CN110311010A - 一种基于石墨烯纳米带的红外宽光谱探测器 - Google Patents

一种基于石墨烯纳米带的红外宽光谱探测器 Download PDF

Info

Publication number
CN110311010A
CN110311010A CN201910572514.7A CN201910572514A CN110311010A CN 110311010 A CN110311010 A CN 110311010A CN 201910572514 A CN201910572514 A CN 201910572514A CN 110311010 A CN110311010 A CN 110311010A
Authority
CN
China
Prior art keywords
graphene nanobelt
broad spectrum
nanobelt
graphene
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910572514.7A
Other languages
English (en)
Other versions
CN110311010B (zh
Inventor
杨树明
吉培瑞
杨晓凯
王一鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910572514.7A priority Critical patent/CN110311010B/zh
Publication of CN110311010A publication Critical patent/CN110311010A/zh
Application granted granted Critical
Publication of CN110311010B publication Critical patent/CN110311010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于石墨烯纳米带的红外宽光谱探测器,包括石墨烯纳米带、栅极、源极、漏极和栅极介质。该探测器中石墨烯纳米带的带隙大小一方面可根据其宽度调节,另一方面可通过栅压调节,整体实现两个维度上的带隙可调。不同带隙大小对应探测器不同的光响应频率。因此,该探测器具有宽光谱探测能力,实现探测波段覆盖760nm‑100μm的全红外波探测。且探测灵敏度高、响应速度快,可有效解决红外宽光谱探测的迫切需求。

Description

一种基于石墨烯纳米带的红外宽光谱探测器
技术领域
本发明属于材料科学、光电子技术及半导体器件领域,具体涉及一种基于石墨烯纳米带的红外宽光谱探测器。
背景技术
红外探测器是一种能够将不可见的红外辐射转化为可测量信号的光电子器件,在军事、气象、工业、环境科学以及医疗诊断等领域都具有广泛的应用。尤其是能在现代战争中及时捕获并识别来袭目标的相关信息,在红外侦察、红外制导以及红外隐身领域有着迫切需求,是信息化作战中取得胜利的关键。
然而,传统基于铟镓砷(InGaAs)、碲镉汞(HgCdTe)、硒化铅(PbSe)等材料的红外探测器大多只能探测单波段。随着目标伪装技术的进一步发展,单波段探测已不能对隐身飞机、临近空间飞行器、弹道导弹等目标物体进行准确全面的预警与侦察,满足不了信息化战争的需求。而对于伪装目标来说,往往只能伪装一部分波段,不可能伪装所有波段。例如,隐形飞机只能对雷达探测隐身部分波段,在远红外波段范围却可以探测。如果探测设备具有红外宽光谱探测能力,就能有效实现反红外隐身。
因此,为了能更好识别目标物体,对潜在威胁进行预警,研究一种室温下灵敏度和探测率高、响应速度快的红外宽光谱探测器就显得必要而迫切。
发明内容
本发明的目的在于针对当前红外宽光谱探测的迫切需求,提供了一种基于石墨烯纳米带的红外宽光谱探测器,通过两个维度上的带隙可调实现红外宽光谱吸收。
为达到上述目的,本发明采用如下技术方案予以实现:
一种基于石墨烯纳米带的红外宽光谱探测器,包括石墨烯纳米带、栅极、源极、漏极和栅极介质;其中,
栅极材料采用重掺杂硅,栅极介质材料采用300nm厚的二氧化硅,且二氧化硅-硅界面具有良好的稳定性;石墨烯纳米带位于栅极介质表面,作为导电沟道;源极和漏极材料采用20nm厚的Ti过渡层及100nm厚的Au电极,分别从石墨烯纳米带的上表面左右两侧接出,与石墨烯形成欧姆接触并连接外部电源;栅极和源极通过栅电源相连,提供栅压Vg;工作时,入射光照射到探测器上,光生载流子产生,并被电极与石墨烯之间的内建电场分离,形成光电流,通过电流表进行检测。
本发明进一步的改进在于,石墨烯纳米带的宽度在5-100nm范围内,具体根据制备方法可控调节,边缘为具有原子级平滑的扶手椅型。
本发明进一步的改进在于,石墨烯纳米带的带隙大小根据其宽度大小改变。
本发明进一步的改进在于,石墨烯纳米带的带隙大小通过栅压Vg调节。
本发明进一步的改进在于,石墨烯纳米带的带隙大小在两个维度上可调,整体可达100-1000meV范围。
本发明进一步的改进在于,该探测器具有宽光谱吸收特性,探测波段覆盖全红外波段,即760nm-100μm。
本发明具有如下有益的技术效果:
本发明所述的一种基于石墨烯纳米带的红外宽光谱探测器,可在室温下实现760nm-100μm范围内的宽光谱探测,覆盖了红外全波段,且探测灵敏度高、响应速度快,有效了解决红外宽光谱探测的迫切需求。
附图说明
图1是本发明一种基于石墨烯纳米带的红外宽光谱探测器的结构示意图。
附图标记说明:
1、石墨烯纳米带,2、栅极,3、源极,4、漏极,5、栅极介质,6、电流表,7、入射光。
具体实施方式
为使本发明的目的、技术方案及优势更加清楚明了,下面结合附图对本发明原理及实验过程作进一步说明。
如图1所示,本发明提供的一种基于石墨烯纳米带的红外宽光谱探测器,包括石墨烯纳米带1、栅极2、源极3、漏极4和栅极介质5。其中,栅极2材料采用重掺杂硅,栅极介质5材料采用300nm厚的二氧化硅,且二氧化硅-硅界面具有良好的稳定性;石墨烯纳米带1位于栅极介质5表面,作为导电沟道;源极3和漏极4材料采用20nm厚的Ti过渡层及100nm厚的Au电极,分别从石墨烯纳米带1的上表面左右两侧接出,与石墨烯形成欧姆接触并连接外部电源;栅极2和源极3通过栅电源相连,提供栅压Vg。
探测器源极、漏极的制备方法采用已有技术,此处不再赘述;石墨烯纳米带的制备方法同样采用已有技术,此处不再赘述;石墨烯纳米带的宽度在5-100nm范围内,具体可根据制备方法可控调节,其边缘为具有原子级平滑的扶手椅型;石墨烯纳米带的带隙大小一方面可根据其宽度调节,另一方面可通过栅压Vg调节,实现两个维度上的带隙可调,整体可达100-1000meV范围。不同的带隙大小对应探测器不同的光响应频率。因此,石墨烯纳米带带隙可调的特性使探测器具有宽光谱探测的能力,实现探测波段覆盖760nm-100μm的全红外波探测。工作时,入射光7照射到探测器上,光生载流子产生,并被金属电极与石墨烯之间的内建电场分离,形成光电流,通过电流表6进行检测。
以上结合附图对本发明的具体实施方法作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (6)

1.一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,包括石墨烯纳米带(1)、栅极(2)、源极(3)、漏极(4)和栅极介质(5);其中,
栅极(2)材料采用重掺杂硅,栅极介质(5)材料采用300nm厚的二氧化硅,且二氧化硅-硅界面具有良好的稳定性;石墨烯纳米带(1)位于栅极介质(5)表面,作为导电沟道;源极(3)和漏极(4)材料采用20nm厚的Ti过渡层及100nm厚的Au电极,分别从石墨烯纳米带(1)的上表面左右两侧接出,与石墨烯形成欧姆接触并连接外部电源;栅极(2)和源极(3)通过栅电源相连,提供栅压Vg;工作时,入射光(7)照射到探测器上,光生载流子产生,并被电极与石墨烯之间的内建电场分离,形成光电流,通过电流表(6)进行检测。
2.根据权利要求1所述的一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,石墨烯纳米带(2)的宽度在5-100nm范围内,具体根据制备方法可控调节,边缘为具有原子级平滑的扶手椅型。
3.根据权利要求1所述的一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,石墨烯纳米带(2)的带隙大小根据其宽度大小改变。
4.根据权利要求1所述的一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,石墨烯纳米带(2)的带隙大小通过栅压Vg调节。
5.根据权利要求1所述的一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,石墨烯纳米带(2)的带隙大小在两个维度上可调,整体可达100-1000meV范围。
6.根据权利要求1所述的一种基于石墨烯纳米带的红外宽光谱探测器,其特征在于,该探测器具有宽光谱吸收特性,探测波段覆盖全红外波段,即760nm-100μm。
CN201910572514.7A 2019-06-28 2019-06-28 一种基于石墨烯纳米带的红外宽光谱探测器 Active CN110311010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910572514.7A CN110311010B (zh) 2019-06-28 2019-06-28 一种基于石墨烯纳米带的红外宽光谱探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910572514.7A CN110311010B (zh) 2019-06-28 2019-06-28 一种基于石墨烯纳米带的红外宽光谱探测器

Publications (2)

Publication Number Publication Date
CN110311010A true CN110311010A (zh) 2019-10-08
CN110311010B CN110311010B (zh) 2022-06-07

Family

ID=68077810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910572514.7A Active CN110311010B (zh) 2019-06-28 2019-06-28 一种基于石墨烯纳米带的红外宽光谱探测器

Country Status (1)

Country Link
CN (1) CN110311010B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864805A (zh) * 2019-10-24 2020-03-06 北京大学 超宽带光谱探测装置和方法
CN111335019A (zh) * 2020-03-06 2020-06-26 杭州高烯科技有限公司 一种基于石墨烯纤维的中红外发射方法
CN111354805A (zh) * 2020-03-06 2020-06-30 杭州高烯科技有限公司 石墨烯纤维在中红外光电探测中的应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681953A (zh) * 2007-03-13 2010-03-24 威斯康星校友研究基金会 石墨基光伏电池
US20100258787A1 (en) * 2009-04-08 2010-10-14 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
CN101913599A (zh) * 2010-08-13 2010-12-15 东华大学 一种石墨烯纳米带的制备方法
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
US20120153119A1 (en) * 2010-12-13 2012-06-21 Vikram Arvind Patil Active bandgap tuning of graphene for tunable photodetection applications
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
CN103476582A (zh) * 2011-04-18 2013-12-25 国际商业机器公司 用于制备石墨烯纳米带的结构和方法
CN103935956A (zh) * 2014-04-15 2014-07-23 江苏大学 一种基于针尖增强拉曼光谱的石墨烯纳米带边界修饰方法
WO2014149004A1 (en) * 2013-03-22 2014-09-25 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
CN104795411A (zh) * 2015-04-15 2015-07-22 重庆大学 栅控石墨烯纳米带阵列THz探测器及调谐方法
US9508885B1 (en) * 2015-09-02 2016-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Graphene field effect transistor for radiation detection
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法
CN107110852A (zh) * 2014-09-18 2017-08-29 诺基亚技术有限公司 用于可控地用电荷载流子填充沟道的装置和方法
CN107228919A (zh) * 2016-03-25 2017-10-03 本田技研工业株式会社 基于层状纳米带的化学传感器
CN109755333A (zh) * 2019-01-10 2019-05-14 北京交通大学 一种基于石墨烯的光电探测器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681953A (zh) * 2007-03-13 2010-03-24 威斯康星校友研究基金会 石墨基光伏电池
US20100258787A1 (en) * 2009-04-08 2010-10-14 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
CN101913599A (zh) * 2010-08-13 2010-12-15 东华大学 一种石墨烯纳米带的制备方法
US20120153119A1 (en) * 2010-12-13 2012-06-21 Vikram Arvind Patil Active bandgap tuning of graphene for tunable photodetection applications
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
CN103476582A (zh) * 2011-04-18 2013-12-25 国际商业机器公司 用于制备石墨烯纳米带的结构和方法
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
WO2014149004A1 (en) * 2013-03-22 2014-09-25 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
CN103935956A (zh) * 2014-04-15 2014-07-23 江苏大学 一种基于针尖增强拉曼光谱的石墨烯纳米带边界修饰方法
CN107110852A (zh) * 2014-09-18 2017-08-29 诺基亚技术有限公司 用于可控地用电荷载流子填充沟道的装置和方法
CN104795411A (zh) * 2015-04-15 2015-07-22 重庆大学 栅控石墨烯纳米带阵列THz探测器及调谐方法
US9508885B1 (en) * 2015-09-02 2016-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Graphene field effect transistor for radiation detection
CN107228919A (zh) * 2016-03-25 2017-10-03 本田技研工业株式会社 基于层状纳米带的化学传感器
CN106384756A (zh) * 2016-10-19 2017-02-08 中国人民解放军国防科学技术大学 基于石墨烯量子点的THz单光子探测器及其制备方法
CN109755333A (zh) * 2019-01-10 2019-05-14 北京交通大学 一种基于石墨烯的光电探测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG WANG,等: "Gate-Variable OpticalTransitions in Graphene", 《SCIENCE》 *
MARCUS FREITAG等: "Substrate-Sensitive Mid-infrared Photoresponse in Graphene", 《ACS NANO》 *
吴勤: "《航天科共出版基金 太赫兹技术发展与应用》", 30 August 2018 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864805A (zh) * 2019-10-24 2020-03-06 北京大学 超宽带光谱探测装置和方法
CN110864805B (zh) * 2019-10-24 2021-11-23 北京大学 超宽带光谱探测装置和方法
CN111335019A (zh) * 2020-03-06 2020-06-26 杭州高烯科技有限公司 一种基于石墨烯纤维的中红外发射方法
CN111354805A (zh) * 2020-03-06 2020-06-30 杭州高烯科技有限公司 石墨烯纤维在中红外光电探测中的应用
CN111335019B (zh) * 2020-03-06 2022-09-09 杭州高烯科技有限公司 一种基于石墨烯纤维的中红外发射方法

Also Published As

Publication number Publication date
CN110311010B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN110311010A (zh) 一种基于石墨烯纳米带的红外宽光谱探测器
CN104795411B (zh) 栅控石墨烯纳米带阵列THz探测器及调谐方法
Bansal et al. A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response
WO2015188608A1 (zh) 基于光学天线的太赫兹探测器
CN105489693B (zh) 基于二维层状薄膜材料p‑g‑n异质结光电子器件
CN103630254B (zh) 一种石墨烯温度传感器及其制备工艺
CN103346199A (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
Hao et al. 2D SnSe/Si heterojunction for self-driven broadband photodetectors
CN109768114A (zh) 一种基于石墨烯-半导体异质结的位敏感光电探测器
CN105552113B (zh) 一种辐射敏感场效应晶体管及其制备方法
CN104701393A (zh) 双波段光电探测器及其制备方法
Liang et al. Self‐powered broadband kesterite photodetector with ultrahigh specific detectivity for weak light applications
WO2009022378A1 (ja) 放射線検出装置
Yıldırım et al. Self-powered ZrO2 nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal
CN105280748B (zh) 双色探测器
CN105355701B (zh) 一种新型的光电导探测器
Guo et al. The recent progress of triboelectric nanogenerator-assisted photodetectors
Zhang et al. High-temperature reliability of all-oxide self-powered deep UV photodetector based on ϵ-Ga2O3/ZnO heterojunction
CN209993605U (zh) 一种异质结红外光电探测器
KR20150004325A (ko) 향상된 감마 방사선 감도를 갖는 고체 방사선 검출기
CN108630769A (zh) 一种nBn型InAlSb红外探测器材料及其制备方法,红外探测器
CN104465112A (zh) 一种基于柔性衬底的自驱动ZnO基紫外探测器及其制备方法
CN103325796A (zh) 天线集成石墨烯pin结太赫兹探测器
CN208835074U (zh) 一种三维平行板电极半导体探测器及探测装置
US9766354B2 (en) Semiconductor detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant