CN110306186A - 一种含硅高熵合金涂层及其制备方法 - Google Patents

一种含硅高熵合金涂层及其制备方法 Download PDF

Info

Publication number
CN110306186A
CN110306186A CN201910716257.XA CN201910716257A CN110306186A CN 110306186 A CN110306186 A CN 110306186A CN 201910716257 A CN201910716257 A CN 201910716257A CN 110306186 A CN110306186 A CN 110306186A
Authority
CN
China
Prior art keywords
powder
entropy alloy
alloy coating
preparation
high entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910716257.XA
Other languages
English (en)
Inventor
魏仕勇
彭文屹
张友亮
邓晓华
谌昀
金莹
万珍珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Institute of Applied Physics of Jiangxi Academy of Sciences
Original Assignee
Nanchang University
Institute of Applied Physics of Jiangxi Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University, Institute of Applied Physics of Jiangxi Academy of Sciences filed Critical Nanchang University
Priority to CN201910716257.XA priority Critical patent/CN110306186A/zh
Publication of CN110306186A publication Critical patent/CN110306186A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供了一种含硅高熵合金涂层及其制备方法,属于合金涂层领域。本发明以硅元素为次元素,也是间隙元素,添加到CoCrCuFeMn高熵合金中,可以通过非金属元素的间隙作用,具有很好的抗高温软化性能,使该类高熵合金的晶格畸变增大,起到固溶强化作用,硅元素还能与主元素形成硅化物,弥散在合金组织中,产生弥散强化作用,使该类高熵合金硬度和耐磨性提高;添加自熔性元素Si,可以改善合金在液态时的流动性,从而改善涂层表面宏观形貌;部分Si可以置换原子半径大的Cr,使合金的晶格失真效应加剧,使高熵合金组织中的FCC相峰值发生变化,Si的加入可以使高熵合金中的BCC相向FCC相转变,促进FCC相体积分数增大。

Description

一种含硅高熵合金涂层及其制备方法
技术领域
本发明涉及合金涂层技术领域,尤其涉及一种含硅高熵合金涂层及其制备方法。
背景技术
金属及其合金具有悠久的历史,2004年,Cantor等提出了一种全新的合金设计理念,并将这类合金分别叫多组元合金(multicomponent alloys)和高熵合金(high entropyalloys)。不同于传统合金,高熵合金不是以一种或二种元素为基体,从成分上讲,它包含至少五种主元素,每种元素的原子比在5%~35%(at%)之间;从熵角度讲,合金的混合熵包括原子振动熵、磁矩熵、电子随机熵和原子排列熵,其中原子排列熵又占主导地位,因此,在随机互溶状态下,等摩尔比的合金的熵可以只考虑原子排列熵,即△S=Rlnn,当△S>1.5R时,即为高熵合金。高熵合金没有明显的溶质或溶剂之分,由于其呈现高熵效应,使得高熵合金在微观结构上表现出简单的面心立方(FCC)或体心立方(BCC)固溶体结构。目前,国内外研究者报道了四百多种高熵合金体系,随着人们对高熵合金的物理、化学、力学性能以及微观组织特征和理论设计依据等方面的研究,发现高熵合金是一个可制备、易加工、可分析、并具有优异综合性能的全新合金体系,在结构材料、软磁材料、等众多领域都有巨大的发展潜力,被誉为21世纪合金化理论三大突破之一。但是现有技术中基于高熵合金设计的高熵合金涂层普遍存在抗高温软化性能不佳的问题。
发明内容
有鉴于此,本发明的目的在于提供一种含硅高熵合金涂层及其制备方法和应用。本发明提供的含硅高熵合金具有抗高温软化性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种含硅高熵合金涂层,包括硅元素和主元素,所述主元素包括Co元素、Cr元素、Cu元素、Fe元素和Mn元素,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.1~1。
优选地,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.6~1.0。
优选地,所述含硅高熵合金涂层的原子尺寸差δ为1.45~3.39%,混合焓ΔHmix为-16.44~1.32kJ/mol,混合焓与混合熵比Ω为1.57~18.29,价电子溶度VEC为7.5~8.12,电负差异性χ为7.1~7.7%。
本发明还提供了上述技术方案所述含硅高熵合金涂层的制备方法,包括以下步骤:
将Co粉、Cr粉、Cu粉、Fe粉、Mn粉和硅铁粉混合后进行均匀化处理,得到混合粉末;
将所述混合粉末干燥,得到干燥粉末;
将所述干燥粉末在基体表面进行等离子熔覆,得到所述含硅高熵合金涂层。
优选地,所述Co粉、Cr粉、Cu粉、Fe粉和Mn粉的粒度独立地为80~200目。
优选地,所述硅铁粉的粒度为80~200目。
优选地,所述均匀化处理的球料比为10:1,球磨机转速为100~400r/min,球磨时间为1~6h。
优选地,所述干燥的温度为125~175℃,时间为1~2h。
优选地,所述等离子熔覆的参数为:提前送粉-3~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流55A~85A,离子气流量为0.8~2.0N/m,保护气流量为0.5~2.0N/m,行走速度3~20mm/s,焊接层数为1~3层。
优选地,所述等离子熔覆的参数为:提前送粉-2~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流60A~75A,离子气流量为0.8~1.5N/m,保护气流量为1.0~1.8N/m,行走速度3~10mm/s,焊接层数为2~3层。
本发明提供了一种含硅高熵合金涂层,包括硅元素和主元素,所述主元素包括Co元素、Cr元素、Cu元素、Fe元素和Mn元素,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.1~1。本发明选用Co、Cr、Cu、Fe、Mn五种元素为主元素,以硅元素为次元素,硅是间隙元素,非金属元素Si添加到CoCrCuFeMn高熵合金中,可以通过非金属元素的间隙作用,使合金的堆朵层错能提高,使得该类高熵合金的晶格畸变增大,起到固溶强化作用,此外,非金属元素还能与主元素形成硅化物,弥散在合金组织中,产生弥散强化作用,从而使该类高熵合金硬度和耐磨性提高;同时Si还是自熔性元素,可以改善合金在液态时的流动性,从而改善涂层表面宏观形貌;部分Si可以置换原子半径大的Cr,使合金的晶格失真效应加剧,从而使高熵合金组织中的FCC(面心立方)相峰值发生变化,Si的加入可以使高熵合金中的BCC(体心立方)相向FCC相转变,促进FCC相体积分数增大,在高温状态下,含Si的CoCrCuFeMn合金的硬度没有明显的下降现象,且具有很好的抗高温软化性能;当Si摩尔比在0~0.4之间时,含硅的CoCrCuFeMn高熵合金的硬度随Si含量的增加而降低,而当Si摩尔比>0.4时,含硅的CoCrCuFeMn高熵合金硬度,随Si含量的增加而提高,这是因为Si的加入可以使FCC相体积分数增大,而FCC相的硬度比BCC相的硬度低,但当Si含量超过一定量时,CoCrCuFeMn高熵合金中会出现M3Si硬质相,同时会间隙更多的Si在FCC相中,提高高熵合金的固溶强化效果,提高合金的硬度和耐磨性能。
附图说明
图1为实施例1制得的含硅的CoCrCuFeMn高熵合金涂层以及基体的SEM谱图;
图2为实施例1制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图;
图3为实施例1制得的含硅的CoCrCuFeMn高熵合金涂层的维氏显微硬度图;
图4为实施例2制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图;
图5为实施例3制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图;
图6为实施例4制得的含硅的CoCrCuFeMn高熵合金涂层在不同温度下合金硬度曲线;
图7为实施例1~4制得的含硅高熵合金涂层平均硬度值曲线。
具体实施方式
本发明提供了一种含硅高熵合金涂层,包括硅元素和主元素,所述主元素包括Co元素、Cr元素、Cu元素、Fe元素和Mn元素,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.1~1。
在本发明中,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比优选为1:1:1:1:1:0.6~1.0。在本发明中,所述硅元素含量过高会导致涂层与基体之间会出现裂纹,不能形成冶金结合。
在本发明中,所述含硅高熵合金涂层的原子尺寸差δ优选为1.45~3.39%,混合焓ΔHmix优选为-16.44~1.32kJ/mol,混合焓与混合熵比Ω优选为1.57~18.29,价电子溶度VEC优选为7.5~8.12,电负差异性χ优选为7.1~7.7%。
本发明还提供了上述技术方案所述含硅高熵合金涂层的制备方法,包括以下步骤:
将Co粉、Cr粉、Cu粉、Fe粉、Mn粉和硅铁粉混合后进行均匀化处理,得到混合粉末;
将所述混合粉末干燥,得到干燥粉末;
将所述干燥粉末在基体表面进行等离子熔覆,得到所述含硅高熵合金涂层。
本发明将Co粉、Cr粉、Cu粉、Fe粉、Mn粉和硅铁粉混合后进行均匀化处理,得到混合粉末。在本发明中,所述Co粉、Cr粉、Cu粉、Fe粉和Mn粉的粒度独立地优选为80~200目,更优选为100~150目,所述Co粉、Cr粉、Cu粉、Fe粉和Mn粉的纯度均优选为大于99.9%。本发明对所述混合的具体方式没有特殊的限定,采用本领域技术人员熟知的技术方案即可。在本发明中,所述硅铁粉能够避免Si在等离子熔覆过程中烧损和宏观偏析。
在本发明中,所述硅铁粉的粒度优选为80~200目,更优选为100~150目,所述硼铁粉的纯度优选为大于98%。在本发明中,所述硅铁粉优选包括以下质量分数的组分:75%Si,1.5%Al,1.0%Ca,1.0%Mn,0.5%Cr,0.04%P,0.02%S,0.2%C,余量的Fe。
在本发明中,所述均匀化处理优选为球磨,所述球磨的球料比优选为10:1,球磨机转速优选为100~400r/min,更优选为150~200r/min,球磨时间优选为1~6h,更优选为2~3h。在本发明中,所述均匀化处理优选在高能机中进行,所述均匀化处理优选在氩气保护中进行。
得到混合粉末后,本发明将所述混合粉末干燥,得到干燥粉末。在本发明中,所述干燥的温度优选为125~175℃,更优选为130~150℃,时间优选为1~2h,所述干燥优选在干燥箱中进行。
得到干燥粉末后,本发明将所述干燥粉末在基体表面进行等离子熔覆,得到所述含硅高熵合金涂层。在本发明的实施例中,所述含硅高熵合金涂层记为CoCrCuFeMnSix,其中下标为摩尔比,未标注的为1,x为0.1~1。
在本发明中,所述等离子熔覆的参数优选为:提前送粉-3~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流55A~85A,离子气流量为0.8~2.0N/m,保护气流量为0.5~2.0N/m,行走速度3~20mm/s,焊接层数为1~3层,更优选为:提前送粉-2~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流60A~75A,离子气流量为0.8~1.5N/m,保护气流量为1.0~1.8N/m,行走速度3~10mm/s,焊接层数为2~3层,最优选为:等离子熔覆的参数为:提前送粉-1秒,焊接方式为连续焊接,送粉速度为7r/s,摆动幅度为8mm,弧电流65A,离子气流量为1.2N/m,保护气流量为1.5N/m,行走速度7mm/s,焊接层数为3层。在本发明中,Si元素容易在高温中氧化,所以一般选择滞后送粉,且保护气氛的流量更大一些,但太大,粉末会被气流吹走,易造成粉末损失。在本发明中,所述等离子熔覆优选在等离子弧堆焊机中进行。
在本发明中,所述基体优选为基体钢Q235、基体钢Q195、基体钢Q215、基体钢Q275或低合金钢。
为了进一步说明本发明,下面结合实例对本发明提供的含硅高熵合金涂层及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
以Co、Cr、Cu、Fe、Mn为主元素粉末,其中粉末的纯度大于99.9%,粒度在100~150目之间;
选择Si为次元素,硅铁粉末的纯度大于98%,粒度在100~150目之间;
混合粉末配比,主元素粉末Co、Cr、Cu、Fe、Mn按照等原子比1:1:1:1:1进行,将硅铁粉末添加到主元素混合粉末中后,倒入高能机中进行均匀化处理。球磨参数:球料比为10:1,球磨机转速为200r/min,球磨时间为3h,球磨过程中进行氩气保护,得到混合粉末。
混合粉末在干燥箱中进行干燥,干燥工艺:温度为175℃,干燥时间1h,得到干燥粉末。
将干燥粉末,倒入等离子弧堆焊机料筒中,进行等离子熔覆高熵合金涂层制备,在基体钢Q235上熔覆,等离子熔覆工艺参数为:提前送粉为-1秒,送粉速度为7r/s,摆动幅度为8mm,弧电流65A,离子气流量为1.2N/m,保护气流量为1.5N/m,行走速度5mm/s,焊接层数3层,得到含硅高熵合金涂层,记为CoCrCuFeMnSi0.10,所述含硅高熵合金涂层的原子尺寸差(δ)1.45%,混合焓(ΔHmix)1.32kJ/mol,混合焓与混合熵比为(Ω)18.29,价电子溶度(VEC)8.12,电负差异性(χ)7.7%。
图1实施例1制得的含硅的CoCrCuFeMn高熵合金涂层以及基体的SEM谱图,由图1可知,硅化物弥散在合金组织中,产生弥散强化作用。
图2为实施例1制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图,由图2可知,涂层的物相主要由FCC相和BCC相组成。
利用维氏显微硬度(载荷力300g,保压时间15s)对本实施例所得涂层进行测试,所得维氏显微硬度图如图3所示,得到涂层的平均硬度为357Hv0.3,是基体钢(Q235)平均硬度(123Hv0.3)的2.9倍,涂层在常温下磨损(磨料为钢球),磨损量小于基体钢(Q235),耐磨性是基体的1.8倍。
将制得的涂层分别在600℃、800℃和1000℃进行保温5h退火处理,利用维氏显微硬度(载荷力300g,保压时间15s)测试出各退火后的高熵合金涂层的平均硬度,分别为321Hv0.3、310Hv0.3、296Hv0.3,可说明含Si高熵合金涂层具有良好的抗高温软化性。
实施例2
与实施例1相同,区别仅在于得到含硅高熵合金涂层中Co、Cr、Cu、Fe、Mn和Si的摩尔比为1:1:1:1:1:0.4,记为CoCrCuFeMnSi0.4,所述含硅高熵合金涂层的原子尺寸差(δ)2.48%,混合焓(ΔHmix)-5.98kJ/mol,混合焓与混合熵比为(Ω)4.23,价电子溶度(VEC)7.89,电负差异性(χ)7.4%。
图4为实施例2制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图,由图4可知,涂层的物相主要由FCC相和BCC相组成。
利用维氏显微硬度(载荷力300g,保压时间15s)对本实施例所得涂层进行测试,得到涂层的平均硬度为293Hv0.3,是基体钢(Q235)平均硬度(123Hv0.3)的2.4倍,涂层在常温下磨损(磨料为钢球),磨损量小于基体钢(Q235),耐磨性是基体的1.6倍。
将制得的涂层分别在600℃、800℃和1000℃进行保温5h退火处理,利用维氏显微硬度(载荷力300g,保压时间15s)测试出各退火后的高熵合金涂层的平均硬度,分别为268Hv0.3、254Hv0.3、243Hv0.3,可说明含Si高熵合金涂层具有良好的抗高温软化性。
实施例3
与实施例1相同,区别仅在于得到含硅高熵合金涂层中Co、Cr、Cu、Fe、Mn和Si的摩尔比为1:1:1:1:1:1.0,记为CoCrCuFeMnSi1.0,所述含硅高熵合金涂层的原子尺寸差(δ)3.39%,混合焓(ΔHmix)-16.44kJ/mol,混合焓与混合熵比为(Ω)1.57,价电子溶度(VEC)7.5,电负差异性(χ)7.1%。
图5为实施例3制得的含硅的CoCrCuFeMn高熵合金涂层的XRD衍射图,由图5可知,涂层的物相主要由FCC相,BCC相和M3Si相组成。
利用维氏显微硬度(载荷力300g,保压时间15s)对本实施例所得涂层进行测试,得到涂层的平均硬度为557Hv0.3,是基体钢(Q235)平均硬度(123Hv0.3)的4.5倍,涂层在常温下磨损(磨料为钢球),磨损量小于基体钢(Q235),耐磨性是基体的3.2倍。
将制得的涂层分别在600℃、800℃和1000℃进行保温5h退火处理,利用维氏显微硬度(载荷力300g,保压时间15s)测试出各退火后的高熵合金涂层的平均硬度,分别为509Hv0.3、486Hv0.3、463Hv0.3,可说明含Si高熵合金涂层具有良好的抗高温软化性。图6为不同温度下实施例3制得的合金硬度曲线,从图中可说明含Si高熵合金涂层具有良好的抗高温软化性。
实施例4
以Co、Cr、Cu、Fe、Mn为主元素粉末,其中粉末的纯度大于99.9%,粒度在100~150目之间;
选择硅为次元素粉末,硅以硅铁粉形式加入,硅铁粉末的纯度大于98%,粒度在100~150目之间;
混合粉末配比,主元素粉末Co、Cr、Cu、Fe、Mn按照等原子比1:1:1:1:1进行,将硅铁粉末添加到主元素混合粉末中后,倒入高能机中进行均匀化处理。球磨参数:球料比为10:1,球磨机转速为200r/min,球磨时间为4h,球磨过程中进行氩气保护,得到混合粉末。
混合粉末在干燥箱中进行干燥,干燥工艺:温度为125℃,干燥时间2h,得到干燥粉末。
将干燥粉末,倒入等离子弧堆焊机料筒中,进行等离子熔覆高熵合金涂层制备,在硅素结构钢Q195上熔覆,等离子熔覆工艺参数为:提前送粉为-1秒,送粉速度为7r/s,摆动幅度为8mm,弧电流60A,离子气流量为1.2N/m,保护气流量为1.5N/m,行走速度7mm/s,焊接层数3层,得到含硅高熵合金涂层,记为CoCrCuFeMnC0.60,所述含硅高熵合金涂层的原子尺寸差(δ)2.86%,混合焓(ΔHmix)-10kJ/mol,混合焓与混合熵比为(Ω)2.57,价电子溶度(VEC)7.79,电负差异性(χ)7.3%。
利用维氏显微硬度(载荷力300g,保压时间15s)对本实施例所得涂层进行测试,得到涂层的平均硬度为405Hv0.3,是基体钢(Q195)平均硬度(112Hv0.3)的3.7倍,涂层在常温下磨损(磨料为钢球),磨损量小于基体钢(Q235),耐磨性是基体的2.8倍。
将制得的涂层分别在600℃、800℃和1000℃进行保温5h退火处理,利用维氏显微硬度(载荷力300g,保压时间15s)测试出各退火后的高熵合金涂层的平均硬度,分别为372Hv0.3、352Hv0.3、336Hv0.3,可说明含Si高熵合金涂层具有良好的抗高温软化性。
图7为实施例1~4含硅高熵合金涂层平均硬度值曲线,测试条件载荷力200g,保压时间15s,从图中可以说明,Si含量对高熵合金硬度具有先降低,后提高的效果。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种含硅高熵合金涂层,其特征在于,包括硅元素和主元素,所述主元素包括Co元素、Cr元素、Cu元素、Fe元素和Mn元素,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.1~1.0。
2.根据权利要求1所述的含硅高熵合金涂层,其特征在于,所述Co元素、Cr元素、Cu元素、Fe元素、Mn元素和硅元素的摩尔比为1:1:1:1:1:0.6~1.0。
3.根据权利要求1所述的含硅高熵合金涂层,其特征在于,所述含硅高熵合金涂层的原子尺寸差δ为1.45~3.39%,混合焓ΔHmix为-16.44~1.32kJ/mol,混合焓与混合熵比Ω为1.57~18.29,价电子溶度VEC为7.5~8.12,电负差异性χ为7.1~7.7%。
4.权利要求1~3任一项所述含硅高熵合金涂层的制备方法,其特征在于,包括以下步骤:
将Co粉、Cr粉、Cu粉、Fe粉、Mn粉和硅铁粉混合后进行均匀化处理,得到混合粉末;
将所述混合粉末干燥,得到干燥粉末;
将所述干燥粉末在基体表面进行等离子熔覆,得到所述含硅高熵合金涂层。
5.根据权利要求4所述的制备方法,其特征在于,所述Co粉、Cr粉、Cu粉、Fe粉和Mn粉的粒度独立地为80~200目。
6.根据权利要求4所述的制备方法,其特征在于,所述硅铁粉的粒度为80~200目。
7.根据权利要求4所述的制备方法,其特征在于,所述均匀化处理的球料比为10:1,球磨机转速为100~400r/min,球磨时间为1~6h。
8.根据权利要求4所述的制备方法,其特征在于,所述干燥的温度为125~175℃,时间为1~2h。
9.根据权利要求4所述的制备方法,其特征在于,所述等离子熔覆的参数为:提前送粉-3~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流55A~85A,离子气流量为0.8~2.0N/m,保护气流量为0.5~2.0N/m,行走速度3~20mm/s,焊接层数为1~3层。
10.根据权利要求9所述的制备方法,其特征在于,所述等离子熔覆的参数为:提前送粉-2~0秒,焊接方式为连续焊接,送粉速度为5~10r/s,摆动幅度为5~10mm,弧电流60A~75A,离子气流量为0.8~1.5N/m,保护气流量为1.0~1.8N/m,行走速度3~10mm/s,焊接层数为2~3层。
CN201910716257.XA 2019-08-05 2019-08-05 一种含硅高熵合金涂层及其制备方法 Pending CN110306186A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910716257.XA CN110306186A (zh) 2019-08-05 2019-08-05 一种含硅高熵合金涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910716257.XA CN110306186A (zh) 2019-08-05 2019-08-05 一种含硅高熵合金涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN110306186A true CN110306186A (zh) 2019-10-08

Family

ID=68082964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910716257.XA Pending CN110306186A (zh) 2019-08-05 2019-08-05 一种含硅高熵合金涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110306186A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113290229A (zh) * 2021-04-09 2021-08-24 西安理工大学 一种高熵合金熔渗制备CuW/CuCr复合材料的方法
CN114293063A (zh) * 2021-12-29 2022-04-08 无锡市蓝格林金属材料科技有限公司 一种C、Si掺杂CuFeMnCoCr合金及其制备方法
CN114737102A (zh) * 2022-04-18 2022-07-12 温州大学 一种具有高硬度sigma相高熵合金涂层及其制备方法
CN114769600A (zh) * 2022-04-12 2022-07-22 哈尔滨工业大学 一种含Si高熵合金粉末及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276276A (zh) * 2013-05-08 2013-09-04 北京工业大学 一种vc增强的高熵合金涂层及其制备方法
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
CN103757661A (zh) * 2014-01-24 2014-04-30 福建工程学院 一种铝电解惰性阳极

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
CN103276276A (zh) * 2013-05-08 2013-09-04 北京工业大学 一种vc增强的高熵合金涂层及其制备方法
CN103757661A (zh) * 2014-01-24 2014-04-30 福建工程学院 一种铝电解惰性阳极

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OH,SM: "Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys", 《MATERIALS CHEMISTRY AND PHYSICS》 *
ZHANG, LS: "Preparation of CoCrFeNiCuMnSix High Entropy Alloys and their Microstructure and Properties", 《ADVANCED MATERIALS RESEARCH 》 *
王智慧: "等离子熔覆 CoCrCuFeNiMn 高熵合金组织研究", 《稀有金属材料与工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113290229A (zh) * 2021-04-09 2021-08-24 西安理工大学 一种高熵合金熔渗制备CuW/CuCr复合材料的方法
CN114293063A (zh) * 2021-12-29 2022-04-08 无锡市蓝格林金属材料科技有限公司 一种C、Si掺杂CuFeMnCoCr合金及其制备方法
CN114769600A (zh) * 2022-04-12 2022-07-22 哈尔滨工业大学 一种含Si高熵合金粉末及其制备方法
CN114769600B (zh) * 2022-04-12 2023-02-10 哈尔滨工业大学 一种含Si高熵合金粉末及其制备方法
CN114737102A (zh) * 2022-04-18 2022-07-12 温州大学 一种具有高硬度sigma相高熵合金涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN110273153A (zh) 一种含硼高熵合金涂层及其制备方法
CN110306186A (zh) 一种含硅高熵合金涂层及其制备方法
CN110241354A (zh) 一种含碳高熵合金涂层及其制备方法
CN109623195B (zh) 一种耐热耐磨堆焊用金属陶瓷药芯焊丝
CN103290404B (zh) 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
CN103255414B (zh) 一种NbC增强的高熵合金涂层及其制备方法
CN103290406B (zh) 激光熔覆原位合成陶瓷相增强Fe基熔覆层及其制备方法
CN102226279A (zh) 一种制备二硼化钛和碳化钛强化铁基耐磨复合涂层的方法
CN103276276B (zh) 一种vc增强的高熵合金涂层及其制备方法
CN106756996B (zh) 一种稀土改性激光熔覆层及其制备工艺
CN106756998A (zh) 一种钛合金表面激光熔覆镍基熔覆层及其制备工艺
CN102965665A (zh) 一种用于制备高温耐磨熔覆层的粉末材料及制备方法
CN105297004B (zh) 钨极氩弧原位合成碳化钨颗粒增强铁基熔敷层及其加工方法
CN106929846A (zh) 激光熔敷用新型AlFeCrCoNiTi合金涂层及其制备方法
CN114055015B (zh) 一种自保护明弧堆焊药芯焊丝及其应用方法
CN106319513A (zh) 一种高熵合金粉末和高硬度高熵合金涂层的制备方法
CN1929991B (zh) 耐磨材料
CN103103521A (zh) 一种强化涂层的制备方法
CN110359040A (zh) 考虑稀释率的CoCrFexNiMnMo高熵合金涂层及其制备方法
CN110977248B (zh) 耐磨药芯组合物、耐磨焊丝及其制备方法与应用
CN106271197B (zh) 铬-钛强化高碳高合金钢耐磨堆焊药芯焊丝及其制备方法
CN106141495B (zh) 一种多元硼化物掺杂改性耐磨堆焊自保护药芯焊丝及其制备方法
Wang et al. Microstructure of Fe-based alloy hardfacing coating reinforced by TiC-VC particles
CN114393346B (zh) 一种Fe2B-VB联合增强高硼铁基耐磨堆焊合金层及其制备方法
CN106894015A (zh) 氩弧熔覆高熵合金涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191008