CN110327289A - 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用 - Google Patents

一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用 Download PDF

Info

Publication number
CN110327289A
CN110327289A CN201910763042.3A CN201910763042A CN110327289A CN 110327289 A CN110327289 A CN 110327289A CN 201910763042 A CN201910763042 A CN 201910763042A CN 110327289 A CN110327289 A CN 110327289A
Authority
CN
China
Prior art keywords
attapulgite
gold nanoparticle
supramolecular hydrogel
attapulgite composite
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910763042.3A
Other languages
English (en)
Other versions
CN110327289B (zh
Inventor
哈伟
赵晓博
师彦平
王爱勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201910763042.3A priority Critical patent/CN110327289B/zh
Publication of CN110327289A publication Critical patent/CN110327289A/zh
Application granted granted Critical
Publication of CN110327289B publication Critical patent/CN110327289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,是先制备金纳米粒子/凹凸棒石复合材料,再通过Au‑S化学键将末端巯基修饰的PEG构筑到金纳米粒子/凹凸棒石复合纳米表面,随后引入α‑CD,利用α‑CD与PEG链的主客体识别作用自组装交联形成超分子水凝胶。本发明利用凹凸棒石易修饰、特色的棒状刚性结构及金纳米粒子的近红外光‑热转换性能制得金纳米粒子/凹凸棒石复合材料,并引入到PPR超分子水凝胶中制备复合超分子水凝胶,可有效改善传统PPR超分子水凝胶的机械强度,并赋予材料优异的近红外光敏感凝胶‑转变行为和可注射性凝胶性能,可作为在药物传输体系中有非常好的应用前景。

