1、当驱动电机301的绕组温度T5大于目标设定温度T51时,综合热管理控制器控制油泵303每隔m个周期增大转速Om1,直至达到最高转速。
3.4.2、当驱动电机301的绕组温度T5小于目标设定温度T52时,综合热管理控制器控制油泵303开始每隔m个周期减小转速Om2,直至达到初始转速Om0。
3.4.3、当驱动电机301的绕组温度T5处于目标设定温度T51和T52之间时,综合热管理控制器控制油泵303转速维持当前的转速,且不执行停机操作。
3.5、当动力电池201的平均温度T10小于设定的电池冷却截止限值T103时,综合热管理控制器控制压缩机401、冷凝风扇405和第二水泵203停止工作。
3.6、当第一温度传感器108的温度T1小于设定的电机冷却截止限值T14时,综合热管理控制器控制散热风扇将停止工作,并控制第一水泵101和油泵303仍在设定初始转速Pm0和Om0运行。
3.7、当动力电池201的平均温度T10小于设定的电池冷却截止限值T103且第一温度传感器108的温度T1小于设定的电机冷却截止限值T14时,综合热管理控制器控制汽车综合热管理系统退出制冷模式。
4、当动力电池201的平均温度T10低于设定的电池低温温度T102时,汽车综合热管理系统进入加热模式,综合热管理控制器控制第一电子三通阀105处于A1-P1位置,并控制第二电子三通阀204处于A2-P2位置,此时电池加热回路500处于通路状态。
4.1、在加热模式下,综合热管理控制器发送加热指令和目标加热温度T02;同时综合热管理控制器将第一水泵101的初始转速设定为Pm0,并控制油泵303处于高速运转状态。
4.2、当车辆处于静止状态,综合热管理控制器将电机控制器开关管脉冲的初始工作频率设定为f0。车辆静止时,在环境温度较低的情况下,动力电池201的平均温度也较低,无法正常大功率放电,且不能充电。此时可以将车辆处于上高压状态,且电机控制器处于使能开管状态,通过电池脉冲放电给驱动电机301的绕组,使驱动电机301堵转,从而绕组线圈产生大量热量,并通过换热器304使油冷回路300与电池加热回路500中的冷却液进行热交换,最终达到加热动力电池201的目的;同时,该过程中动力电池201的内阻也在增大,自身产热量也在增大,同样也可以使动力电池201达到升温的目的;此外,多合一控制器在运行过程中也会产热,同样能够辅助动力电池201升温。
4.2.1、综合热管理控制器实时计算第四温度传感器的温度T4和目标加热温度T02的温度差T402,并以T402作为加热的控制目标。
4.2.2、当温差T402大于设定的目标温差△T5时,电机控制器开关管脉冲工作频率每隔n个周期升高频率f1,直至达到最高许可工作频率。
4.2.3、当温差T402小于设定的目标温差△T6,电机控制器开关管脉冲工作频率每隔n个周期降低工作频率f1,直至达到初始工作频率f0。
4.2.4、当温差T402处于设定的目标温差△T5和△T6之间时,电机控制器开关管脉冲工作频率维持不变。
4.3、当车辆处于行驶状态,利用驱动电机301的废热对给动力电池201进行加热,此时综合热管理控制器实时计算第四温度传感器的温度T4与动力电池201的平均温度T10之间的温差T410,并以T410作为加热的控制目标。
4.3.1、当温差T410大于设定的目标温差△T7时,综合热管理控制器控制第一水泵101每隔m个周期增大转速Pm1,直至达到最高转速。
4.3.2、当温差T410小于设定的目标温差△T8时,综合热管理控制器控制第一水泵101每隔m个周期减小转速Pm2,直至达到初始转速Pm0。
4.3.3、当温差T410处于设定的目标温差△T7和△T8之间时,综合热管理控制器控制第一水泵101维持当前的转速,且不执行停机操作。
4.3.4、当动力电池201的平均温度T10大于电池加热截止限值T104时,综合热管理控制器控制汽车综合热管理系统退出加热模式。
5、当汽车综合热管理系统既不满足冷却条件,又不满足加热条件时,汽车综合热管理系统处于关机模式,此时综合热管理控制器控制散热风扇106、压缩机401、冷凝风扇405和第二水泵203停止转动,并控制第一水泵101和油泵303仍处于设定的初始转速Pm0和Om0。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。
Claims (10)
1.一种汽车综合热管理系统的控制方法,其特征在于:所述汽车综合热管理系统包括综合热管理控制器、电机冷却回路和电池热管理系统,该电池热管理系统包括电池冷却回路和电池加热回路;所述汽车综合热管理系统的控制方法包括如下步骤:
S1、综合热管理控制器获取电机冷却回路中冷却液的温度,以及动力电池的平均温度;
S2、判断电机冷却回路中冷却液的温度达到设定的电机高温温度,或者动力电池的平均温度是否达到设定的电池高温温度,若判定结果为是,则开启制冷模式,对电机冷却回路中和/或电池冷却回路中的冷却液进行冷却降温,直至电机冷却回路中冷却液的温度低于电机冷却截止限值,并且动力电池的平均温度低于电池冷却截止限值,则执行步骤S3;若判定结果为否,则执行步骤S3;
S3、判断动力电池的平均温度是否低于设定的电池低温温度,若判断结果为是,则开启加热模式,利用汽车综合热管理系统中产生的热量对电池加热回路中的冷却液进行加热,直至动力电池的平均温度大于电池加热截止限值,则执行关机模式;若判定结果为否,则执行关机模式。
2.如权利要求1所述的一种汽车综合热管理系统的控制方法,其特征在于:所述电机冷却回路通过管路依次串联有第一水泵、多合一控制器、换热器、第一三通管、散热器和第一电子三通阀;所述电池冷却回路通过管路依次串联有动力电池、第二三通管、第二水泵、换热板块和第二电子三通阀;所述电池加热回路通过管路依次串联有所述动力电池、所述第二三通管、所述第一电子三通阀、所述第一水泵、所述多合一控制器、所述换热器、所述第一三通管和所述第二电子三通阀;在步骤S2和步骤S3中,所述综合热管理控制器通过控制所述第一电子三通阀和第二电子三通阀的接入位置,来切换电机冷却回路、电池冷却回路和电池加热回路三者的通路或者断路状态,进而控制汽车综合热管理系统进入制冷模式或者加热模式。
3.如权利要求2所述的一种汽车综合热管理系统的控制方法,其特征在于:所述散热器旁边配设有散热风扇,所述第一水泵的入口端配设有第一膨胀水箱;在步骤S2中,综合热管理控制器通过控制散热风扇和第一水泵的转速从而间接控制电机冷却回路中冷却液的温度。
4.如权利要求2或3所述的一种汽车综合热管理系统的控制方法,其特征在于:所述汽车综合热管理系统还包括油冷回路,该油冷回路通过管路依次串联有所述驱动电机、减速箱、油泵和所述换热器,并且该油冷回路通过换热器与电机冷却回路之间实现并联热交换;在步骤S2中,综合热管理控制器通过控制油泵的转速来间接控制油冷回路和电机冷却回路中冷却液的热交换速率,从而控制油冷回路和电机冷却回路中冷却液的温度。
5.如权利要求2所述的一种汽车综合热管理系统的控制方法,其特征在于:电池热管理系统还包括冷媒回路,该冷媒回路通过管路依次串联有压缩机、冷凝器、膨胀阀和所述换热板块,并且该冷媒回路通过该换热板块与电池冷却回路之间实现并联热交换;所述冷凝器旁边配设有冷凝风扇;所述第二水泵的入口端配设有第二膨胀水箱;在步骤S2中,综合热管理控制器通过控制第二水泵、压缩机和冷凝风扇的转速来间接控制电池冷却回路中冷却液的温度,进而控制动力电池的平均温度。
6.如权利要求4所述的一种汽车综合热管理系统的控制方法,其特征在于:在步骤S3中,汽车综合热管理系统中产生的热量包括汽车静态怠速时驱动电机定子绕组产生的热量或者汽车动态行驶时驱动电机产生的废热。
7.如权利要求2所述的一种汽车综合热管理系统的控制方法,其特征在于:在步骤S3中,汽车综合热管理系统中产生的热量还包括动力电池脉冲充放电自加热产生的热量,以及多合一控制器运行时产生的热量。
8.如权利要求6所述的一种汽车综合热管理系统的控制方法,其特征在于:所述多合一控制器包括相连接的电机控制器、第一DCAC变频器、第二DCAC变频器、DCDC变频器和高压配电箱;在步骤S3中,综合热管理控制器通过所述控制电机控制器开关管的工作频率来控制驱动电机产热,从而间接控制电池加热回路中冷却液的温度,进而控制动力电池的平均温度。
9.如权利要求3所述的一种汽车综合热管理系统的控制方法,其特征在于:在步骤S3中,综合热管理控制器通过控制第一水泵的转速,从而间接控制电池加热回路中冷却液的温度,进而控制动力电池的平均温度。
10.如权利要求2所述的一种汽车综合热管理系统的控制方法,其特征在于:所述电机冷却回路、电池冷却回路的管路上以及所述驱动电机、多合一控制器和动力电池的内部均设有温度传感器;在步骤S1中,综合热管理控制器与各个温度传感器相互通信连接,并读取各个温度传感器的温度值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910765573.6A CN110329113B (zh) | 2019-08-19 | 2019-08-19 | 一种汽车综合热管理系统的控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910765573.6A CN110329113B (zh) | 2019-08-19 | 2019-08-19 | 一种汽车综合热管理系统的控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110329113A true CN110329113A (zh) | 2019-10-15 |
CN110329113B CN110329113B (zh) | 2021-04-06 |
Family
ID=68149881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910765573.6A Active CN110329113B (zh) | 2019-08-19 | 2019-08-19 | 一种汽车综合热管理系统的控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110329113B (zh) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430840A (zh) * | 2020-03-31 | 2020-07-17 | 蜂巢能源科技有限公司 | 延缓动力电池包热扩散的控制方法和控制系统 |
CN111907512A (zh) * | 2020-07-29 | 2020-11-10 | 一汽解放青岛汽车有限公司 | 一种混合动力车辆冷启动控制方法及车辆 |
CN112046337A (zh) * | 2020-09-03 | 2020-12-08 | 安徽维德电源有限公司 | 一种电动工业车辆的热管理系统及其控制方法 |
CN112065966A (zh) * | 2020-08-31 | 2020-12-11 | 中国第一汽车股份有限公司 | 一种变速器热管理控制方法 |
CN112406632A (zh) * | 2020-11-04 | 2021-02-26 | 东风汽车集团有限公司 | 一种电动汽车热管理方法及系统 |
CN112428883A (zh) * | 2020-11-13 | 2021-03-02 | 东风汽车集团有限公司 | 一种电动汽车动力电池的加热方法及加热系统 |
CN112721737A (zh) * | 2021-01-20 | 2021-04-30 | 重庆邮电大学 | 一种纯电动汽车综合热能利用热管理系统及其控制方法 |
CN113135118A (zh) * | 2020-07-06 | 2021-07-20 | 长城汽车股份有限公司 | 新能源车辆废热回收系统及方法、新能源车辆 |
WO2021164318A1 (zh) * | 2020-02-18 | 2021-08-26 | 华为技术有限公司 | 一种车辆热管理系统和方法 |
CN113871750A (zh) * | 2021-08-23 | 2021-12-31 | 上海融和智电新能源有限公司 | 车载能源系统热管理方法及热管理系统 |
CN113942424A (zh) * | 2021-09-27 | 2022-01-18 | 岚图汽车科技有限公司 | 一种电动汽车控制方法、装置和计算机设备 |
CN114050355A (zh) * | 2021-11-18 | 2022-02-15 | 重庆大学 | 一种自识别控制的电池热管理装置和方法 |
CN114347747A (zh) * | 2021-12-22 | 2022-04-15 | 宜宾凯翼汽车有限公司 | 一种电动汽车热管理控制方法 |
CN114464919A (zh) * | 2022-02-10 | 2022-05-10 | 东风商用车有限公司 | 一种动力电池系统温控调试装置 |
CN115458828A (zh) * | 2022-08-10 | 2022-12-09 | 北京罗克维尔斯科技有限公司 | 车辆动力电池的冷却方法、装置、电子设备及车辆 |
EP4086094A4 (en) * | 2020-01-19 | 2023-07-05 | Huawei Digital Power Technologies Co., Ltd. | THERMAL MANAGEMENT SYSTEM AND ELECTRIC VEHICLE |
WO2024066359A1 (zh) * | 2022-09-30 | 2024-04-04 | 中国第一汽车股份有限公司 | 电动汽车热量分配的控制方法、装置、存储介质及设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107425232A (zh) * | 2017-05-11 | 2017-12-01 | 厦门金龙联合汽车工业有限公司 | 一种动力电池水冷机组系统及其智能控制方法 |
CN107521302A (zh) * | 2016-06-20 | 2017-12-29 | 现代自动车株式会社 | 用于车辆的热泵系统 |
CN108357328A (zh) * | 2018-04-09 | 2018-08-03 | 珠海长欣汽车智能系统有限公司 | 一种汽车温度调节系统 |
EP3367495A1 (de) * | 2017-02-25 | 2018-08-29 | MAN Truck & Bus AG | Vorrichtung zum temperieren einer traktionsbatterie |
CN109638381A (zh) * | 2018-12-14 | 2019-04-16 | 华南理工大学 | 一种电动汽车高效一体化主动热管理系统 |
CN208804209U (zh) * | 2018-09-09 | 2019-04-30 | 无锡沃尔得精密工业有限公司 | 一种用于主轴变速箱的油冷却机 |
CN109895599A (zh) * | 2019-03-25 | 2019-06-18 | 江铃汽车股份有限公司 | 电动汽车热泵空调系统及其控制方法 |
-
2019
- 2019-08-19 CN CN201910765573.6A patent/CN110329113B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107521302A (zh) * | 2016-06-20 | 2017-12-29 | 现代自动车株式会社 | 用于车辆的热泵系统 |
EP3367495A1 (de) * | 2017-02-25 | 2018-08-29 | MAN Truck & Bus AG | Vorrichtung zum temperieren einer traktionsbatterie |
CN107425232A (zh) * | 2017-05-11 | 2017-12-01 | 厦门金龙联合汽车工业有限公司 | 一种动力电池水冷机组系统及其智能控制方法 |
CN108357328A (zh) * | 2018-04-09 | 2018-08-03 | 珠海长欣汽车智能系统有限公司 | 一种汽车温度调节系统 |
CN208804209U (zh) * | 2018-09-09 | 2019-04-30 | 无锡沃尔得精密工业有限公司 | 一种用于主轴变速箱的油冷却机 |
CN109638381A (zh) * | 2018-12-14 | 2019-04-16 | 华南理工大学 | 一种电动汽车高效一体化主动热管理系统 |
CN109895599A (zh) * | 2019-03-25 | 2019-06-18 | 江铃汽车股份有限公司 | 电动汽车热泵空调系统及其控制方法 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4086094A4 (en) * | 2020-01-19 | 2023-07-05 | Huawei Digital Power Technologies Co., Ltd. | THERMAL MANAGEMENT SYSTEM AND ELECTRIC VEHICLE |
WO2021164318A1 (zh) * | 2020-02-18 | 2021-08-26 | 华为技术有限公司 | 一种车辆热管理系统和方法 |
CN111430840A (zh) * | 2020-03-31 | 2020-07-17 | 蜂巢能源科技有限公司 | 延缓动力电池包热扩散的控制方法和控制系统 |
CN113135118A (zh) * | 2020-07-06 | 2021-07-20 | 长城汽车股份有限公司 | 新能源车辆废热回收系统及方法、新能源车辆 |
CN111907512A (zh) * | 2020-07-29 | 2020-11-10 | 一汽解放青岛汽车有限公司 | 一种混合动力车辆冷启动控制方法及车辆 |
CN112065966A (zh) * | 2020-08-31 | 2020-12-11 | 中国第一汽车股份有限公司 | 一种变速器热管理控制方法 |
CN112065966B (zh) * | 2020-08-31 | 2021-10-15 | 中国第一汽车股份有限公司 | 一种变速器热管理控制方法 |
CN112046337A (zh) * | 2020-09-03 | 2020-12-08 | 安徽维德电源有限公司 | 一种电动工业车辆的热管理系统及其控制方法 |
CN112406632A (zh) * | 2020-11-04 | 2021-02-26 | 东风汽车集团有限公司 | 一种电动汽车热管理方法及系统 |
CN112428883A (zh) * | 2020-11-13 | 2021-03-02 | 东风汽车集团有限公司 | 一种电动汽车动力电池的加热方法及加热系统 |
CN112721737B (zh) * | 2021-01-20 | 2023-02-17 | 重庆邮电大学 | 一种纯电动汽车综合热能利用热管理系统及其控制方法 |
CN112721737A (zh) * | 2021-01-20 | 2021-04-30 | 重庆邮电大学 | 一种纯电动汽车综合热能利用热管理系统及其控制方法 |
CN113871750A (zh) * | 2021-08-23 | 2021-12-31 | 上海融和智电新能源有限公司 | 车载能源系统热管理方法及热管理系统 |
CN113871750B (zh) * | 2021-08-23 | 2023-03-28 | 上海融和智电新能源有限公司 | 车载能源系统热管理方法及热管理系统 |
CN113942424A (zh) * | 2021-09-27 | 2022-01-18 | 岚图汽车科技有限公司 | 一种电动汽车控制方法、装置和计算机设备 |
CN114050355A (zh) * | 2021-11-18 | 2022-02-15 | 重庆大学 | 一种自识别控制的电池热管理装置和方法 |
CN114050355B (zh) * | 2021-11-18 | 2023-11-21 | 重庆大学 | 一种自识别控制的电池热管理装置和方法 |
CN114347747A (zh) * | 2021-12-22 | 2022-04-15 | 宜宾凯翼汽车有限公司 | 一种电动汽车热管理控制方法 |
CN114464919A (zh) * | 2022-02-10 | 2022-05-10 | 东风商用车有限公司 | 一种动力电池系统温控调试装置 |
CN115458828A (zh) * | 2022-08-10 | 2022-12-09 | 北京罗克维尔斯科技有限公司 | 车辆动力电池的冷却方法、装置、电子设备及车辆 |
WO2024066359A1 (zh) * | 2022-09-30 | 2024-04-04 | 中国第一汽车股份有限公司 | 电动汽车热量分配的控制方法、装置、存储介质及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN110329113B (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110329113A (zh) | 一种汽车综合热管理系统的控制方法 | |
CN110329112A (zh) | 一种汽车综合热管理系统 | |
CN108461868B (zh) | 汽车热管理系统及汽车 | |
CN205130860U (zh) | 电动汽车的热管理系统 | |
CN103407346B (zh) | 一种纯电动汽车整车热管理系统 | |
CN109572486B (zh) | 一种混合动力汽车动力电池热管理系统及控制方法 | |
CN103625242B (zh) | 一种电动汽车热管理系统 | |
CN106953138A (zh) | 一种动力电池水冷机组系统及其温差智能控制方法 | |
CN108808161B (zh) | 一种电动大巴电池热管理系统的管理控制方法及其装置 | |
CN105539067A (zh) | 带电池热管理功能的车辆空调系统 | |
CN205395697U (zh) | 带电池热管理功能的车辆空调系统 | |
CN108376808A (zh) | 一种汽车电池温度调节装置 | |
CN107425232A (zh) | 一种动力电池水冷机组系统及其智能控制方法 | |
CN102529690A (zh) | 一种温度控制系统及方法 | |
CN210478446U (zh) | 一种混合动力汽车集成式热管理系统 | |
CN203580560U (zh) | 一种电动汽车热管理系统 | |
CN111361391B (zh) | 一种基于汽车集成式热管理机组的热管理控制方法 | |
CN111993884B (zh) | 一种混合动力车辆热管理系统及混合动力车辆热管理方法 | |
CN107054061B (zh) | 一种智能新能源汽车整车热管理系统 | |
CN116885347A (zh) | 一种电动叉车电池热管理系统及其控制方法 | |
CN110534842A (zh) | 一种电池包温度管理方法、装置及系统 | |
CN206231187U (zh) | 电动汽车用高效智能热泵空调系统 | |
CN113183734A (zh) | 电动车的热管理系统 | |
CN113921946B (zh) | 一种新能源汽车电池包散热控制方法、系统及新能源汽车 | |
CN117096491A (zh) | 一种纯电动全地形车三电热管理系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |