CN110302395A - 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用 - Google Patents

一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用 Download PDF

Info

Publication number
CN110302395A
CN110302395A CN201910651093.7A CN201910651093A CN110302395A CN 110302395 A CN110302395 A CN 110302395A CN 201910651093 A CN201910651093 A CN 201910651093A CN 110302395 A CN110302395 A CN 110302395A
Authority
CN
China
Prior art keywords
peg
drug
blood coagulation
mha
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910651093.7A
Other languages
English (en)
Other versions
CN110302395B (zh
Inventor
赵剑豪
李慧茹
容建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201910651093.7A priority Critical patent/CN110302395B/zh
Publication of CN110302395A publication Critical patent/CN110302395A/zh
Application granted granted Critical
Publication of CN110302395B publication Critical patent/CN110302395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于生物医用材料及药物控制释放及凝血性领域,具体涉及一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用。该纳米粒子具有核壳结构,核层是负载药物的碳酸钙纳米粒子,壳层是由聚乙二醇和甲基丙烯酸酐修饰的透明质酸分子经紫外光照形成的交联结构。壳层的负电性、亲水性和交联结构可提高纳米粒子的血液稳定性,透明质酸与癌细胞CD‑44受体特异性结合实现主动靶向性,纳米药物载体在肿瘤酸性环境下快速释放Ca2+,向肿瘤血管迁移并诱发凝血,阻断癌细胞的糖供应,同时在透明质酸酶/pH双重刺激响应下快速释放药物,达到协同杀死癌细胞的目的,对癌症治疗有重要意义。

Description

一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其 制备方法与应用
技术领域
本发明属于生物医用材料及药物控制释放领域,具体涉及一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用。
背景技术
恶性肿瘤已严重威胁人类的生命健康,早期常用手术切除,而晚期大多数依靠化疗、放疗、免疫治疗等,但在杀死癌细胞的同时,也会杀死正常组织细胞,副作用大。近年提出的“饿死肿瘤”疗法为癌症治疗提供了新思路。浙医二院胡汛团队使用“饿死肿瘤”疗法,结合动脉插管化疗栓塞术和注射碳酸氢钠,封堵肿瘤血管,阻隔癌细胞糖供应,并去除乳酸对癌细胞缺糖凋亡的抑制作用,对晚期肝癌治疗有显著效果。但由于肿瘤血管很多,特别是那些细小的毛细血管,靠人工操作来精准注射碳酸氢钠和封堵血管难度很大。
众所周知,Ca2+作为重要的凝血因子对促进凝血起重要作用,凝血酶原激活物在Ca2+的参与下使凝血酶原转变为有活性的凝血酶加快凝血过程。因此,如果能在肿瘤部位控制Ca2+快速释放,使肿瘤血管的Ca2+浓度增加,将可以诱发肿瘤血管凝血。CaCO3,已获美国FDA认证用于临床药剂,是一种难溶于水的碱性物质(25℃下溶解度为0.15mmol/L,升高温度溶解度下降),但在酸性条件下溶解度大大增加。肿瘤组织由于癌细胞的糖酵解生成大量乳酸,呈明显酸性, CaCO3与乳酸反应生成水溶性的乳酸钙、CO2和H2O,可以快速释放出Ca2+,并中和乳酸的酸性。
纳米粒子的血液稳定性受纳米粒子的亲疏水性和荷电性影响,带正电荷的纳米粒子容易被血管中的巨噬细胞摄取,而带负电荷和电中性的纳米粒子有利于延长血液循环时间;疏水性的纳米粒子容易表面吸附各种血浆蛋白而被网状内皮系统清除,而亲水性的纳米粒子有利于延长血液循环时间。为了提高纳米粒子在肿瘤部位的聚集,纳米粒子的癌细胞靶向性设计尤为重要,纳米粒子对癌细胞的靶向包括被动靶向和主动靶向。被动靶向是依赖渗透与滞留增强(EPR)效应来靶向癌细胞,控制纳米粒子的大小是关键,而主动靶向则是由纳米粒子表面的功能配体与癌细胞表面的某些受体特异性结合来实现靶向,比被动靶向的效率要高。一些聚合物能与癌细胞表面受体特异性结合而显示主动靶向性,如透明质酸(HA) 可靶向乳腺癌细胞的CD-44、RHAMM受体,果胶可靶向肝癌细胞的ASGPR受体。
肿瘤组织有着跟正常组织很不一样的环境特征,如内涵体/溶酶体呈酸性 (pH~5.0)且含有丰富的透明质酸酶(Hyals)、谷胱甘肽(GSH)等。
但如何通过更精准、有效且方便的思路和方法来诱发肿瘤血管凝血来快速杀死癌细胞,还有待研究与突破。
发明内容
为了克服现有技术不足和缺点,本发明的首要目的在于提供一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法。
本发明的另一目的在于提供通过上述制备方法制备得到的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子。该纳米粒子以载药的碳酸钙(CaCO3)纳米粒子为核层,以聚乙二醇(PEG)和甲基丙烯酸酯(MA)修饰的透明质酸(HA) 为壳层,核层和壳层通过静电相互作用复合,壳层经紫外照射形成交联结构。HA 是人体细胞外基质的一种主要成分,具有良好的生物相容性,与癌细胞膜表面高表达的CD-44受体特异性识别,可以提高对肿瘤细胞的主动靶向性。HA交联可以提高纳米载体的血液稳定性,避免纳米载体在输送过程中发生解体,而PEG 修饰则可以延长纳米载体的血液循环时间,避免被巨噬细胞吞噬。在肿瘤部位,碳酸钙(CaCO3)遇乳酸变成Ca2+,诱发肿瘤血管凝血,从而隔断癌细胞的糖供应,达到饿死肿瘤目的。
本发明的再一目的在于提供上述可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的应用。
本发明通过以下技术方案实现:
一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,包含以下步骤:
(1)核层碳酸钙载药纳米粒子的制备
①将表面活性剂、助表面活性剂和油相混合得到油相体系,然后往油相体系中先后加入可溶性钙盐溶液和可溶性碳酸盐溶液进行反应,离心,洗涤,干燥后得到碳酸钙纳米粒子;所述的可溶性钙盐溶液和可溶性碳酸盐溶液组成水相体系;
②将步骤①中制得的碳酸钙纳米粒子分散在水中,然后加入药物并使之均匀分散,离心除去未负载的药物,干燥后得到碳酸钙载药纳米粒子Drug@CaCO3 NPs;
(2)壳层透明质酸分子的聚乙二醇和甲基丙烯酸酐修饰
①将透明质酸(HA)溶于水中,加入EDC·HCl和NHS,活化HA分子链上羧基,加入甲氧基聚乙二醇胺(CH3O-PEG-NH2)使其氨基与HA分子链上的羧基进行反应,反应完成后透析,干燥后得到透明质酸-聚乙二醇聚合物(HA-PEG);
②将步骤①中制得的HA-PEG溶于水中得到HA-PEG水溶液,加入甲基丙酸烯酐(MA),调节pH为8~9,在低温下避光反应后在水中避光透析,干燥后得到甲基丙烯酯化的透明质酸-聚二乙醇衍生物(mHA-PEG);
(3)核壳结构载药纳米粒子的制备
将步骤(1)中制得的Drug@CaCO3NPs分散于水中得到分散液;将步骤(2) 中制得的mHA-PEG配成水溶液,将Drug@CaCO3NPs分散液加入到mHA-PEG 水溶液中,避光搅拌,加入光引发剂,紫外光照进行交联,超声振荡后离心去除残留的mHA-PEG,干燥后制得核壳结构的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子mHA-PEG/Drug@CaCO3NPs。
步骤(1)①中所述的表面活性剂优选为十二烷基溴化铵(CTAB),所述的 CTAB在油相体系中的浓度优选为75mg/mL。
步骤(1)①中所述的助表面活性剂优选为正丁醇。
步骤(1)①中所述的油相优选为正己烷。
所述的正丁醇与正己烷的体积比优选为5:27。
步骤(1)①中所述混合得到油相体系的具体操作优选为在40℃下恒温搅拌至完全溶解;所述的恒温搅拌的时间优选为0.5h。
步骤(1)①中所述油相体系和水相体系的体积比优选为(32:1)~(320:1);
步骤(1)①中制得的碳酸钙纳米粒子的粒径大小为50~300nm;
步骤(1)①中所述的可溶性钙盐优选为氯化钙,所述的可溶性碳酸盐优选为碳酸钠。
步骤(1)①中所述的可溶性钙盐溶液和可溶性碳酸盐溶液优选按钙离子与碳酸根离子的摩尔比为1:1的配比进行加入。
步骤(1)①中可溶性钙盐溶液和/或可溶性碳酸盐水溶液的浓度优选为2 mol/L。
步骤(1)①中所述的反应优选为搅拌反应;反应的时间优选为12h。
步骤(1)①中所述的洗涤优选为用分别用正己烷、乙醇洗涤三次。
步骤(1)①中所述的干燥优选为烘干。
步骤(1)②中所述的药物优选为抗肿瘤药物,所述的抗肿瘤药物优选为阿霉素(DOX)、拓扑替康(TPT)、紫杉醇(PTX)或其药用盐中至少一种。
步骤(1)②中药物在溶液中的浓度优选为2mg/mL;碳酸钙纳米粒子在分散液中的浓度优选为1~3mg/mL。
步骤(1)②中所述的药物与碳酸钙纳米粒子的质量比优选为(2:1)~(0.5:1)。
步骤(1)②中所述Drug@CaCO3NPs的载药量为20%~50%;粒径大小为 100~450nm。
步骤(1)②中所述加入药物优选为滴入药物水溶液。
步骤(1)②中所述均匀分散优选通过振荡实现,所述的振荡的时间优选为 24h。
步骤(1)②中所述的除去未负载的药物优选通过离心进行。
步骤(2)①中所述的HA羧基与EDC·HCl、NHS的摩尔比优选为1:3:3。
步骤(2)①中所述的HA的重均分子量优选为2×104~2×105g/mol。
步骤(2)①中HA和/或CH3O-PEG-NH2的浓度优选为5mg/mL。
步骤(2)①中HA和CH3O-PEG-NH2的摩尔比投料比优选为(1:1)~(3:1)。
步骤(2)①中所述的HA-PEG的PEG在HA高分子链上的取代度为10~30%。
步骤(2)①中所述活化羧基优选在pH5~6下进行;优选用0.1M HCl调节。
步骤(2)①中所述的活化HA分子链上羧基的时间优选为3h。
步骤(2)①中所述的氨基与羧基进行反应优选在pH接近中性的条件下进行,优选为6~7,优选用0.1M NaOH调节。
步骤(2)①中所述反应优选为室温反应,所述的反应的时间优选为24h。
步骤(2)①中所述的透析优选为用水透析,透析的时间优选为7天。
步骤(2)②中所述HA-PEG水溶液的浓度优选为10mg/mL。
步骤(2)②中HA-PEG和MA的摩尔投料比优选为(1:1)~(1:6)。
步骤(2)②中所述的mHA-PEG的MA在HA-PEG分子链上的取代度为8~ 25%。
步骤(2)②中所述的调节pH为8~9优选为用0.1M NaOH调节。
步骤(2)②中所述的避光反应优选在4℃下进行,所述的避光反应的时间优选为24h。
步骤(2)②中所述的避光透析的时间优选为7天。
步骤(3)中Drug@CaCO3NPs分散液的浓度优选为2mg/mL。
步骤(3)中mHA-PEG水溶液的浓度优选为2mg/mL;
步骤(3)可根据需要调整Drug@CaCO3NPs与mHA-PEG的质量比来控制涂层的量;所述的Drug@CaCO3NPs和mHA-PEG质量比优选为(4:1)~(1:4)。
步骤(3)中光引发剂优选为Irgacure 2959;光引发剂与mHA-PEG的质量比优选为0.1%~0.5%。
步骤(3)中所述的将Drug@CaCO3NPs分散液加入到mHA-PEG水溶液中优选为在搅拌条件下将Drug@CaCO3NPs分散液缓慢滴加到mHA-PEG水溶液中。
步骤(3)中所述的避光搅拌的时间优选为24h。
步骤(3)中所述的紫外光照的具体操作为在360nm下紫外光照5min。
步骤(3)中所述的超声振荡的时间优选为5min。
步骤(1)、(2)或(3)中所述的干燥优选为冷冻干燥。
所述的水优选为去离子水、蒸馏水或超纯水。
一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子,通过上述制备方法制备得到。
所述的可促肿瘤凝血和酶/pH双重响应性释药纳米粒子 mHA-PEG/Drug@CaCO3NPs的粒径大小为150~600nm。
所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子在生物医用材料领域或制备抗肿瘤药物中的应用;
所述的肿瘤包括乳腺癌、膀胱癌、前列腺癌、肺癌、子宫内膜癌、结肠癌、静脉平滑肌瘤、淋巴瘤。
本发明的原理在于:本发明借鉴“饿死肿瘤”思路,设计并构建一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子。
本发明通过纳米载体负载CaCO3并靶向输送到肿瘤部位,利用肿瘤酸性环境控制Ca2+快速释放,使肿瘤血管的Ca2+浓度升高,将能诱发肿瘤血管凝血,封堵血管,同时CaCO3还能去除肿瘤残留乳酸,消除乳酸对癌细胞缺糖死亡的抑制作用。需要指出的是,人体正常的血钙浓度范围是8.6~10.6mg/dL,即2.15~2.65 mmol/L,远大于CaCO3的水溶解度0.15mmol/L,因而可以预见CaCO3在静脉输送过程中将不会对正常血液造成影响而引起生物安全性问题。此外,随着肿瘤的不断治愈,去乳酸化后,肿瘤环境pH的升高会减缓甚至中止后期纳米药物载体的Ca2+释放,从而避免Ca2+持续过度释放可能引起血液血钙浓度过高而导致精神神经症状和心血管系统症状等风险。
该纳米粒子具有核壳结构,核层是负载药物的碳酸钙纳米粒子,壳层是由聚乙二醇和甲基丙烯酸酐修饰的透明质酸分子经紫外光照形成的交联结构。壳层的负电性、亲水性和交联结构可提高纳米粒子的血液稳定性,透明质酸与癌细胞 CD-44受体特异性结合实现主动靶向性,纳米药物载体在肿瘤酸性环境下快速释放Ca2+,向肿瘤血管迁移并诱发凝血,阻断癌细胞的糖供应,同时在透明质酸酶 /pH双重刺激响应下快速释放药物,达到协同杀死癌细胞的目的,对癌症治疗有重要意义。在促肿瘤凝血基础上,当载药纳米粒子被癌细胞吞噬后,利用环境刺激响应性释药,控制药物快速释放可以加快癌细胞的死亡。
所述的纳米粒子在血液循环中稳定、对癌细胞有主动靶向性、可控药物快速释放的载药纳米粒子,经给药后(如静脉注射)靶向到肿瘤部位后,借助肿瘤环境刺激作用诱发肿瘤血管凝血,堵塞血管,阻断肿瘤的糖供应,同时释放碱性物质,将乳酸分解,消除乳酸对癌细胞缺糖凋亡的抑制作用,而纳米药物载体进入癌细胞后在微环境刺激作用下释放药物,通过协同作用来快速杀死癌细胞,具有重要的科学意义和良好的应用前景。
本发明与现有技术相比,具有以下优点:
(1)本发明制备得到的纳米药物载体在肿瘤的酸性环境下通过化学反应在肿瘤部位释放Ca2+,促使肿瘤血管凝血,阻塞癌细胞的营养供应,同时有效去除乳酸对癌细胞缺糖凋亡的抑制作用,达到饿死癌细胞的目的,通过促肿瘤凝血、去乳酸化和透明质酸酶/pH响应释药三种因素的协同作用促使癌细胞快速凋亡。与现有技术采用动脉插管化疗栓塞术封堵肿瘤血管并注射碳酸氢钠来中和肿瘤乳酸的思路相比,本发明更易操作、实现。
(2)本发明制备得到的纳米药物载体具有核壳结构,壳层通过PEG修饰和化学交联使得纳米粒子在血液循环中稳定性更高,核层载药纳米粒子具有透明质酸酶和pH响应性,可以在癌细胞内快速释放药物,同时纳米药物载体还具有癌细胞的主动靶向性,可以提高纳米药物载体在肿瘤部位的聚集,提高给药效率,降低毒副作用,协同饿死肿瘤,快速杀死癌细胞。
(3)本发明通过创新的制备方法,成功得到粒径可控的碳酸钙纳米粒子,并进一步成功地获得将酶和pH双重响应性与在目标区域释放Ca2+、释放药物有机地结合的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子,制备方法简单易行,工艺可控。
附图说明
图1是可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的结构示意图。
图2是实施例1所得的碳酸钙的X射线衍射结果图。
图3是实施例1所得的碳酸钙的透射电镜图。
图4是实施例1所得的碳酸钙载药纳米粒子的粒径大小分布图。
图5是实施例1所得的聚乙二醇及甲基丙烯酸酐修饰透明质酸的核磁共振氢谱图。
图6是实施例1所得的核壳结构载药纳米粒子的粒径大小和分布图。
图7是实施例1所得的核壳结构载药纳米粒子的透射电镜图。
图8是实施例1所得的核壳结构载药纳米粒子的Hyals/pH双重刺激响应药物释放曲线图。
图9是实施例1所得的核壳结构载药纳米粒子对MCF-7和MDA-MB-231两种乳腺癌细胞的细胞毒性图。
图10是实施例1所得的核壳结构载药纳米粒子的凝血试验历时9h时的结果照片图。
图11是实施例1所得的核壳结构载药纳米粒子的钙离子释放曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)核层碳酸钙载药纳米粒子的制备
①将2.046g表面活性剂十二烷基溴化铵(CTAB)溶解于5mL助表面活性剂正丁醇和27mL油相正己烷混合,在40℃下恒温搅拌0.5h,完全溶解后形成油相,然后往油相中分别加入0.1mL的2mol/L氯化钙水溶液和0.1mL的2mol/L碳酸钠水溶液(油相和水相体积比为160:1),搅拌反应12h,离心后分别用正己烷和乙醇洗涤三遍,烘干后得到碳酸钙纳米粒子。碳酸钙纳米粒子的X射线衍射仪图谱如图2所示,可以证明制备得到的碳酸钙属于方解石型。碳酸钙纳米粒子的透射电镜如图3所示,结果显示圆球形,而不是传统的长方体形,可能是受到乳化体系影响聚集成球形的缘故,粒子平均粒径为80nm,电位为+2mV。
②取4mg步骤①中制得的碳酸钙纳米粒子分散于2mL的去离子水中,取4mg 阿霉素盐酸盐溶于2mL去离子水中,然后在超声条件下将药物水溶液缓慢滴入碳酸钙纳米粒子悬液中,再置于摇床振荡24h,离心,用去离子水洗涤3次,冷冻干燥得到碳酸钙载药纳米粒子DOX@CaCO3NPs。动态激光散射测得DOX@CaCO3 NPs的粒径大小为167nm,如图4所示。紫外光谱法测得载药量为29%。
(2)壳层透明质酸分子的聚乙二醇和甲基丙烯酸酐修饰
①取150mg HA(重均分子量,1×105g/mol)溶于30mL去离子水,先后加入222mgEDC·HCl和133mg的NHS(-COOH(HA):EDC:NHS=1:3:3,摩尔比),用0.1M HCl调节pH~5,搅拌活化1h后,加入930mg甲氧基聚乙二醇胺 (CH3O-PEG-NH2,其中PEG链的分子量5000)溶液(-COOH(HA):-NH2(PEG) =2:1,摩尔比),用0.1M NaOH调节pH约为6,室温下反应24h,然后将溶液转移至透析袋(MWCO:8000~14000),去离子水透析7d,冷冻干燥得到透明质酸-聚乙二醇聚合物(HA-PEG)产物。
②称取100mg的HA-PEG溶解在10mL去离子水中,滴加0.24mL甲基丙酸烯酐(MA)(HA-PEG:MA=1:3,摩尔比),并用0.1M NaOH调pH为8~9,在4℃下避光搅拌24h。将反应完后的溶液转移至透析袋(MWCO:8000~14000),在去离子水中避光透析7d,冷冻干燥得到mHA-PEG。1H NMR谱图测得PEG的取代度为16%,MA的取代度为18%,如图5所示。
(3)核壳结构载药纳米粒子的制备
分别用去离子水配制浓度为2mg/mL的DOX@CaCO3NPs纳米粒子悬浮液和浓度为2mg/mL的mHA-PEG溶液。在磁力搅拌下把DOX@CaCO3NPs悬浮液缓慢滴加进mHA-PEG溶液(质量比,DOX@CaCO3NPs:mHA-PEG=1:1),室温下避光搅拌24h,加入光引发剂Irgacure 2959(质量比,Irgacure 2959: mHA-PEG=0.3%),然后放置在紫外灯下(波长360nm)照射5min,超声振荡5 min,离心去除残留的mHA-PEG,收集纳米粒子悬浮液,冷冻干燥后得到核壳结构纳米药物载体mHA-PEG/DOX@CaCO3NPs。动态激光散射测得纳米粒子的平均粒径为314.7nm,如图6所示,电位为-8.9mV,说明CaCO3纳米粒子表面已涂上mHA-PEG。透射电镜图如图7所示,结果显示纳米粒子呈球形的核壳结构。
将步骤(3)制得的可促肿瘤凝血的酶/pH双重响应性释药纳米粒子 mHA-PEG/DOX@CaCO3NPs置于模拟癌细胞内部环境,即含有Hyals (Sigma-Aldrich产品,货号:H3506-500MG,购买来源:阿拉丁)(150unit/mL)、 pH5的生理盐水溶液中,37℃下进行DOX释放实验,并用可促肿瘤凝血的酶/pH 双重响应性释药纳米粒子分别在pH7.4、pH6.8的生理盐水溶液中的释放作为对照,药物累积释放曲线如图8所示。结果显示,在Hyals/pH双重刺激条件下,核壳结构载药纳米粒子快速释放药物,在48h时的释放量超过78%,而在两个对照组中均只释放了10%,药物在模拟癌细胞内部环境刺激条件下的快速释放药物有利于有效杀死癌细胞。CCK-8法测得mHA-PEG/DOX@CaCO3NPs纳米药物载体对MCF-7(货号:APN20190412,商家信息:深圳艾普诺生物医疗科技有限公司,购自喀斯玛商城)和MDA-MB-231两种乳腺癌细胞(货号:CX0201,商家信息:武汉博士德生物工程有限公司,购自喀斯玛商城)的细胞毒性如图9所示。由图可知,mHA-PEG/DOX@CaCO3NPs对MCF-7和MDA-MB-231两种癌细胞的细胞毒性与纯药物相似,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
为了证实本发明的mHA-PEG/DOX@CaCO3NPs纳米药物载体在模拟肿瘤酸性环境中有促凝血功能,进行如下研究:实验血液均来自广东省医学动物实验中心采购的成年雄性新西兰大白兔,取自实验动物心脏全血,使用柠檬酸钠含量109 mmol/mL的抗凝管收集并保存在4℃冰箱里(使用期限为一周)。
将步骤(3)所制得的mHA-PEG/DOX@CaCO3NPs在不同pH值的血液中分散,浓度为1.0mg/mL,记录其凝血时间,并以生理盐水、mHA-PEG、DOX@CaCO3NPs 作为对照,如表1和图10(实验历时9h时的结果照片)所示,表1是所得的核壳结构载药纳米粒子的凝血时间分析。
表1
——表示在9h内未出现凝血,*表示未做。
结果显示,在pH7.4、pH6.8、pH5.0条件下,生理盐水和mHA-PEG均不凝血,DOX@CaCO3NPs和mHA-PEG/DOX@CaCO3NPs在pH7.4不凝血,但在pH6.8 和pH5.0条件下凝血,并且pH越低凝血时间越短,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中CaCO3变成Ca2+引起凝血。mHA-PEG/DOX@CaCO3NPs钙离子释放曲线如图11所示,在pH5.0+Hyals条件下Ca2+释放量更快,因而凝血时间更短。
实施例2
(1)核层碳酸钙载药纳米粒子的制备
①将2.046g表面活性剂十二烷基溴化铵(CTAB)溶解于5mL助表面活性剂正丁醇和27mL油相正己烷混合,在40℃下恒温搅拌0.5h,完全溶解后形成油相,然后往油相中分别加入0.5mL的2mol/L氯化钙水溶液和0.5mL的2mol/L 碳酸钠水溶液(油相和水相体积比为32:1),搅拌反应12h,离心后分别用正己烷和乙醇洗涤三遍,烘干后得到碳酸钙纳米粒子。碳酸钙纳米粒子的透射电镜结果显示圆球形,粒子平均粒径为300nm,电位为+8mV。
②取6mg步骤①中制得的碳酸钙纳米粒子分散于2mL的去离子水中,取4 mg盐酸拓扑替康(TPT)溶于2mL去离子水中,然后在超声条件下将药物水溶液缓慢滴入碳酸钙纳米粒子悬液中,再置于摇床振荡24h,离心,用去离子水洗涤3次,冷冻干燥得到碳酸钙载药纳米粒子TPT@CaCO3NPs。动态激光散射测得TPT@CaCO3NPs的粒径大小为450nm,紫外光谱法测得载药量为20%。
(2)壳层透明质酸分子的聚乙二醇和甲基丙烯酸酐修饰
①取150mg HA(重均分子量,2×105g/mol)溶于30mL去离子水中,先后加入222mgEDC·HCl和133mgNHS(-COOH(HA):EDC:NHS=1:3:3,摩尔比),用0.1M HCl调节pH~5,搅拌活化1h后,加入1851mg甲氧基聚乙二醇胺(PEG 的分子量5000)溶液(-COOH(HA):-NH2(PEG)=1:1,摩尔比),用0.1M NaOH 调节pH~6,室温下反应24h,然后将溶液转移至透析袋(MWCO:8000~14000),去离子水透析7d,冷冻干燥得到透明质酸-聚乙二醇聚合物(HA-PEG)产物。
②称取100mg的HA-PEG溶解在10mL去离子水中,滴加0.08mL甲基丙酸烯酐(MA)(HA-PEG:MA=1:1,摩尔比),并用0.1M NaOH调pH为8~9,在4℃下避光搅拌24h。将反应完后的溶液转移至透析袋(MWCO:8000~14000),在去离子水中避光透析7d,冷冻干燥得到mHA-PEG。1H NMR谱图测得PEG 的取代度为30%,MA的取代度为8%。
(3)核壳结构载药纳米粒子的制备
分别用去离子水配制浓度为2mg/mL的TPT@CaCO3NPs纳米粒子悬浮液和浓度为2mg/mL的mHA-PEG溶液。在磁力搅拌下把TPT@CaCO3NPs悬浮液缓慢滴加进mHA-PEG溶液(质量比,TPT@CaCO3NPs:mHA-PEG=1:4),室温下避光搅拌24h,加入光引发剂Irgacure 2959(质量比,Irgacure 2959:mHA-PEG=0.5%),然后放置在紫外灯下照射5min,超声振荡5min,离心去除残留的mHA-PEG,收集纳米粒子悬浮液,冷冻干燥后得到核壳结构纳米药物载体 mHA-PEG/TPT@CaCO3NPs。动态激光散射测得纳米粒子的平均粒径为600nm,电位为-10mV,说明CaCO3纳米粒子表面已涂上mHA-PEG。透射电镜图结果显示纳米粒子呈球形的核壳结构。
将步骤(3)制得的可促肿瘤凝血的酶/pH双重响应性释药纳米粒子 mHA-PEG/TPT@CaCO3NPs置于模拟癌细胞内部环境,实验组设置同实施例1,即含有Hyals(150unit/mL)、pH5的溶液中,37℃下进行TPT释放实验,并用可促肿瘤凝血的酶/pH双重响应性释药纳米粒子在pH7.4、pH6.8的溶液中的释放作为对照。结果显示,在Hyals/pH双重刺激条件下,核壳结构载药纳米粒子快速释放药物,在48h时的释放量超过75%,而两个对照组均只释放了5%,药物在模拟癌细胞内部环境刺激条件下的快速释放药物有利于有效杀死癌细胞。CCK-8 法测得mHA-PEG/TPT@CaCO3NPs纳米药物载体对MCF-7和MDA-MB-231两种乳腺癌细胞的细胞毒性与纯药物相似,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
在pH7.4、pH6.8、pH5.0条件下,生理盐水和mHA-PEG均不凝血, TPT@CaCO3NPs和mHA-PEG/TPT@CaCO3NPs在pH7.4不凝血,但在pH6.8和 pH5.0条件下凝血,并且pH越低凝血时间越短,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中CaCO3变成Ca2+引起凝血。mHA-PEG/TPT@CaCO3NPs钙离子释放曲线显示,在pH5.0+Hyals条件下Ca2+释放量更快,因而凝血时间更短。
实施例3
(1)核层碳酸钙载药纳米粒子的制备
①将2.046g表面活性剂十二烷基溴化铵(CTAB)溶解于5mL助表面活性剂正丁醇和27mL油相正己烷混合,在40℃下恒温搅拌0.5h,完全溶解后形成油相,然后往油相中分别加入0.05mL的2mol/L氯化钙水溶液和0.05mL的2mol/L碳酸钠水溶液(油相和水相体积比为320:1),搅拌反应12h,离心后分别用正己烷和乙醇洗涤三遍,烘干后得到碳酸钙纳米粒子。碳酸钙纳米粒子的透射电镜结果显示圆球形,粒子平均粒径为50nm,电位为+5mV。
②取2mg步骤①中制得的碳酸钙纳米粒子分散于2mL的去离子水中,取4mg 紫杉醇(PTX)溶于2mL去离子水中,然后在超声条件下将药物水溶液缓慢滴入碳酸钙纳米粒子悬液中,再置于摇床振荡24h,离心,用去离子水洗涤3次,冷冻干燥得到碳酸钙载药纳米粒子PTX@CaCO3NPs。动态激光散射测得紫杉醇 @CaCO3NPs的粒径大小为100nm,紫外光谱法测得载药量为50%。
(2)壳层透明质酸分子的聚乙二醇和甲基丙烯酸酐修饰
①取150mg HA(重均分子量,2×104g/mol)溶于30mL去离子水中,先后加入222mgEDC·HCl和133mgNHS(-COOH(HA):EDC:NHS=1:3:3,摩尔比),用0.1M HCl调节pH~5,搅拌活化1h后,加入616mg甲氧基聚乙二醇胺(PEG 的分子量5000)溶液(-COOH(HA):-NH2(PEG)=3:1,摩尔比),用0.1MNaOH 调节pH~6,室温下反应24h,然后将溶液转移至透析袋(MWCO:8000~14000),去离子水透析7d,冷冻干燥得到透明质酸-聚乙二醇聚合物(HA-PEG)产物。
②称取100mg的HA-PEG溶解在10mL去离子水中,滴加0.48mL甲基丙酸烯酐(MA)(HA-PEG:MA=1:6,摩尔比),并用0.1M NaOH调pH为8~9,在4℃下避光搅拌24h。将反应完后的溶液转移至透析袋(MWCO:8000~14000),在去离子水中避光透析7d,冷冻干燥得到mHA-PEG。1H NMR谱图测得PEG 的取代度为10%,MA的取代度为25%。
(3)核壳结构载药纳米粒子的制备
分别用去离子水配制浓度为2mg/mL的PTX@CaCO3NPs悬浮液和浓度为2 mg/mL的mHA-PEG溶液。在磁力搅拌下把PTX@CaCO3NPs悬浮液缓慢滴加进mHA-PEG溶液(质量比,紫杉醇@CaCO3NPs:mHA-PEG=4:1),室温下避光搅拌24h,加入光引发剂Irgacure 2959(质量比,Irgacure 2959:mHA-PEG=0.1%),然后放置在紫外灯下照射5min,超声振荡5min,离心去除残留的mHA-PEG,收集纳米粒子悬浮液,冷冻干燥后得到核壳结构纳米药物载体 mHA-PEG/PTX@CaCO3NPs。动态激光散射测得纳米粒子的平均粒径为150nm,电位-7.8mV,透射电镜图结果显示纳米粒子呈球形的核壳结构。
将步骤(3)制得的可促肿瘤凝血的酶/pH双重响应性释药纳米粒子 mHA-PEG/PTX@CaCO3NPs置于模拟癌细胞内部环境,即含有Hyals(150 unit/mL)、pH5的溶液中,37℃下进行PTX释放实验,并用可促肿瘤凝血的酶/pH 双重响应性释药纳米粒子在pH7.4、pH6.8的溶液中的释放作为对照。结果显示,在Hyals/pH双重刺激条件下,核壳结构载药纳米粒子快速释放药物,在48h时的释放量超过70%,而两个对照组均只释放了8%,药物在模拟癌细胞内部环境刺激条件下的快速释放药物有利于有效杀死癌细胞。CCK-8法测得 mHA-PEG/PTX@CaCO3NPs纳米药物载体对MCF-7和MDA-MB-231两种乳腺癌细胞的细胞毒性与纯药物相似,说明本发明制备的具有癌细胞主动靶向性、血液稳定性和癌细胞内响应性快速释药的纳米药物载体仍然可以像纯药物一样高效快速杀死癌细胞。
在pH7.4、pH6.8、pH5.0条件下,生理盐水和mHA-PEG均不凝血, PTX@CaCO3NPs和mHA-PEG/PTX@CaCO3NPs在pH7.4不凝血,但在pH6.8 和pH5.0条件下凝血,并且pH越低凝血时间越短,说明在静脉注射后的血液循环中,纳米粒子不会引起正常血管凝血,但随着pH的降低,在肿瘤酸性的微环境中CaCO3变成Ca2+引起凝血。mHA-PEG/PTX@CaCO3NPs钙离子释放曲线显示,在pH5.0+Hyals条件下Ca2+释放量更快,因而凝血时间更短。
对比例核层碳酸钙载药纳米粒子的制备
将2.046g表面活性剂十二烷基溴化铵(CTAB)溶解于5mL助表面活性剂正丁醇和27mL油相正己烷混合,在40℃下恒温搅拌0.5h,完全溶解后形成油相。再加入0.1mL的2mol/L氯化钙溶液,使之与油相混合,然后加入0.4mL 的1mol/L氢氧化钠溶液,生成氢氧化钙,再通CO2,但很容易就会出现沉淀,由于氢氧化钙固体和二氧化碳气体之间的反应量无法控制,无法得不到粒径可控的碳酸钙纳米粒子。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于,包含以下步骤:
(1)核层碳酸钙载药纳米粒子的制备
①将表面活性剂、助表面活性剂和油相混合得到油相体系,然后往油相体系中先后加入可溶性钙盐溶液和可溶性碳酸盐溶液进行反应,离心,洗涤,干燥后得到碳酸钙纳米粒子;所述的可溶性钙盐溶液和可溶性碳酸盐溶液组成水相体系;
②将步骤①中制得的碳酸钙纳米粒子分散在水中,然后加入药物并使之均匀分散,离心除去未负载的药物,干燥后得到碳酸钙载药纳米粒子Drug@CaCO3NPs;
(2)壳层透明质酸分子的聚乙二醇和甲基丙烯酸酐修饰
①将透明质酸溶于水中,加入EDC·HCl和NHS,活化HA分子链上羧基,加入甲氧基聚乙二醇胺CH3O-PEG-NH2使其氨基与HA分子链上的羧基进行反应,反应完成后透析,干燥后得到透明质酸-聚乙二醇聚合物HA-PEG;
②将步骤①中制得的HA-PEG溶于水中得到HA-PEG水溶液,加入甲基丙酸烯酐MA,调节pH为8~9,在低温下避光反应后在水中避光透析,干燥后得到甲基丙烯酯化的透明质酸-聚二乙醇衍生物mHA-PEG;
(3)核壳结构载药纳米粒子的制备
将步骤(1)中制得的Drug@CaCO3 NPs分散于水中得到分散液;将步骤(2)中制得的mHA-PEG配成水溶液,将Drug@CaCO3 NPs分散液加入到mHA-PEG水溶液中,避光搅拌,加入光引发剂,紫外光照进行交联,超声振荡后离心去除残留的mHA-PEG,干燥后制得核壳结构的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子mHA-PEG/Drug@CaCO3 NPs。
2.根据权利要求1所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(1)①中制得的碳酸钙纳米粒子的粒径大小为50~300nm;
步骤(1)②中所述的药物与碳酸钙纳米粒子的质量比为(2:1)~(0.5:1);
步骤(1)②中所述的药物为抗肿瘤药物;
所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子mHA-PEG/Drug@CaCO3 NPs的粒径大小为150~600nm。
3.根据权利要求1所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(1)②中所述Drug@CaCO3 NPs的载药量为20%~50%;粒径大小为100~450nm;
步骤(2)①中所述的HA-PEG的PEG在HA高分子链上的取代度为10~30%;
步骤(2)②中HA-PEG和MA的摩尔投料比为(1:1)~(1:6);
步骤(2)②中所述的mHA-PEG的MA在HA-PEG分子链上的取代度为8~25%;
步骤(3)中所述的Drug@CaCO3 NPs和mHA-PEG质量比为(4:1)~(1:4)。
4.根据权利要求1所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(1)①中所述的可溶性钙盐为氯化钙,所述的可溶性碳酸盐为碳酸钠;
步骤(1)①中所述的可溶性钙盐溶液和可溶性碳酸盐溶液按钙离子与碳酸根离子的摩尔比为1:1的配比进行加入;
步骤(1)①中所述油相体系和水相体系的体积比为(32:1)~(320:1);
步骤(1)②中所述的药物为阿霉素、拓扑替康、紫杉醇或其药用盐中至少一种;
步骤(2)①中HA和CH3O-PEG-NH2的摩尔比投料比为(1:1)~(3:1)。
5.根据权利要求1所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(1)①中可溶性钙盐溶液和/或可溶性碳酸盐水溶液的浓度为2mol/L;
步骤(1)①中所述的表面活性剂为十二烷基溴化铵,所述的助表面活性剂为正丁醇,所述的油相为正己烷;
步骤(1)②中所述加入药物为滴入药物水溶液;
步骤(1)②中药物在溶液中的浓度为2mg/mL;碳酸钙纳米粒子在分散液中的浓度为1~3mg/mL;
步骤(2)①中所述的HA的重均分子量为2×104~2×105g/mol;
步骤(3)中所述的光引发剂与mHA-PEG的质量比为0.1%~0.5%。
6.根据权利要求5所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(1)①中所述混合得到油相体系的具体操作为在40℃下恒温搅拌至完全溶解;
步骤(2)①中所述活化羧基在pH5~6下进行;
步骤(3)中光引发剂为Irgacure 2959;
步骤(3)中所述的将Drug@CaCO3 NPs分散液加入到mHA-PEG水溶液中为在搅拌条件下将Drug@CaCO3 NPs分散液缓慢滴加到mHA-PEG水溶液中;
所述的正丁醇与正己烷的体积比为5:27。
7.根据权利要求1所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法,其特征在于:
步骤(2)①中所述的氨基与羧基进行反应在pH中性的条件下进行;
步骤(2)①中所述反应为室温反应,所述的反应的时间为24h;
步骤(2)①中所述的HA羧基与EDC·HCl、NHS的摩尔比为1:3:3;
步骤(2)①中HA和/或CH3O-PEG-NH2的浓度为5mg/mL;
步骤(2)②中所述HA-PEG水溶液的浓度为10mg/mL;
步骤(2)②中所述的避光反应在4℃进行,所述的避光反应的时间为24h;
步骤(3)中Drug@CaCO3 NPs分散液的浓度为2mg/mL;
步骤(3)中mHA-PEG水溶液的浓度为2mg/mL;
步骤(3)中所述的紫外光照的具体操作为在360nm下紫外光照5min。
8.一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子,其特征在于:
通过权利要求1~7任一项所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子的制备方法制得。
9.权利要求8所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子在生物医用材料领域或制备抗肿瘤药物中的应用。
10.根据权利要求9所述的可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子在生物医用材料领域或制备抗肿瘤药物中的应用,其特征在于:
所述的肿瘤包括乳腺癌、膀胱癌、前列腺癌、肺癌、子宫内膜癌、结肠癌、静脉平滑肌瘤、淋巴瘤。
CN201910651093.7A 2019-07-18 2019-07-18 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用 Active CN110302395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910651093.7A CN110302395B (zh) 2019-07-18 2019-07-18 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910651093.7A CN110302395B (zh) 2019-07-18 2019-07-18 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110302395A true CN110302395A (zh) 2019-10-08
CN110302395B CN110302395B (zh) 2023-02-17

Family

ID=68080720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910651093.7A Active CN110302395B (zh) 2019-07-18 2019-07-18 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110302395B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113456804A (zh) * 2021-05-28 2021-10-01 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN118005912A (zh) * 2024-04-10 2024-05-10 四川大学 一种聚氨基酸杂化纳米材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302400A1 (en) * 2012-04-04 2013-11-14 Daniel C. Maneval Combination therapy with an anti-hyaluronan agent and therapeutic agent
CN105534957A (zh) * 2016-02-26 2016-05-04 暨南大学 一种还原/酶/pH多重响应性释药的核壳结构纳米粒子
CN106362172A (zh) * 2016-08-26 2017-02-01 郑州大学 透明质酸修饰的介孔碳酸钙药物组合物的制备方法及应用
US20190091163A1 (en) * 2016-04-26 2019-03-28 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nano-sized drug delivery structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302400A1 (en) * 2012-04-04 2013-11-14 Daniel C. Maneval Combination therapy with an anti-hyaluronan agent and therapeutic agent
CN105534957A (zh) * 2016-02-26 2016-05-04 暨南大学 一种还原/酶/pH多重响应性释药的核壳结构纳米粒子
US20190091163A1 (en) * 2016-04-26 2019-03-28 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nano-sized drug delivery structure
CN106362172A (zh) * 2016-08-26 2017-02-01 郑州大学 透明质酸修饰的介孔碳酸钙药物组合物的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YI ZHANG等: "Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas", 《NANO RESEARCH》 *
黎华强等: "乳腺肿瘤微环境响应性多糖基核壳结构纳米药物载体研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113456804A (zh) * 2021-05-28 2021-10-01 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN113456804B (zh) * 2021-05-28 2023-02-10 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN118005912A (zh) * 2024-04-10 2024-05-10 四川大学 一种聚氨基酸杂化纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110302395B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
Gulzar et al. Stimuli responsive drug delivery application of polymer and silica in biomedicine
Gupta et al. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance
Chen et al. Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery
CN105534957B (zh) 一种还原/酶/pH多重响应性释药的核壳结构纳米粒子
Cimen et al. Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment
Chen et al. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo
Kim et al. Nanosized ultrasound enhanced-contrast agent for in vivo tumor imaging via intravenous injection
Song et al. pH-responsive oxygen nanobubbles for spontaneous oxygen delivery in hypoxic tumors
CN106139144A (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金‑碳纳米球及其制备方法与应用
Zhang et al. Hierarchical microparticles delivering oxaliplatin and NLG919 nanoprodrugs for local chemo-immunotherapy
Wang et al. A versatile gas-generator promoting drug release and oxygen replenishment for amplifying photodynamic-chemotherapy synergetic anti-tumor effects
EP2978423A1 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Yang et al. Chem-inspired synthesis of injectable metal–organic hydrogels for programmable drug carriers, hemostasis and synergistic cancer treatment
Zhang et al. Enhanced postoperative cancer therapy by iron-based hydrogels
CN110302395A (zh) 一种可促肿瘤凝血和酶/pH双重响应性释药的纳米粒子及其制备方法与应用
CN105056244B (zh) 一种介孔门控型的Fe2+供体与Fe2+依赖性抗肿瘤药物共转运体系及其制备方法与应用
Li et al. Multifunctional size-expandable nanomedicines enhance tumor accumulation and penetration for synergistic chemo-photothermal therapy
Yao et al. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy
CN105663033B (zh) 瘤内注射用原位温敏聚合物凝胶纳米组合物及应用
Tian et al. Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer
Tariq et al. Nanogel-Based transdermal drug delivery system: A therapeutic strategy with under discussed potential
CN105233282B (zh) 一种多功能纳米药物组合物及其制备方法
Zhao et al. Ultrasound targeted microbubble destruction-triggered nitric oxide release via nanoscale ultrasound contrast agent for sensitizing chemoimmunotherapy
Haq Khan et al. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery
Feng et al. Natural Hydrogels Applied in Photodynamic Therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant