CN110314658B - 一种吸附-光催化降解染料废水的纳米材料制备方法 - Google Patents

一种吸附-光催化降解染料废水的纳米材料制备方法 Download PDF

Info

Publication number
CN110314658B
CN110314658B CN201910535740.8A CN201910535740A CN110314658B CN 110314658 B CN110314658 B CN 110314658B CN 201910535740 A CN201910535740 A CN 201910535740A CN 110314658 B CN110314658 B CN 110314658B
Authority
CN
China
Prior art keywords
tio
solution
powder
agbr
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910535740.8A
Other languages
English (en)
Other versions
CN110314658A (zh
Inventor
李法社
隋猛
王友昊
张博然
王文超
王碧灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910535740.8A priority Critical patent/CN110314658B/zh
Publication of CN110314658A publication Critical patent/CN110314658A/zh
Application granted granted Critical
Publication of CN110314658B publication Critical patent/CN110314658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/027Compounds of F, Cl, Br, I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种吸附‑光催化降解染料废水的纳米材料制备方法,属于环境纳米材料新功能技术领域。采用喷雾热解法制备TiO2薄膜样品;将TiO2薄膜样品破碎成粉末,加入去离子水超声处理,加入NaOH溶液磁搅拌,加入AgNO3溶液得到混合溶液B;将十六烷基三甲基溴化铵溶于CCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,得到AgBr‑TiO2粉末;将AgBr‑TiO2粉末醋酸溶液超声,加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇;静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到NaOH溶液中,得到吸附‑光催化降解染料废水的纳米材料,交联壳聚糖/AgBr‑TiO2。本发明制备具有吸附和光催化双重特性的交联壳聚糖负载Ag+掺杂纳米TiO2复合材料。

Description

一种吸附-光催化降解染料废水的纳米材料制备方法
技术领域
本发明涉及一种吸附-光催化降解染料废水的纳米材料制备方法,属于环境纳米材料新功能技术领域。
背景技术
现代工业的崛起促进了经济的飞速发展,高速工业化进程中所引发的水污染问题日益严重。染料作为一种重要的精细化工产品,与人类的衣食住行密切相关。我国是染料大国,染料年产能约为130万吨,占全球产能的60%以上,市场份额占全球40%以上;在环保部发布的《环境保护综合名录》(2017年版)中,一共有885项产品列入“高污染、高环境风险”目录,其中涉及染料的就高达200余项。染料废水色度大,有机污染物浓度、生物需氧量(BOD)和化学需氧量(COD)高,组分复杂,实际生产中水质变动范围大,对动物乃至人类都具有毒害、致畸和致癌的潜在作用。染料废水的有效治理一直是困扰行业发展的难题。常用的染料废水处理方法比较如表1所示。
表1 各种染料废水处理方法比较
Figure 950451DEST_PATH_IMAGE002
光催化技术是利用半导体材料作为催化剂,通过紫外光或可见光的辅助作用,催化氧化难降解有机废水的方法,是当今废水处理的重要研究方向。该技术的出现,有效地克服了传统方法中存在的诸如投资大、费用高、工序多、范围窄、效率低等缺点;纳米TiO2在光照下易被激发,产生光生电荷,其光生空穴的氧化电位以标准氢电位计算为3.0eV;光生电子可以使空气中的氧还原成活性氧化物质,使TiO2表现出极强的氧化还原能力。纳米TiO2不仅能氧化降解多种有机物,而且能够将有机物最终降解为CO2和H2O等无机小分子,实现有机物的彻底矿化。但是可见光利用率低和光量子效率低是限制纳米TiO2实用化的两个主要瓶颈因素,宽带隙半导体TiO2只能被紫外光激发,而太阳光中紫外光所占的比例不到5%,且90%的光生电子与空穴在10ns的时间内就发生复合,只有少量的光生电荷参与了光催化反应。
AgBr的带隙能约为2.6eV,光照过程中可以吸收光生电子,光生空穴被Br-捕获;AgBr作为一种重要的无机光敏感剂,在可见光区具有很高的感光度,能够很好地弥补纳米TiO2可见光利用率低的缺陷,使TiO2具有可见光催化活性。壳聚糖是一种天然高分子化合物,高分子链段中含有-NH2,-OH活性基团与重金属离子形成配合化合物,可制成高分子吸附剂吸附重金属离子。壳聚糖对Ni+、Zn+、Cd+以及一些稀土金属离子都与很好的吸附能力。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种吸附-光催化降解染料废水的纳米材料制备方法。本发明通过以下技术方案实现。
一种吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;
步骤2、将步骤1制备得到的TiO2薄膜样品破碎成粉末,然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:20~60mL加入AgNO3溶液得到混合溶液B;将十六烷基三甲基溴化铵溶于CCl4溶液得到浓度为0.1/20g/mL的有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的AgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声,加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇;静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用去离子水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
所述步骤1中向无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为450~600℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却至室温后,得到TiO2薄膜样品。
所述步骤3中AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.2~0.4:80~100g/mL。
所述步骤3中AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6。
上述没有提及到具体浓度的均为分析纯试剂。
本发明的有益效果是:
(1)采用喷雾热解法制备TiO2,薄膜致密均匀,相较于传统方法,制备过程中不需要使用真空设备,实验条件简单、成本低廉;
(2)采用油水自组装法(油包水法)将AgBr沉积在TiO2表面,提高TiO2对可见光的利用率,大幅度提高光催化活性。
(3)利用交联壳聚糖良好的吸附性,与AgBr-TiO2进行杂化,制备具有吸附和光催化双重特性的交联壳聚糖负载Ag+掺杂纳米TiO2复合材料,提高对染料废水的净化去除效率。
附图说明
图1是实施例1制备纳米材料应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图;
图2是实施例2制备纳米材料应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图;
图3是实施例3制备纳米材料应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1
该吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;具体为:无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为450℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却至室温后,得到TiO2薄膜样品;
步骤2、将步骤1制备得到的0.4gTiO2薄膜样品破碎成粉末(2目),然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:20g/mL加入AgNO3溶液得到混合溶液B;将0.1g十六烷基三甲基溴化铵溶于20mLCCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的0.2gAgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声(AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.4:100g/mL),加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇(AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6);静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用去离子水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
本实施例制备得到的交联壳聚糖/AgBr-TiO2记为标号TA-20/壳聚糖。本实施例制备得到的TA-20/壳聚糖应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图如图1所示,从图1中可以看出,将TA-20/壳聚糖应用甲基橙(MO)溶液在黑暗中反应30min甲基橙的吸收度最高,而在光照30min后甲基橙的吸收度最低,甲基橙的吸收度越低证明TA-20/壳聚糖降解甲基橙的降解率越高。
本实施例制备得到的交联壳聚糖/AgBr-TiO2,经光照30min后,对甲基橙的降解率为88.53%。
实施例2
该吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;具体为:无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为450℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却至室温后,得到TiO2薄膜样品;
步骤2、将步骤1制备得到的0.4gTiO2薄膜样品破碎成粉末(2目),然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:40g/mL加入AgNO3溶液得到混合溶液B;将0.1g十六烷基三甲基溴化铵溶于20mLCCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的0.3gAgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声(AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.4:100g/mL),加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇(AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6);静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用去离子水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
本实施例制备得到的交联壳聚糖/AgBr-TiO2记为标号TA-40/壳聚糖。本实施例制备得到的TA-40/壳聚糖应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图如图2所示,从图2中可以看出,将TA-40/壳聚糖应用甲基橙(MO)溶液在黑暗中反应30min甲基橙的吸收度最高,而在光照30min后甲基橙的吸收度最低,甲基橙的吸收度越低证明TA-40/壳聚糖降解甲基橙的降解率越高。
本实施例制备得到的交联壳聚糖/AgBr-TiO2,经光照30min后,对甲基橙的降解率为99.28%。
实施例3
该吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;具体为:无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为450℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却至室温后,得到TiO2薄膜样品;
步骤2、将步骤1制备得到的0.4gTiO2薄膜样品破碎成粉末(2目),然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:60g/mL加入AgNO3溶液得到混合溶液B;将0.1g十六烷基三甲基溴化铵溶于20mLCCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的0.4gAgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声(AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.4:100g/mL),加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇(AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6);静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用去离子水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
本实施例制备得到的交联壳聚糖/AgBr-TiO2记为标号TA-60/壳聚糖。本实施例制备得到的TA-60/壳聚糖应用甲基橙(MO)溶液中不同光照时间甲基橙溶液的UV--vis吸收光谱图如图3所示,从图3中可以看出,将TA-60/壳聚糖应用甲基橙(MO)溶液在黑暗中反应30min甲基橙的吸收度最高,而在光照30min后甲基橙的吸收度最低,甲基橙的吸收度越低证明TA-60/壳聚糖降解甲基橙的降解率越高。
本实施例制备得到的交联壳聚糖/AgBr-TiO2,经光照30min后,对甲基橙的降解率为94.14%。
实施例4
该吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;具体为:无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为550℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却后,得到TiO2薄膜样品;
步骤2、将步骤1制备得到的0.4gTiO2薄膜样品破碎成粉末(2目),然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:60g/mL加入AgNO3溶液得到混合溶液B;将0.1g十六烷基三甲基溴化铵溶于20mLCCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的0.4gAgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声(AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.2:80g/mL),加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇(AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6);静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
实施例5
该吸附-光催化降解染料废水的纳米材料制备方法,其包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;具体为:无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为600℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却后,得到TiO2薄膜样品;
步骤2、将步骤1制备得到的0.4gTiO2薄膜样品破碎成粉末(2目),然后按照液固比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:60g/mL加入AgNO3溶液得到混合溶液B;将0.1g十六烷基三甲基溴化铵溶于20mLCCl4溶液得到有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的0.4g AgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声(AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.3:90g/mL),加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇(AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6);静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡12h,用水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (4)

1.一种吸附-光催化降解染料废水的纳米材料制备方法,其特征在于包括以下步骤:
步骤1、以无水乙醇、乙酰丙酮及钛酸丁酯液体混合均匀为混合溶液A,采用喷雾热解法制备TiO2薄膜样品;
步骤2、将步骤1制备得到的TiO2薄膜样品破碎成粉末,然后按照固液比为4:800g/mL加入去离子水超声处理,按照粉末与NaOH溶液质量比为4:2加入NaOH溶液磁搅拌,再按照粉末质量与AgNO3溶液体积比为0.4:20~60g/mL加入AgNO3溶液得到混合溶液B;将十六烷基三甲基溴化铵溶于CCl4溶液得到浓度为0.1/20g/mL的有机溶液,将有机溶液缓慢加入到混合溶液B中,搅拌后在卤素灯下进行光还原,过滤、洗涤、干燥得到AgBr-TiO2粉末;
步骤3、将步骤2得到的AgBr-TiO2粉末溶于体积分数为4%的醋酸溶液超声,加入壳聚糖粉末后依次加入交联剂甲醛以及添加剂聚乙烯醇;静置、脱泡、流延成膜、自然风干得到膜,将膜浸入到2mol/L的NaOH溶液中浸泡10~12h,用去离子水反复洗涤至溶液呈中性,冷却干燥后得到吸附-光催化降解染料废水的纳米材料,交联壳聚糖/AgBr-TiO2
2.根据权利要求1所述的吸附-光催化降解染料废水的纳米材料制备方法,其特征在于:所述步骤1中向无水乙醇中按照体积比为4:1:1依次加入乙酰丙酮和钛酸丁酯,混合均匀为混合溶液A;将洁净的载玻片基板加热至温度为450~600℃,控制混合溶液A液流量为300mL/h,高压载气流量为40mL/h,在温度为700℃下两路开始沉积薄膜,喷雾0.5h,待基板冷却至室温后,得到TiO2薄膜样品。
3.根据权利要求1所述的吸附-光催化降解染料废水的纳米材料制备方法,其特征在于:所述步骤3中AgBr-TiO2粉末与体积分数为4%的醋酸溶液的固液比为0.2~0.4:80~100g/mL。
4.根据权利要求1所述的吸附-光催化降解染料废水的纳米材料制备方法,其特征在于:所述步骤3中AgBr-TiO2粉末、壳聚糖粉末、甲醛和聚乙烯醇质量比为3.5:7:1:6。
CN201910535740.8A 2019-06-20 2019-06-20 一种吸附-光催化降解染料废水的纳米材料制备方法 Active CN110314658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910535740.8A CN110314658B (zh) 2019-06-20 2019-06-20 一种吸附-光催化降解染料废水的纳米材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910535740.8A CN110314658B (zh) 2019-06-20 2019-06-20 一种吸附-光催化降解染料废水的纳米材料制备方法

Publications (2)

Publication Number Publication Date
CN110314658A CN110314658A (zh) 2019-10-11
CN110314658B true CN110314658B (zh) 2022-01-28

Family

ID=68119930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910535740.8A Active CN110314658B (zh) 2019-06-20 2019-06-20 一种吸附-光催化降解染料废水的纳米材料制备方法

Country Status (1)

Country Link
CN (1) CN110314658B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169379B (zh) * 2020-10-22 2022-04-12 陕西师范大学 一种具有漂浮吸油性的生物质气囊/TiO2复合材料
CN113042077B (zh) * 2021-03-12 2023-07-18 南京林业大学 一种光热-光化学协同转换的水凝胶材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210081A (zh) * 2007-12-20 2008-07-02 江汉大学 壳聚糖/二氧化钛复合材料的制备
CN102583637A (zh) * 2012-01-17 2012-07-18 同济大学 一种吸附-光催化联合高效去除高浓度染料废水的方法
CN104607214A (zh) * 2015-01-19 2015-05-13 上海交通大学 一种可见光响应的AgBr/TiO2催化剂的制备方法
KR20160088557A (ko) * 2015-01-16 2016-07-26 박케빈 광촉매 TiO2와 ZnO의 효율적인 코팅 방법 연구
CN109422888A (zh) * 2017-08-23 2019-03-05 张家港市六福新材料科技有限公司 一种壳聚糖-二氧化钛复合膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210081A (zh) * 2007-12-20 2008-07-02 江汉大学 壳聚糖/二氧化钛复合材料的制备
CN102583637A (zh) * 2012-01-17 2012-07-18 同济大学 一种吸附-光催化联合高效去除高浓度染料废水的方法
KR20160088557A (ko) * 2015-01-16 2016-07-26 박케빈 광촉매 TiO2와 ZnO의 효율적인 코팅 방법 연구
CN104607214A (zh) * 2015-01-19 2015-05-13 上海交通大学 一种可见光响应的AgBr/TiO2催化剂的制备方法
CN109422888A (zh) * 2017-08-23 2019-03-05 张家港市六福新材料科技有限公司 一种壳聚糖-二氧化钛复合膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation;Yujing Zang et al.;《Applied Catalysis B: Environmental》;20071025;第79卷;334-340 *
TiO2 薄膜的火焰喷雾热分解法制备与自清洁研究;武光明等;《石油化工高等学校学报》;20100615;第23卷(第2期);5-8 *
油水自组装制备Ag@AgBr/BiOBr高效可见光催化剂;安伟佳等;《无机化学学报》;20150210;第31卷(第2期);329-337 *

Also Published As

Publication number Publication date
CN110314658A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Le et al. Carbon dots sensitized 2D-2D heterojunction of BiVO4/Bi3TaO7 for visible light photocatalytic removal towards the broad-spectrum antibiotics
Xiao et al. Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
Ahmad et al. Highly efficient visible light driven photocatalytic activity of graphene and CNTs based Mg doped ZnO photocatalysts: A comparative study
CN104941643A (zh) 一种银-石墨烯量子点/氧化锌三元光催化剂的制备方法
Feng et al. Coupling Bi 2 MoO 6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light
Huang et al. Construction of a novel Z-scheme V2O5/NH2-MIL-101 (Fe) composite photocatalyst with enhanced photocatalytic degradation of tetracycline
Moeini et al. Removal of atrazine from water using titanium dioxide encapsulated in salicylaldehydeNH2MIL-101 (Cr): Adsorption or oxidation mechanism
Ouyang et al. Synthesis of novel ternary Ag/BiVO4/GO photocatalyst for degradation of oxytetracycline hydrochloride under visible light
CN110314658B (zh) 一种吸附-光催化降解染料废水的纳米材料制备方法
Chen et al. A high-performance composite CDs@ Cu-HQCA/TiO2 flower photocatalyst: Synergy of complex-sensitization, TiO2-morphology control and carbon dot-surface modification
CN102380379B (zh) Ag/ZnO-AC光催化剂及其制备方法
Fereidooni et al. Innovatively-synthesized CeO2/ZnO photocatalysts by sono-photochemical deposition: catalyst characterization and effect of operational parameters on high efficient dye removal
Suresh et al. Halides and oxyhalides-based photocatalysts for abatement of organic water contaminants–An overview
Yaghoobi Rahni et al. Facile and green synthesis of Cu3V2O8 nanostructures via Moringa peregrina natural extract as a high performance photo catalyst
Ping et al. Flexible TiO2 nanograss array film decorated with oxygen vacancies introduced by facile chemical reduction and their photocatalytic activity
Chang et al. Jointly augmented photocatalytic NO removal by S-scheme Bi12SiO20/Ag2MoO4 heterojunctions with surface oxygen vacancies
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
Lu et al. Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation
Ren et al. Ag/Ag3PO4 nanoparticles assembled on sepiolite nanofibers: Enhanced visible-light-driven photocatalysis and the important role of Ag decoration
CN111167501A (zh) 一种可见光响应光催化材料及其制备与其在微污染水处理中的应用
Targhan et al. Adsorptive and photocatalytic degradation of imidacloprid pesticide from wastewater via the fabrication of ZIF-CdS/Tpy quantum dots
Cui et al. A recyclable photocatalyst Cu2O/Fe3O4@ C/Cu nanocomposite for efficient photocatalytic reduction of 4-nitrophenol
Li et al. Efficient removal of TBBPA with a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst under sunlight irradiation
Huang et al. Novel ternary catalyst Ag2O/NCDs@ porous tubular g-C3N4 as efficient visible-light-driven peroxymonosulfate activator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Fashe

Inventor after: Su Meng

Inventor after: Wang Youhao

Inventor after: Zhang Boran

Inventor after: Wang Wenchao

Inventor after: Wang Bican

Inventor before: Li Fashe

Inventor before: Zhang Boran

Inventor before: Wang Youhao

Inventor before: Su Meng

Inventor before: Wang Wenchao

Inventor before: Wang Bican

GR01 Patent grant
GR01 Patent grant