Description

一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶 的制备和应用
技术领域
本发明涉及一种超分子水凝胶的制备方法,尤其涉及一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备,可作为药物缓释载体应用在药物传输体系,属于复合材料技术领域和生物医药领域。
背景技术
α-环糊精(α-CD)与一定浓度的高分子量聚乙二醇(PEG)混合时由于α-CD与PEG部分包合形成的准聚轮烷(PPR)之间强烈的氢键作用可形成超分子水凝胶,该类PPR超分子水凝胶具有优异的生物相容性和独特的温度敏感特性,当温度升高时,包合在PEG链上的环糊精分子会发生滑落,从而引发凝胶发生凝胶-溶胶转变。基于这些特性,PPR超分子水凝胶在生物医药领域,尤其是在药物传输体系中具有广泛的应用前景。然而,PPR超分存在着机械强度差的问题,在实际应用过程中可操作性较差,这极大地限制了其在生物医药领域的进一步应用。此外,作为可注射水凝胶,如何有效控制局部注射部位的温度使凝胶发生转变从而可控释放药物也具有很大挑战。(J. Li, et al., Polym. J., 1994, 26, 1019-1026;J. Li, NPG Asia Mater., 2010, 2, 112-118;M. Ceccato, Langmuir, 1997, 13,2436-2439;W. Ha, et al., ACS Appl. Mater. Interfaces, 2014, 6, 10623-10630.)。
凹凸棒石是一种天然一维纳米材料矿物,具有特殊的刚性棒状晶体结构。凹凸棒石具有优异的吸附性、流变性、填充性和抗菌性等性能,使其在高分子复合材料领域具有非常大的研究价值和开发潜力。凹凸棒石表面因含有大量的羟基而显负电性,非常有利于PEG的修饰,在引入α-CD后,利用凹凸棒石特色的棒状、刚性结构可有效诱导相邻的PPR之间发生定向聚集,从而可极大改善水凝胶的机械强度。金纳米粒子具有优异的生物相容性和独特的光学性质,以凹凸棒石为模板将金纳米粒子修饰到凹凸棒石表面可使金纳米粒子排列成类似金纳米棒的结构,从而使复合材料具有近红外光敏感的高光-热转换性能,在近红外光照射下,可有效提高含有金纳米粒/凹凸棒石复合材料部位的局部温度。因此,通过构筑金纳米粒/凹凸棒石复合材料,利用Au-S键可高效修饰含有巯基的PEG链,进而将其应用于复合PPR超分子水凝胶制备中,可在有效提高PPR超分子水凝胶机械强度基础上,赋予其近红外光敏感的凝胶-溶胶转变性能,在光控可注射抗肿瘤药物传递领域具有广泛应用前景。
发明内容
本发明的目的是提供一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法;
本发明的更一目的是提供上述水凝胶作为药物缓释载体的应用。
一、复合超分子水凝胶的制备
本发明近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备,包括如下步骤:
(1)壳聚糖修饰凹凸棒石的制备:将凹凸棒石分散到水中得凹凸棒石水分散液,再加入羧甲基壳聚糖的稀溶液,室温磁力搅拌12~36 h,离心、洗涤除去未吸附的壳聚糖,即得壳聚糖修饰凹凸棒石;
凹凸棒石的直径为20 ~ 70 nm;凹凸棒石水分散液中,凹凸棒石的浓度为0.02~0.2wt%(优选0.05~ 0.15wt%);羧甲基壳聚糖的脱乙酰度为80%~95%(优选85%~90%),羧甲基的取代度为60%~90%(优选75%~85%);分散液中,羧甲基壳聚糖的浓度为0.05~0.5 wt %(优选为0.08 ~ 0.15wt%。)。
(2)金纳米粒子/凹凸棒石复合纳米材料的制备:将壳聚糖修饰凹凸棒石分散于水中形成水分散液,再加入到金纳米粒子溶液中(直径约13~20 nm),室温磁力搅拌8~24 h,离心、洗涤除去未吸附的金纳米粒子,即得金纳米粒子/凹凸棒石复合纳米材料;
壳聚糖修饰凹凸棒石会随分散液的浓度为0.02~ 0.2wt%(以凹凸棒石浓度计),金纳米粒子溶液的浓度为0.3 ~5 mM(以Au3+浓度计),壳聚糖修饰凹凸棒石水分散液与金纳米粒子溶液体积比为1:0.5 ~ 1:10(优选1:1~1:5)。
(3)聚乙二醇(PEG)修饰金纳米粒子/凹凸棒石复合纳米材料的制备:将金纳米粒子/凹凸棒石复合纳米材料分散到磷酸缓冲盐溶液(PBS)中,加入末端巯基修饰的聚乙二醇(PEG-SH),室温磁力搅拌12~36 h,即得PEG修饰金纳米粒子/凹凸棒石复合纳米材料;
PBS缓冲液的pH值为 8~9(优选8.3 ~ 8.6);金纳米粒子/凹凸棒石复合纳米材料在缓冲盐溶液中的浓度为0.02~0.2wt%(优选0.05 ~0.15wt%)。
PEG-SH分子量为500~10000(优选1500~8000),PEG-SH在缓冲盐溶液中的浓度为0.5~2wt%((优选0.7 ~ 1.5wt%)。
(4)金纳米粒子/凹凸棒石复合超分子水凝胶制备:将α-CD加入到PEG修饰金纳米粒子/凹凸棒石复合纳米材料的水分散液中,超声分散5~10 min,静置48~72h,通过α-CD与PEG链的主-客体作用自组装交联形成超分子水凝胶。
PEG修饰金纳米粒子/凹凸棒石复合纳米材料水分散液的浓度为0.1~0.6wt%(优选0.3~ 0.5wt%),α-CD浓度为5~16wt%(优选8~12wt%)。
二、金纳米粒子/凹凸棒石复合纳米材料的表征分别取凹凸棒石、壳聚糖修饰凹凸棒石、金纳米粒子/凹凸棒石复合纳米材料4 mL,浓度均为0.4 mg/mL,利用激光动态光散射仪(Zetasizer Nano 3600,UK)测试溶液的Zeta电位值。图1为凹凸棒石、壳聚糖修饰凹凸棒石和金纳米粒子/凹凸棒石的Zeta电位图。图1显示,凹凸棒石电位值为-31.4 mV,表明凹凸棒石表面具有很强的负电性,可进一步通过静电吸附作用进行修饰;通过羧甲基壳聚糖修饰后,凹凸棒石表面电位值变为4.48 mV,说明大量壳聚糖链成功修饰到了凹凸棒石表面,壳聚糖链上大量的氨基使凹凸棒石表面呈正电性;进一步修饰金纳米粒子后,金纳米粒子/凹凸棒石复合纳米材料的表面电位值变为-29.2 mV,说明大量金纳米粒子通过静电作用成功修饰到凹凸棒石表面,金纳米粒子结构中大量的羧基使材料表面呈现负电性。以上信息表明,金纳米粒子/凹凸棒石复合纳米材料的成功制备。
利用透射电镜(FEITecnai, G2 TF20,USA)考察了材料的形貌。图2为金纳米粒子/凹凸棒石的透射电镜图。由图2可知,大量金纳米粒子被构筑到凹凸棒石表面并排列成类似金纳米棒的结构,进一说明金纳米粒子/凹凸棒石复合材料的成功制备。
三、金纳米粒子/凹凸棒石复合超分子水凝胶性能测试
1、凝胶化性能
PEG修饰金纳米粒子/凹凸棒石复合材料可极大改善凹凸棒石的水溶性,可在水中形成均一的水溶液,当引入α-CD后,在超声条件下,可转变为超分子水凝胶。凝胶的形成速度、强度取决于凹凸棒复合材料和α-CD的浓度、比例。当PEG修饰金纳米粒子/凹凸棒石复合纳米材料浓度为0.4wt%时,α-CD在浓度范围为5wt%~12wt%时均可形成超分子水凝胶(见图3)。
2、药物负载性能
PEG修饰金纳米粒子/凹凸棒石复合超分子水凝胶具有高度亲水的内部结构,可进一步用于负载药物,以5-氟尿嘧啶为例,0.1% ~ 1%的5-氟尿嘧啶和PEG修饰金纳米粒子/凹凸棒石复合材料共同溶解于水中,加入10wt%的α-CD,在超声条件下即可得到负载负载5-氟尿嘧啶的超分子水凝胶。
3、流变学性质
使用旋转流变仪(HAAKE RS6000)测量形成的超分子水凝胶的流变学性质,测试条件:35 mm平行盘,测试温度20°C,盘间距1 mm,振荡应力1 Pa;凝胶测试之前需室温静置72h。如图4a所示,4wt%PEG修饰金纳米粒子凹凸棒石复合材料/10wt% α-CD超分子水凝胶样品在整个测量范围内的储能模量(G’)远远大于其损耗模量(G”),说明形成了超分子水凝胶并且超分子水凝胶具有永久的交联网络。相较于传统PPR超分子水凝胶,该类凹凸棒石水凝胶的储能模量提高了100倍以上,说明将凹凸棒石复合材料引入到PPR超分子水凝胶可显著提高其机械强度。此外,G’和G”随角频率变化很小,说明凝胶具有典型的高度非共价交联的超分子水凝胶特征。如图4b所示,超分子水凝胶还显示出了可注射水凝胶所具有的典型的剪切变稀性质。
4、近红外光敏感凝胶-溶胶转变行为
将总计1 mL的混合液(4wt% PEG修饰凹凸棒石复合材料/10wt% α-CD)注射至4 mL玻璃小瓶内,超声形成凝胶后放置72 h。利用激光光源(808 nm)照射小瓶内的水凝胶,利用热成像仪记录被照射部位随时间的温度变化,同时用相机记录凝胶的溶胶-凝胶转变行为。图5为金纳米粒子/凹凸棒石复合超分子水凝胶在近红外照射下的温度及形态变化,结果显示,随着照射时间增加,凝胶中被照射部位的温度逐渐升高,在20 min内从31℃升高至74℃,其形貌也发生了明显的凝胶-溶胶转变。这一独特性质非常有利于通过近红外光调控所负载药物的可控释放。即将凝胶注射至瘤旁或瘤内后,在近红外光照射下凝胶发生凝胶-溶胶转变,通过包埋作用负载的药物可快速从凝胶中释放至瘤旁或瘤内,从而达到可控释放的目的。
综上所述,本发明利用凹凸棒石易修饰、特色的棒状刚性结构及金纳米粒子优异的近红外光-热转换性能,制得金纳米粒子/凹凸棒石复合材料,并将其引入到PPR超分子水凝胶中制备复合超分子水凝胶,可有效改善传统PPR超分子水凝胶的机械强度,并赋予材料优异的近红外光敏感凝胶-转变性能。而且该超分子水凝生物相容性优良,可作为注射性凝胶,在药物传输体系中有非常好的应用前景。
附图说明
图1为凹凸棒石、壳聚糖修饰凹凸棒石、金纳米粒子/凹凸棒石的Zeta电位图。
图2为金纳米粒子/凹凸棒石的透射电镜图。
图3为当PEG修饰金纳米粒子/凹凸棒石浓度为0.4wt%时,α-CD在浓度范围为5wt%-12wt%时复合超分子水凝胶形成图及负载5-氟尿嘧啶的凝胶形成图,50~120代表α-CD浓度,mg/mL。
图4为4wt%PEG修饰凹凸棒石复合材料/10wt% α-CD超分子水凝胶流变动力学测试图。
图5为4wt%PEG修饰凹凸棒石复合材料/10wt% α-CD超分子水凝胶近红外光敏感温度变化和凝胶-溶胶转变行为图。
具体实施方式
下面通过具体实施例对本发明金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法和应用做进一步说明。
实施例一
(1)壳聚糖修饰凹凸棒石的制备:将50 mg凹凸棒石分散到50 mL水中,逐滴加入50毫升0.1wt%的羧甲基壳聚糖溶液,室温磁力搅拌24 h,离心、洗涤除去未吸附的壳聚糖,即得壳聚糖修饰凹凸棒石;
(2)金纳米粒子/凹凸棒石复合纳米材料的制备:将4 mL的壳聚糖修饰凹凸棒石溶液(1mg/mL)逐滴加入到4 mL金纳米粒子溶液中(浓度为0.3 mM,以Au3+计),室温磁力搅拌10 h,离心、洗涤除去未吸附的金纳米粒子,即得金纳米粒子/凹凸棒石复合纳米材料;
(3)聚乙二醇修饰金纳米粒子/凹凸棒石复合纳米材料的制备:将4 mg金纳米粒子/凹凸棒石复合纳米材料分散到4 mL水中,加入50 mg的PEG2000-SH(平均分子量为2000),控制溶液的pH为8.5,室温磁力搅拌12 h,即得PEG修饰金纳米粒子/凹凸棒石复合纳米材料;
(4)近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将α-CD(100 mg)加入到1 mL PEG2000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中(0.4wt%),超声分散10 min后静置72 h,通过α-CD与PEG链的主-客体作用自组装交联形成超分子水凝胶;
(5)负载5-氟尿嘧啶的近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将10 mg 5-氟尿嘧啶加入到1 mL PEG2000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中(0.4wt%),超声10 min后加入α-CD(100 mg),超声5 min后静置72 h,即得到负载5-氟尿嘧啶的金纳米粒子/凹凸棒石复合超分子水凝胶。
实施例二
(1)壳聚糖修饰凹凸棒石的制备:同实施例一;
(2)金纳米粒子/凹凸棒石复合纳米材料的制备:将4 mL的壳聚糖修饰凹凸棒石溶液(1mg/mL)逐滴加入到40 mL金纳米粒子溶液中(浓度为3 mM,以Au3+计),室温磁力搅拌10 h,离心、洗涤除去未吸附的金纳米粒子,即得金纳米粒子/凹凸棒石复合纳米材料;
(3)聚乙二醇修饰金纳米粒子/凹凸棒石复合纳米材料的制备:将4 mg金纳米粒子/凹凸棒石复合纳米材料分散到4 mL水中,加入30 mg的PEG5000-SH(平均分子量为5000),控制溶液的pH为8.5,室温磁力搅拌12 h,即得PEG修饰金纳米粒子/凹凸棒石复合纳米材料;
(4)近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将α-CD(100 mg)加入到1 mL PEG5000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中,超声5 min后静置48h,即得到复合超分子水凝胶;
(5)负载5-氟尿嘧啶的近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将10 mg5-氟尿嘧啶加入到1 mL PEG5000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中(0.4wt%),超声10 min后加入α-CD(100 mg),超声5 min后静置72 h,即得到负载5-氟尿嘧啶的金纳米粒子/凹凸棒石复合超分子水凝胶。
实施例三
(1)壳聚糖修饰凹凸棒石的制备:同实施例一;
(2)金纳米粒子/凹凸棒石复合纳米材料的制备:同实施例二;
(3)聚乙二醇修饰金纳米粒子/凹凸棒石复合纳米材料的制备:同实施例二;
(4)近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将α-CD(80 mg)加入到1 mL PEG5000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中(0.5wt%),超声分散10 min后静置72 h,即得到复合超分子水凝胶;
(5)负载5-氟尿嘧啶的近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶制备:将10 mg 5-氟尿嘧啶加入到1 mL PEG5000-SH修饰金纳米粒子/凹凸棒石复合纳米材料分散液中(0.4wt%),超声10 min后加入α-CD(100 mg),超声5 min后静置72 h,即得到负载5-氟尿嘧啶的金纳米粒子/凹凸棒石复合超分子水凝胶。

Claims (8)

1.一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,包括如下步骤:
(1)壳聚糖修饰凹凸棒石的制备:将凹凸棒石分散到水中得凹凸棒石水分散液,再加入羧甲基壳聚糖的稀溶液,室温磁力搅拌12~36 h,离心、洗涤除去未吸附的壳聚糖,即得壳聚糖修饰凹凸棒石;
(2)金纳米粒子/凹凸棒石复合纳米材料的制备:将壳聚糖修饰凹凸棒石分散于水中形成水分散液,再加入到金纳米粒子溶液中,室温磁力搅拌8~24 h,离心、洗涤除去未吸附的金纳米粒子,即得金纳米粒子/凹凸棒石复合纳米材料;
(3)聚乙二醇(PEG)修饰金纳米粒子/凹凸棒石复合纳米材料的制备:将金纳米粒子/凹凸棒石复合纳米材料分散到磷酸缓冲盐溶液(PBS)中,加入末端巯基修饰的聚乙二醇(PEG-SH),室温磁力搅拌12~36 h,即得PEG修饰金纳米粒子/凹凸棒石复合纳米材料;
(4)金纳米粒子/凹凸棒石复合超分子水凝胶制备:将α-CD加入到PEG修饰金纳米粒子/凹凸棒石复合纳米材料的水分散液中,超声分散5~10 min,静置48~72h,通过α-CD与PEG链的主-客体作用自组装交联形成超分子水凝胶。
2.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(1)中,凹凸棒石的直径为20 ~ 70 nm;凹凸棒石水分散液中,凹凸棒石的浓度为0.02~0.2wt%;羧甲基壳聚糖的脱乙酰度为80%~95%,羧甲基的取代度为60%~90%;分散液中,羧甲基壳聚糖的浓度为0.05~0.5%。
3.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(2)中,金纳米粒子的直径为13 ~20nm;金纳米粒子溶液的浓度为0.3~5 mM,壳聚糖修饰凹凸棒石会随分散液的浓度为0.02~ 0.2wt%,壳聚糖修饰凹凸棒石水分散液与金纳米粒子溶液体积比为1:0.5 ~ 1:10。
4.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(3)中,PBS缓冲液的pH值为 8~9。
5.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(3)中,金纳米粒子/凹凸棒石复合纳米材料在缓冲盐溶液PBS中的浓度为0.02~0.2wt%。
6.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(3)中,PEG-SH分子量为500~10000,PEG-SH在缓冲盐溶液中的浓度为0.5~2wt%。
7.如权利要求1所述近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备方法,其特征在于:步骤(4)中,PEG修饰金纳米粒子/凹凸棒石复合纳米材料水分散液的浓度为0.1~0.6wt%,α-CD浓度为5~16wt%。
8.如权利要求1所述方法制备的近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶作为药物缓释载体的应用。
CN201910763042.3A 2019-08-19 2019-08-19 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用 Active CN110327289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910763042.3A CN110327289B (zh) 2019-08-19 2019-08-19 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910763042.3A CN110327289B (zh) 2019-08-19 2019-08-19 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用

Publications (2)

Publication Number Publication Date
CN110327289A true CN110327289A (zh) 2019-10-15
CN110327289B CN110327289B (zh) 2022-07-12

Family

ID=68149866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910763042.3A Active CN110327289B (zh) 2019-08-19 2019-08-19 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用

Country Status (1)

Country Link
CN (1) CN110327289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181424A (zh) * 2021-04-01 2021-07-30 中国科学院兰州化学物理研究所 一种超分子水凝胶复合润滑抗菌涂层材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756020A (zh) * 2013-12-16 2014-04-30 武汉纺织大学 一种具有光敏性的纳米复合超分子水凝胶的制备方法
WO2018200857A1 (en) * 2017-04-26 2018-11-01 Cornell University Grafted porous cyclodextrin polymeric material and methods of making and using same
CN108992670A (zh) * 2018-07-24 2018-12-14 武汉理工大学 一种近红外光聚合可注射水凝胶的制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756020A (zh) * 2013-12-16 2014-04-30 武汉纺织大学 一种具有光敏性的纳米复合超分子水凝胶的制备方法
WO2018200857A1 (en) * 2017-04-26 2018-11-01 Cornell University Grafted porous cyclodextrin polymeric material and methods of making and using same
CN108992670A (zh) * 2018-07-24 2018-12-14 武汉理工大学 一种近红外光聚合可注射水凝胶的制备与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUE ZHENG等: "Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide): Syntheses, Structural Characterizations and Applications for Drug Delivery", 《POLYMERS》 *
于京等: "基于环糊精自组装的多功能水凝胶抗癌药物控释研究", 《第十届全国生物医药色谱及相关技术学术交流会论文集》 *
杨保平等: "纳米凹土复合α-CD/EPE超分子水凝胶及其性能", 《武汉大学学报(理学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181424A (zh) * 2021-04-01 2021-07-30 中国科学院兰州化学物理研究所 一种超分子水凝胶复合润滑抗菌涂层材料的制备方法
CN113181424B (zh) * 2021-04-01 2022-03-25 中国科学院兰州化学物理研究所 一种超分子水凝胶复合润滑抗菌涂层材料的制备方法

Also Published As

Publication number Publication date
CN110327289B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Mosaiab et al. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents
Fu et al. Responsive biomaterials for 3D bioprinting: A review
Zhu et al. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release
Wen et al. Recent strategies to develop polysaccharide‐based nanomaterials for biomedical applications
CN101280467B (zh) 一种壳聚糖基纳米纤维的制备方法与应用
Wittemann et al. Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin
Zengin et al. Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties
Rescignano et al. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles
Kaihara et al. In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan
El-Sherbiny et al. Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol‐Assisted Method for Biomedical and Drug Delivery Applications
CN108744060A (zh) 一种可注射多重孔隙结构的骨修复材料及其制备方法
US20160095940A1 (en) Carbon nanotube nano-therapy composites with paclitaxel
CN101238166A (zh) 制备多孔网状复合材料的方法
Wu et al. Fabrication of core–shell microspheres using alginate and chitosan–polycaprolactone for controlled release of vascular endothelial growth factor
Mihajlovic et al. Hyaluronic acid-based supramolecular hydrogels for biomedical applications
Buriuli et al. Polyelectrolyte complexes (PECs) for biomedical applications
Deepika et al. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles
CN110354072A (zh) 一种近红外光响应的氧化石墨烯/凹凸棒石复合超分子水凝胶的制备和应用
Yan et al. Stable and biocompatible cellulose-based CaCO3 microspheres for tunable pH-responsive drug delivery
CN110433327A (zh) 一种骨修复材料及其制备方法
CN110327289A (zh) 一种近红外光响应金纳米粒子/凹凸棒石复合超分子水凝胶的制备和应用
Cui et al. Development of sustainable carrier in thermosensitive hydrogel based on chitosan/alginate nanoparticles for in situ delivery system
CN104707179B (zh) 一种油溶/水溶有机‑无机三相多孔微纳复合骨修复材料
Kavitha et al. Cellulose-derived materials for drug delivery applications
Piantanida et al. Nanocomposite hyaluronic acid-based hydrogel for the treatment of esophageal fistulas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant