CN110300380A - 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法 - Google Patents

移动wsn中平衡系统能耗与追踪精度的目标跟踪方法 Download PDF

Info

Publication number
CN110300380A
CN110300380A CN201910694084.6A CN201910694084A CN110300380A CN 110300380 A CN110300380 A CN 110300380A CN 201910694084 A CN201910694084 A CN 201910694084A CN 110300380 A CN110300380 A CN 110300380A
Authority
CN
China
Prior art keywords
node
anchor node
target
tracking
scheduling strategy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910694084.6A
Other languages
English (en)
Other versions
CN110300380B (zh
Inventor
刘强
周龙雨
廖银华
董浩
冷甦鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910694084.6A priority Critical patent/CN110300380B/zh
Publication of CN110300380A publication Critical patent/CN110300380A/zh
Application granted granted Critical
Publication of CN110300380B publication Critical patent/CN110300380B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/32Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,应用于传感器网络节点通信领域,针对复杂的环境下,传感器节点的使用寿命面对较高挑战的问题,本发明在现有EKF算法的基础上,预测任务由接收到目标节点信号的锚节点完成,预测数据的更新和节点调度策略由sink节点完成,同时本发明针对节点调度策略提出了贡献度函数的定义,对于调度策略本发明根据锚节点的剩余能量与锚节点到目标节点的距离,构建贡献度函数,sink节点通过计算锚节点的贡献度值得到锚节点的调度策略,实现了能效优先,能效高的锚节点去完成目标的追踪,能效低的锚节点不被调度,可以积蓄能量,延长了整个传感器网络的使用寿命。

Description

移动WSN中平衡系统能耗与追踪精度的目标跟踪方法
技术领域
本发明属于传感器网络节点通信领域,特别涉及一种传感器节点通信过程中节点的能量消耗和节点协同下的追踪策略技术。
背景技术
在无线传感器网络中,存在大多数传感器节点能量有限以及追踪精度不能同时满足的挑战,使得整个网络系统的表现不能很好地体现,在传感器节点移动过程中,由于节点之间通信距离实时发生变化,在动态移动系统中不能有效的调度对应的锚节点,因此会产生额外的能量消耗。不仅如此,在大规模传感器网络中,节点不单单担任追踪未知节点的角色,还承担着大量环境数据采集以及实时监测的角色,多样性的数据无疑给传感器节点带来了很大的电量方面的压力。在相对复杂的环境下,尤其在无人作战领域,对于传感器节点的使用寿命提出了更高的挑战,在追踪精度和能量消耗的双重考虑下,不能得到满意的效果。
发明内容
为解决上述技术问题,本发明提出一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,基于传统EKF的理论,提出了在线实时反馈框架,即收到目标节点信号的锚节点将计算结果上传sink节点,sink节点根据其计算结果及对应锚节点的剩余能量进行锚节点调度策略的在线反馈,有效地降低了锚节点的能量消耗,提高了算法的可靠性。
本发明采用的技术方案之一为:一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,包括:
A1、根据锚节点的剩余能量与锚节点到目标节点的距离,构建贡献度函数;
A2、接收到目标节点信号的锚节点通过扩展卡尔曼滤波算法得到目标的预测位置和估计协方差矩阵;并将目标的预测位置和估计协方差矩阵上传至sink节点;
A3、sink节点根据锚节点上传的目标的预测位置和估计协方差矩阵,通过扩展卡尔曼滤波算法将数据进行更新,得到卡尔曼增益和误差协方差矩阵,并且根据贡献度函数计算得到锚节点的调度策略;
A4、sink节点将锚节点的调度策略与数据更新结果下传给对应的锚节点,由对应的锚节点完成预测和调度任务。
进一步地,步骤A1所述贡献度函数表达式为:
其中,ω1表示Ri的权重,ω2表示的权重,且ω12=1,Ri表示第i个锚节点的剩余能量,di表示第i个锚节点与目标节点之间的预测距离。
进一步地,步骤A2还包括将锚节点的剩余能量上传至sink节点。
更进一步地,步骤A3所述计算锚节点的调度策略,具体为:sink节点根据锚节点上传的目标的预测位置与锚节点的剩余能量,结合贡献度函数表达式,计算得到该锚节点对应的贡献度值,根据该贡献度值得到锚节点的调度策略。
进一步地,所述步骤A1之前还包括:设定最小贡献度值,则步骤A3所述调度策略为:若计算出的锚节点的贡献度值大于设定的最小贡献度值,则将该锚节点标记为1,表示被调度;否则标记为0,表示不被调度。
更进一步地,所述调度策略以1/0的形式封装在下行帧中。
进一步地,锚节点ID随下行帧中对应数据包传输。
本发明采用的技术方案之二为:一种传感器网络系统,至少包括:锚节点与sink节点;预测任务由接收到目标节点信号的锚节点完成,预测数据的更新和锚节点调度策略由sink节点完成。
进一步地,所述锚节点包括:处理单元与通信单元,所述处理单元完成预测任务,包括计算目标的预测位置和估计协方差矩阵,所述通信单元将目标的预测位置和估计协方差矩阵上传至sink节点。
进一步地,所述sink节点包括处理单元与通信单元,所述处理单元完成数据更新及锚节点调度策略的计算;所述数据更新具体为:根据收到的估计协方差矩阵,更新卡尔曼增益及误差协方差矩阵;所述锚节点调度策略的计算具体为:根据收到的目标的预测位置以及锚节点的剩余能量,基于能效有限的要求计算对应锚节点的贡献度,根据计算得到的贡献度对各锚节点进行是否调度的标记;所述通信单元用于将调度策略及数据更新结果发送至对应锚节点。
本发明的有益效果:本发明的在现有EKF算法的基础上,预测任务由接收到目标节点信号的锚节点完成,预测数据的更新和节点调度策略由sink节点完成,同时本发明针对节点调度策略提出了贡献度函数的定义。本申请技术方案的实现是基于能效优先的要求,将贡献度相对高的锚节点去完成对目标的追踪,有效的使能力差的节点积蓄能量,延长了整个传感网络的使用寿命并且降低了系统的能量消耗,普遍适用于在节点追踪的无线传感网络中提高网络寿命的方式。
附图说明
图1为本发明的方案流程图;
图2为本发明实施例提供的效果图。
具体实施方式
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。
本发明根据锚节点的剩余能量及锚节点到目标节点的距离,定义了贡献度函数,实现基于能效优先,将贡献度相对高的锚节点去完成对目标的追踪,有效的使能力差的节点积蓄能量,延长了整个传感网络的使用寿命并且降低了系统的能量消耗。
如图1所示为本发明的方案流程图,包括以下步骤:
S1、初始化EKF算法,传感器网络区域,传感器的初始能量和运动速度,设定区域内的锚节点都是一样的,这里的一样是指设定区域内的锚节点分布一致,并且在传感器网络区域中按照节点等数量进行分簇,其中包括初始化锚节点的采样频率以及每一个锚节点的位置坐标;
本步骤所述的按照节点等数量进行分簇指簇内的节点数量大致相等,不考虑一个区域内的节点分成多少簇,但是簇内部的节点数量保持大致相等。
S2、设定未知节点的运动轨迹和所有传感器节点的初始功率值,未知节点的运动轨迹可以根据不同的传感器网络环境进行适应性改变,包括但不止于直线、圆形以及抛物线等轨迹;
S3、在时刻t时,构造贡献度函数和最小贡献值,在时刻t时,贡献度函数定为:
其中,锚节点的坐标为(xi,yi),目标节点的坐标为(xta,yta),Ri表示锚节点的剩余能量,ω12表示权重系数,ω12=1,一般ω12均取0.5,表示剩余能量与到目标节点的距离同等重要,但是特殊情况,如某个锚节点能量较少,但是距离较近的时候,可以将ω1的值调整到大于0.5,所述贡献度函数为归一化之后的数值,即f(i)∈(0,1),如果锚节点i的贡献度大于最小贡献度数值,则该节点被标记为1表示被调度,完成追踪任务,否则被标记为0,表示不被调度;
本步骤中最小贡献度主要用于平衡追踪精度和能耗的,例如在满足已设定最小贡献度的情况下,能耗较大,则可以实时提高最小贡献度,否则降低最小贡献度;本实施例中最小贡献度的取值区间为(0,1)。
S4、接收到目标节点信号的锚节点通过扩展卡尔曼滤波算法得到目标的预测位置和估计协方差矩阵,预测位置定义为:xt|t-1=Ftxt-1|t-1t,其中Ft表示变换矩阵,δt表示该时刻的高斯白噪声,xt-1|t-1表示t-1时刻对目标节点的估计状态;估计协方差矩阵定义为:Pt|t-1=FtPt-1|t-1Ft T+Qt,其中Pt-1|t-1表示t-1时刻锚节点计算得到的后验误差协方差矩阵,Qt表示该时刻的独立高斯分布,上标T表示转置;
S5、锚节点将计算结果上传给sink节点,sink节点根据扩展卡尔曼算法将数据进行更新,得到卡尔曼增益和误差协方差矩阵,并且通过贡献度函数给出锚节点的调度方案;
卡尔曼增益为:
误差协方差矩阵:Pt|t=(I-KtHt)Pt|t-1
其中,Ht为观测矩阵,将真实状态空间映射到观测空间;St表示误差的协方差矩阵,Rt表示该时刻的独立高斯分布,Kt表示t时刻的卡尔曼系数。
S6、sink节点将所有的计算结果下传给对应的锚节点,完成预测和调度任务,并进行下一时刻的预测和跟踪操作。本步骤中下传的具体数据为:sink节点计算得到的卡尔曼增益、误差协方差矩阵以及调度策略,其中调度策略以1/0的形式封装在下行帧中,目的是降低下行的数据量,除此之外,锚节点对应的ID应同时跟随下行数据包进行传输,锚节点对应各自的调度策略完成对应的动作。
如图2所示为本发明方法的效果图;仿真参数为:采样时间0.25s;锚节点在50*50的区域内等数量分簇分布;未知节点的轨迹为带有噪声干扰的非线性曲线,表示为y=0.5x+υ;υ是高斯白噪声,服从均值为0,方差为1的高斯分布;图2中,横坐标表示调度节点的数量,纵坐标MSN(mean-square error,均方误差)表示均方误差值;从图2中可见,本发明提出的目标追踪算法具有快速收敛的特性,且跟踪精度极高。
本发明建立了在线实时反馈框架:接收到目标节点信号的锚节点会将计算得到目标的预测位置和估计协方差矩阵及其剩余能量值,上传至sink节点,sink节点根据其上传的数据进行数据更新及调度策略计算,然后将调度策略及数据更新结果实时下传给锚节点;如图2所示,利用本发明方法的在线实时反馈框架和调度策略明显地降低对未知节点的追踪误差(RMSE,root mean square error),在满足时间复杂度的条件下,sink节点和锚节点协同完成对数据的处理,并实时对锚节点进行调度,满足了高精度、高可靠、低时延的要求,为传感器网络提供了更长的工作寿命和更高的工作效率。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

1.一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,包括:
A1、根据锚节点的剩余能量与锚节点到目标节点的距离,构建贡献度函数;
A2、接收到目标节点信号的锚节点通过扩展卡尔曼滤波算法得到目标的预测位置和估计协方差矩阵;并将目标的预测位置和估计协方差矩阵上传至sink节点;
A3、sink节点根据锚节点上传的目标的预测位置和估计协方差矩阵,通过扩展卡尔曼滤波算法将数据进行更新,得到卡尔曼增益和误差协方差矩阵,并且根据贡献度函数计算得到锚节点的调度策略;
A4、sink节点将锚节点的调度策略与数据更新结果下传给对应的锚节点,由对应的锚节点完成预测和调度任务。
2.根据权利要求1所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,步骤A1所述贡献度函数表达式为:
其中,ω1表示Ri的权重,ω2表示的权重,且ω12=1,Ri表示第i个锚节点的剩余能量,di表示第i个锚节点与目标节点之间的预测距离。
3.根据权利要求2所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,步骤A2还包括将锚节点的剩余能量上传至sink节点。
4.根据权利要求3所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,步骤A3所述计算锚节点的调度策略,具体为:sink节点根据锚节点上传的目标的预测位置与锚节点的剩余能量,结合贡献度函数表达式,计算得到该锚节点对应的贡献度值,根据该贡献度值得到锚节点的调度策略。
5.根据权利要求4所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,所述步骤A1之前还包括:设定最小贡献度值,则步骤A3所述调度策略为:若计算出的锚节点的贡献度值大于设定的最小贡献度值,则将该锚节点标记为1,表示被调度;否则标记为0,表示不被调度。
6.根据权利要求5所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,所述调度策略以1/0的形式封装在下行帧中。
7.根据权利要求6所述的一种移动WSN中平衡系统能耗与追踪精度的目标跟踪方法,其特征在于,锚节点ID随下行帧中对应数据包传输。
8.一种传感器网络系统,其特征在于,至少包括:锚节点与sink节点;预测任务由接收到目标节点信号的锚节点完成,预测数据的更新和锚节点调度策略由sink节点完成。
9.根据权利要求8所述的一种传感器网络系统,其特征在于,所述锚节点包括:处理单元与通信单元,所述处理单元完成预测任务,包括计算目标的预测位置和估计协方差矩阵,所述通信单元将目标的预测位置和估计协方差矩阵上传至sink节点。
10.根据权利要求9所述的一种传感器网络系统,其特征在于,所述sink节点包括处理单元与通信单元,所述处理单元完成数据更新及锚节点调度策略的计算;所述数据更新具体为:根据收到的估计协方差矩阵,更新卡尔曼增益及误差协方差矩阵;所述锚节点调度策略的计算具体为:根据收到的目标的预测位置以及锚节点的剩余能量,基于能效有限的要求计算对应锚节点的贡献度,根据计算得到的贡献度对各锚节点进行是否调度的标记;所述通信单元用于将调度策略及数据更新结果发送至对应锚节点。
CN201910694084.6A 2019-07-30 2019-07-30 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法 Expired - Fee Related CN110300380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910694084.6A CN110300380B (zh) 2019-07-30 2019-07-30 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910694084.6A CN110300380B (zh) 2019-07-30 2019-07-30 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法

Publications (2)

Publication Number Publication Date
CN110300380A true CN110300380A (zh) 2019-10-01
CN110300380B CN110300380B (zh) 2020-11-06

Family

ID=68032125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910694084.6A Expired - Fee Related CN110300380B (zh) 2019-07-30 2019-07-30 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法

Country Status (1)

Country Link
CN (1) CN110300380B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640136A (zh) * 2020-05-23 2020-09-08 西北工业大学 一种复杂环境中的深度目标跟踪方法
CN112188428A (zh) * 2020-09-28 2021-01-05 广西民族大学 一种传感云网络中Sink节点的能效最优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096444A (zh) * 2013-01-29 2013-05-08 浙江大学 一种基于传感器节点策略选择的水下无线传感器网络目标跟踪方法
CN104378797A (zh) * 2014-10-31 2015-02-25 广东工业大学 一种制造物联网协同感知节点调度方法
CN106851800A (zh) * 2017-01-20 2017-06-13 东南大学 一种无线传感器网络定位中的锚节点调度方法
CN109951874A (zh) * 2019-05-13 2019-06-28 电子科技大学 一种传感器网络中实时追踪移动未知节点的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096444A (zh) * 2013-01-29 2013-05-08 浙江大学 一种基于传感器节点策略选择的水下无线传感器网络目标跟踪方法
CN104378797A (zh) * 2014-10-31 2015-02-25 广东工业大学 一种制造物联网协同感知节点调度方法
CN106851800A (zh) * 2017-01-20 2017-06-13 东南大学 一种无线传感器网络定位中的锚节点调度方法
CN109951874A (zh) * 2019-05-13 2019-06-28 电子科技大学 一种传感器网络中实时追踪移动未知节点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李红梅: "基于二阶段的完全分布式迭代目标跟踪算法", 《电子测量与仪器学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640136A (zh) * 2020-05-23 2020-09-08 西北工业大学 一种复杂环境中的深度目标跟踪方法
CN111640136B (zh) * 2020-05-23 2022-02-25 西北工业大学 一种复杂环境中的深度目标跟踪方法
CN112188428A (zh) * 2020-09-28 2021-01-05 广西民族大学 一种传感云网络中Sink节点的能效最优化方法
CN112188428B (zh) * 2020-09-28 2024-01-30 广西民族大学 一种传感云网络中Sink节点的能效最优化方法

Also Published As

Publication number Publication date
CN110300380B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
Yu et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm
CN113537514B (zh) 一种高能效的基于数字孪生的联邦学习框架
CN103716867B (zh) 基于事件驱动的无线传感器网络多目标实时跟踪系统
CN108337034A (zh) 全双工无人机移动中继系统及其路径优化方法
CN110300380A (zh) 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法
CN107659989B (zh) 无线传感器网络节点分布式测量休眠和目标跟踪方法
CN114422363B (zh) 一种无人机搭载ris辅助通信系统容量优化方法及装置
CN107367710B (zh) 一种基于时延和多普勒的分布式自适应粒子滤波直接跟踪定位方法
Steinbring et al. Optimal sample-based fusion for distributed state estimation
Gao et al. Cellular-connected UAV trajectory design with connectivity constraint: A deep reinforcement learning approach
Alsunbuli et al. Hybrid beamforming with relay and dual-base stations blockage mitigation in millimetre-wave 5G communication applied in (VIOT)
Su et al. Unmanned-surface-vehicle-aided maritime data collection using deep reinforcement learning
WO2022242468A1 (zh) 任务卸载方法、调度优化方法和装置、电子设备及存储介质
Zhou et al. Intelligent sensing scheduling for mobile target tracking wireless sensor networks
CN105722030A (zh) 一种dtn网络中节点位置预测方法
Wu et al. When UAVs meet ISAC: real-time trajectory design for secure communications
Wang et al. Priority-oriented trajectory planning for UAV-aided time-sensitive IoT networks
Park et al. Joint trajectory and resource optimization of MEC-assisted UAVs in sub-THz networks: A resources-based multi-agent proximal policy optimization DRL with attention mechanism
Li et al. Adaptive Digital Twin for UAV-Assisted Integrated Sensing, Communication, and Computation Networks
CN110099443B (zh) 一种无线传感器网络中节点追踪的负载均衡方法
CN109739089A (zh) 一种无人驾驶船舶非周期采样远程操控系统及设计方法
Cheng et al. Proactive power control and position deployment for drone small cells: Joint supervised and unsupervised learning
CN103096444A (zh) 一种基于传感器节点策略选择的水下无线传感器网络目标跟踪方法
CN109426862A (zh) 一种基于分布式智能网关的人工智能决策系统及方法
CN116847293A (zh) 一种无人机辅助车联网下的联合缓存决策和轨迹优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201106

Termination date: 20210730

CF01 Termination of patent right due to non-payment of annual fee