CN107659989B - 无线传感器网络节点分布式测量休眠和目标跟踪方法 - Google Patents

无线传感器网络节点分布式测量休眠和目标跟踪方法 Download PDF

Info

Publication number
CN107659989B
CN107659989B CN201711000765.5A CN201711000765A CN107659989B CN 107659989 B CN107659989 B CN 107659989B CN 201711000765 A CN201711000765 A CN 201711000765A CN 107659989 B CN107659989 B CN 107659989B
Authority
CN
China
Prior art keywords
node
covariance
measurement
target
posterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711000765.5A
Other languages
English (en)
Other versions
CN107659989A (zh
Inventor
张亚
张玲玲
杜丽双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201711000765.5A priority Critical patent/CN107659989B/zh
Publication of CN107659989A publication Critical patent/CN107659989A/zh
Application granted granted Critical
Publication of CN107659989B publication Critical patent/CN107659989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了无线传感器网络节点分布式测量休眠和目标跟踪方法。首先确定无线传感器网络中的节点数量、目标运动方程、节点通信半径和测量半径,初始化各节点的后验协方差矩阵和状态估计值;每个节点接收邻居节点的后验协方差矩阵和状态估计值,各节点利用最小迹原则更新协同协方差和协同估计状态值;每个节点按照预设的事件触发条件判断是否对目标进行测量;根据节点是否测量目标更新后验协方差和后验状态估计。本发明能够在保证目标跟踪系统性能的条件下,显著减少系统能量消耗,从而延长网络的生命周期保证网络的稳定性。

Description

无线传感器网络节点分布式测量休眠和目标跟踪方法
技术领域
本发明属于无线传感网络领域,特别涉及了无线传感器网络节点分布式测量休眠和目标跟踪方法。
背景技术
无线传感器网络是由大量自组织的传感器节点所构成的,每个传感器节点携带电池、无线收发装置、微型处理器,能够发送/接收数据并对数据进行处理,并能够通过节点之间的相互协作完成诸如智能监测、目标定位和跟踪等任务的复杂网络。
基于无线传感器网络技术的目标跟踪问题是无线传感器网络在实际中的一项重要应用。尽管无线传感器网络具有自组织、鲁棒性强、成本低等优点,但考虑到真实环境的复杂性、给定任务的难易程度以及网络的能量和带宽受限,使得传感器网络目标跟踪技术在跟踪误差和网络的能量消耗之间存在一定的矛盾。从一方面来说能够测量到目标的节点数目越多,网络的跟踪误差就越小(不考虑其他因素),但是驱动节点测量所消耗的能量也就越多,这对于传感器网络来说是不利的。考虑到网络中节点所携带的能量是有限,总是希望传感器网络消耗的能量越少越好,从而在一定程度上延长网络的生命周期同时保证网络的稳定性。
目前在传感器网络目标跟踪精度和能量消耗之间进行权衡的技术主要可以分为以下几种方案:1、节点休眠技术。由于目标运动的动态性和节点的测量半径有限,导致节点在监测区域观测到目标成为一个局部事件。节点休眠技术正是利用了这个特点,将某一时刻网络中的节点分为跟踪节点、激活节点和休眠节点。只有靠近目标的节点处于激活状态执行测量和跟踪任务,其他节点则处于休眠节点。当休眠节点接收到来自跟踪节点的激活指令时将其从休眠状态中唤醒。和网络中所有节点都处于激活状态相比损失了一部分跟踪性能但是节省了网络的能量从而延长整个网络的生命周期。尽管该方案是一种简单有效的办法,但存在无法保证收敛性以及网络连通性的缺点。2、节点选择方法。该方法将最大化网络生命周期或最大化网络剩余能量作为目标从而转换成带约束的最优化问题,求解该优化问题则是从所有可能的节点集合中选择最优的节点集合。遗憾的是该问题的求解是NP难的,基于节点选择的目标跟踪算法则是采用了贪心策略或是启发式方式来求解,而且求解该问题必须采用集中式的方法。3、聚类方法。基于动态聚类的传感器节点调度算法采用了一种贪婪策略能将多目标优化问题转换为单目标优化问题进而求得问题的局部最优解。首先选择能够满足一定跟踪误差要求所需要的最小的节点集合,被选中的节点处于激活状态,未被选中的节点令其进入休眠状态;然后在该节点集合中利用暴力搜索的方法选择通信能量消耗(和节点之间的距离成指数关系)最小的作为聚类头节点,聚类头节点负责接收其他节点的信息执行估计算法。该方法存在的问题是在确定头结点时需要节点集合内所有节点的信息,是一个集中式的策略;另外暴力搜索的方式需要额外的计算资源丰富的基站。
发明内容
为了解决上述背景技术提出的技术问题,本发明旨在提供无线传感器网络节点分布式测量休眠和目标跟踪方法,克服现有技术存在的缺陷,在保证网络跟踪精度的同时,减少网络的能量消耗。
为了实现上述技术目的,本发明的技术方案为:
一种无线传感器网络节点分布式测量休眠和目标跟踪方法,包括以下步骤:
(1)根据需求及先验知识确定无线传感器网络中的节点数量,在目标运动区域内均匀部署节点;确定目标运动方程、节点通信半径和测量半径;对各节点的后验协方差矩阵和状态估计值进行初始化;
(2)每个节点接收邻居节点的后验协方差矩阵和状态估计值,各节点利用最小迹原则更新协同协方差和协同估计状态值;
(3)每个节点按照预设的事件触发条件判断是否对目标进行测量;
(4)如果节点测量目标,则利用测量信息和卡尔曼滤波更新后验协方差和后验状态估计;如果节点测量休眠,则利用预测值来更新后验协方差和状态估计值;各节点发送更新后的后验协方差和后验估计;
(5)重复步骤(2)-(4),直到跟踪时间结束。
进一步地,在步骤(2)中,协同协方差和协同估计状态值的更新公式如下:
Figure BDA0001443304410000031
Figure BDA0001443304410000032
上式中,
Figure BDA0001443304410000033
Figure BDA0001443304410000034
分别为更新后的第i个节点的协同协方差和协同估计状态值,Pind(k-1|k-1)和
Figure BDA0001443304410000035
分别为第ind个节点的后验协方差矩阵和状态估计值,Ni为第i个节点的通信邻居节点,tr为迹运算。
进一步地,在步骤(3)中,所述预设的事件触发条件如下:
Figure BDA0001443304410000036
上式中,bi(k)表示第k个采样时刻第i个节点是否触发测量的标志,bi(k)=1表示触发测量,bi(k)=0表示不触发测量,pi表示第i个节点自身的坐标位置,
Figure BDA0001443304410000037
表示第i个节点对目标位置的预测值,δi(k)表示第i个节点对目标位置的预测误差,ds表示测量半径,Ji1(k)和Ji0(k)分别为第k个采样时刻第i个节点测量和不测量所对应的性能函数值:
Figure BDA0001443304410000038
Figure BDA0001443304410000039
Figure BDA00014433044100000310
其中,
Figure BDA00014433044100000311
为第i个节点的协同协方差,F为系统矩阵,Q(k)为过程噪声的协方差矩阵,Hi是第i个节点的测量矩阵,Ri(k)为测量噪声的协方差矩阵,E为节点的测量能量消耗,w为加权值。
进一步地,在步骤(4)中,如果节点测量目标并能获得测量信息,按下式更新后验协方差和后验状态估计:
Figure BDA0001443304410000041
Figure BDA0001443304410000042
Figure BDA0001443304410000043
Figure BDA0001443304410000044
Figure BDA0001443304410000045
上式中,Pi(k|k)和
Figure BDA0001443304410000046
分别为更新的后验协方差和后验状态估计。
进一步地,在步骤(4)中,如果节点测量休眠或者节点测量目标但未能获得测量信息,按下式更新后验协方差和后验状态估计:
Figure BDA0001443304410000047
Figure BDA0001443304410000048
上式中,Pi(k|k)和
Figure BDA0001443304410000049
分别为更新的后验协方差和后验状态估计。
进一步地,节点的测量休眠是完全自主判断的,节点的目标跟踪是完全分布式的。
采用上述技术方案带来的有益效果:
本发明能够在节点测量和通信半径受限的无线传感器网络以及整个网络通信和测量情况未知的情况下,完全分布式地、自主地确定是否跟踪目标并实现了完全分布式的估计目标状态并对目标进行跟踪。通过对事件触发测量和全触发测量的实验比较,结果表明本发明能够在保证跟踪系统性能的条件下,显著减少系统能耗,从而延长网络生命周期保证网络稳定性。
附图说明
图1是本发明的方法流程图;
图2是实施例中目标运动轨迹图;
图3是事件触发下的节点触发率散点图;
图4是全触发下的节点触发率散点图;
图5是事件触发下和全触发下消耗能量比较图;
图6是事件触发下和全触发下性能比较图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
假设跟踪目标的运动方程为:
x(k+1)=Fx(k)+w(k),k=1,2,... (1)
其中,x(k)=[px(k),vx(k),py(k),vy(k)]T是跟踪目标的状态向量,分别代表第k个采样时刻运动目标在水平方向x以及垂直方向y上的位置和速度,F是系统矩阵,w(k)是运动目标的过程噪声,假设为零均值的高斯白噪声,协方差矩阵为Q(k)。节点的测量方程为:
yi(k)=bi(k)*(Hix(k)+vi(k)) (2)
其中,bi(k)代表k时刻第i个节点是否测量,如果节点i测量目标,bi(k)=1;否则,bi(k)=0。Hi是节点i的测量矩阵,vi(k)是节点i的测量噪声,假设符合零均值的高斯白噪声,协方差矩阵为Ri(k)。
系统优化问题的性能目标函数定义为:
Figure BDA0001443304410000051
其中,Jj(k)为第k个采样时刻节点j的目标函数值,N为总的节点个数,T为总的采样时间。基于事件触发测量策略,每个节点的目标函数Jj(.)的定义如下:
Jj(Pj,E,bj(k),k)=(1-bj(k))tr(Pj0(k))+bj(k)tr(Pj1(k))+bj(k)wE,j=1,2,...N (4)
其中,bj(k)∈{0,1}表示第k个采样时刻传感器节点j是否触发测量,bj(k)=0代表不触发,bj(k)=1表示触发;tr(.)为矩阵求迹运算,Pj0(k)和Pj1(k)分别代表不触发和触发条件下的节点j在时刻k的协方差矩阵的更新值Pj(k|k),是利用卡尔曼滤波算法得到的,具体见下式:
Figure BDA0001443304410000052
Figure BDA0001443304410000053
E代表节点的测量能量消耗,w为加权值。
不难看出上述式(4)中的前两项代表跟踪误差预测项,后一项则代表了节点的能量消耗。如果节点j触发了测量,则Jj(Pj,E,bj(k),k)=tr(Pj1(k))+wE;否则,Jj(Pj,E,bj(k),k)=tr(Pj0(k))。需要注意的是跟踪误差预测项可能与真实误差不同。如果节点j触发了测量,并且能测量到目标,则Pj1(k)即为真实的协方差;如果节点j触发了测量,但仍无法测量到目标,则真实的协方差为Pj0(k);如果节点j不触发测量,则真实的协方差也为Pj0(k)。
本发明的目标是设计节点测量激活策略和分布式协同卡尔曼滤波算法使得性能指标(4)越小越好。
基于上述设计目标,如图1所示,本发明的具体步骤如下:
步骤1:初始化节点和目标跟踪网络包括节点的数目和位置;确定目标运动方程、节点的测量半径和通信半径;节点的后验协方差矩阵和状态估计值。
步骤2:节点接收邻居节点的后验协方差矩阵和状态估计值,按照最小迹原则更新协同协方差矩阵
Figure BDA0001443304410000061
和协同状态估计值
Figure BDA0001443304410000062
Figure BDA0001443304410000063
Figure BDA0001443304410000064
步骤3:每个节点按照事件触发条件判断是否对目标进行测量,由bi(k)标识。触发条件如下:
Figure BDA0001443304410000065
其中,
Figure BDA0001443304410000066
表示第i个节点对目标位置的预测值,取自
Figure BDA0001443304410000067
中对应的位置向量,在本实施例中,
Figure BDA0001443304410000068
表示矩阵
Figure BDA0001443304410000069
中第1、第2个向量,
Figure BDA00014433044100000610
δi(k)表示第i个节点对目标位置的预测误差,取自预测协方差矩阵
Figure BDA00014433044100000611
中对应位置部分矩阵的迹的1/2次方值,在本实施例中,
Figure BDA00014433044100000612
表示矩阵Pi(k|k-1)的第1个和第3个对角元素之和,
Figure BDA00014433044100000613
Figure BDA00014433044100000614
Figure BDA0001443304410000071
Figure BDA0001443304410000072
步骤4:更新后验协方差矩阵Pi(k|k)和后验状态估计值
Figure BDA0001443304410000073
并发送给邻居节点。如果节点触发测量,即bi(k)=1,并能获得测量信息,则利用测量信息和卡尔曼滤波更新后验协方差和状态估计:
Figure BDA0001443304410000074
Figure BDA0001443304410000075
Figure BDA0001443304410000076
如果节点测量休眠,即bi(k)=0,或者节点触发测量但无法获得目标测量信息,则利用预测值更新后验协方差和后验状态估计
Figure BDA0001443304410000077
Figure BDA0001443304410000078
步骤5:重复上述步骤2-4,直到跟踪时间结束。
下文通过实施例来说明本发明。
1)参数设置
根据目标运动区域的大小确定传感器节点的数目N,按照网格型网络在运动区域内部署节点。假设节点之间的最小距离为dmin,测量半径设计为1.5dmin,节点之间的通信半径Rc>2Rs,根据通信半径建立节点之间的邻接关系。
2)初始化
如图2所示,以目标在运动区域内做匀速直线运动为例,系统矩阵
Figure BDA0001443304410000079
ΔT为采样时间间隔设置ΔT=1(s),测量矩阵
Figure BDA00014433044100000710
Figure BDA00014433044100000711
过程噪声的协方差矩阵Q=deltawdiag([0.5,1,0.5,1]),deltaw=1e-3,测量噪声的协方差矩阵
Figure BDA00014433044100000712
Figure BDA00014433044100000713
初始化每个节点的状态估计值
Figure BDA0001443304410000081
初始化每个节点的协方差矩阵
Figure BDA0001443304410000082
初始化每个节点测量值yi(0)=[0,0]T,i=1,2,…N。
3)数据包发送和接收
第k个采样时刻(k>0),每个节点i,i=1,2,…N将自身信息包括状态估计值和协方差矩阵
Figure BDA0001443304410000083
发送给邻居节点,同时接收邻居节点j∈Ni发送的信息
Figure BDA0001443304410000084
4)基于最小迹原则的一致性信息融合
每个节点i,i=1,2,…N,在接收到的邻居节点信息中,找出协方差矩阵迹最小的节点,节点i就根据此节点更新协同协方差矩阵(5)和状态估计值(6)。
5)事件触发条件的判断
在进行网络通信之后,每个节点根据测量激活条件(7)进行判断,得到每个节点的触发标志位bi(k),其中式(4)中的能量消耗项的加权值w=300(也可根据实际情况进行调整),测量能量消耗E根据实际情况设置,本实验假设E=es*bs,es=5e-5,bs=1024。对于测量激活节点i,获得k时刻的测量值yi(k)。
6)状态估计值和协方差矩阵的更新
在判断每个节点的测量状态bi(k)之后,按照式(8)和(9)所描述的分布式估计算法更新每个节点i的后验状态估计值
Figure BDA0001443304410000085
和后验协方差矩阵Pi(k|k)。
7)重复上述步骤3)—6)。
对比事件触发下的节点测量和全触发下的节点测量,图3和图4分别为事件触发下和全触发下节点触发率随采样时间变化的散点图,其中横轴表示采样时间点,纵轴表示节点触发率(百分比)。图5为两种情况下网络消耗的累计能量随采样时间变化的关系,虚线对应事件触发下的测量能量消耗随采样时间的变化关系,实线对应全触发下测量能量消耗随时间的变化关系。图6为两种情况下目标函数值(包含跟踪误差和能量消耗)随采样时间的变化情况,虚线对应事件触发下的目标函数值,实线对应全触发情况下的目标函数值。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

1.一种无线传感器网络节点分布式测量休眠和目标跟踪方法,其特征在于,包括以下步骤:
(1)根据需求及先验知识确定无线传感器网络中的节点数量,在目标运动区域内均匀部署节点;确定目标运动方程、节点通信半径和测量半径;对各节点的后验协方差矩阵和状态估计值进行初始化;
(2)每个节点接收邻居节点的后验协方差矩阵和状态估计值,各节点根据接收的后验协方差矩阵和状态估计值利用最小迹原则更新协同协方差和协同估计状态值;
(3)每个节点按照预设的事件触发条件判断是否对目标进行测量;
所述预设的事件触发条件如下:
Figure FDA0002514961610000011
上式中,bi(k)表示第k个采样时刻第i个节点是否触发测量的标志,bi(k)=1表示触发测量,bi(k)=0表示不触发测量;Ji1(k)和Ji0(k)分别为第k个采样时刻第i个节点测量和不测量所对应的性能函数值:
Figure FDA0002514961610000012
Figure FDA0002514961610000013
Figure FDA0002514961610000014
其中,
Figure FDA0002514961610000015
为第i个节点的协同协方差,F为系统矩阵,Q(k)为过程噪声的协方差矩阵,Hi是第i个节点的测量矩阵,Ri(k)为测量噪声的协方差矩阵,E为节点的测量能量消耗,w为加权值,tr为迹运算;
(4)如果节点测量目标,则利用测量信息、步骤(2)得到的协同协方差和协同估计状态值以及卡尔曼滤波更新后验协方差和后验状态估计;如果节点测量休眠,则利用步骤(2)得到的协同协方差和协同估计状态值更新后验协方差和后验状态估计;各节点发送更新后的后验协方差和后验状态估计;
(5)重复步骤(2)-(4),直到跟踪时间结束。
2.根据权利要求1所述无线传感器网络节点分布式测量休眠和目标跟踪方法,其特征在于:在步骤(2)中,协同协方差和协同估计状态值的更新公式如下:
Figure FDA0002514961610000021
Figure FDA0002514961610000022
上式中,
Figure FDA0002514961610000023
Figure FDA0002514961610000024
分别为更新后的第i个节点的协同协方差和协同估计状态值,Pind(k-1|k-1)和
Figure FDA0002514961610000025
分别为第ind个节点的后验协方差矩阵和状态估计值,Ni为第i个节点的通信邻居节点,tr为迹运算。
3.根据权利要求2所述无线传感器网络节点分布式测量休眠和目标跟踪方法,其特征在于:在步骤(4)中,如果节点测量目标,即bi(k)=1,按下式更新后验协方差和后验状态估计:
Figure FDA0002514961610000026
Figure FDA0002514961610000027
Figure FDA0002514961610000028
Figure FDA0002514961610000029
Figure FDA00025149616100000210
上式中,Pi(k|k)和
Figure FDA00025149616100000211
分别为更新的后验协方差和后验状态估计。
4.根据权利要求3所述无线传感器网络节点分布式测量休眠和目标跟踪方法,其特征在于:在步骤(4)中,如果节点测量休眠,bi(k)=0,按下式更新后验协方差和后验状态估计:
Figure FDA0002514961610000031
Figure FDA0002514961610000032
上式中,Pi(k|k)和
Figure FDA0002514961610000033
分别为更新的后验协方差和后验状态估计。
5.根据权利要求1或2所述无线传感器网络节点分布式测量休眠和目标跟踪方法,其特征在于:节点的测量休眠是完全自主判断的,节点的目标跟踪是完全分布式的。
CN201711000765.5A 2017-10-24 2017-10-24 无线传感器网络节点分布式测量休眠和目标跟踪方法 Active CN107659989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711000765.5A CN107659989B (zh) 2017-10-24 2017-10-24 无线传感器网络节点分布式测量休眠和目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711000765.5A CN107659989B (zh) 2017-10-24 2017-10-24 无线传感器网络节点分布式测量休眠和目标跟踪方法

Publications (2)

Publication Number Publication Date
CN107659989A CN107659989A (zh) 2018-02-02
CN107659989B true CN107659989B (zh) 2020-08-04

Family

ID=61119462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711000765.5A Active CN107659989B (zh) 2017-10-24 2017-10-24 无线传感器网络节点分布式测量休眠和目标跟踪方法

Country Status (1)

Country Link
CN (1) CN107659989B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650634B (zh) * 2018-05-18 2020-07-28 南京邮电大学 一种基于轨迹预测的无线传感器网络目标跟踪方法
CN108810958B (zh) * 2018-05-23 2020-10-20 浙江大学 基于隐马尔科夫模型的潮间带传感器节点状态估计方法
CN110958639A (zh) * 2019-01-31 2020-04-03 北京航空航天大学 一种目标状态估计方法及系统
CN110430585B (zh) * 2019-08-07 2023-05-02 南京理工大学 一种分布式传感器网络中用于追踪的广播节点选择方法
CN111083661B (zh) * 2019-12-09 2022-06-17 南京工程学院 一种应用于光电传感网络中的事件触发异步状态估计方法
CN111343023B (zh) * 2020-02-28 2021-10-26 电子科技大学 自适应机动网络节点运动控制的分布式协同决策方法
CN111883265A (zh) * 2020-06-30 2020-11-03 南京理工大学 一种应用于火控系统的目标状态估计方法
CN113433828B (zh) * 2021-08-25 2022-01-18 南京航空航天大学 一种多机器人动态目标跟踪协同控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505532A (zh) * 2009-03-12 2009-08-12 华南理工大学 一种基于分布式处理的无线传感器网络目标跟踪方法
KR101402206B1 (ko) * 2014-04-10 2014-05-30 국방과학연구소 운동학 및 형상 정보를 활용한 다중 표적 추적 방법
CN103889047A (zh) * 2012-12-20 2014-06-25 江南大学 一种基于卡尔曼滤波的目标跟踪算法
CN103955892A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及扩展截断无迹卡尔曼滤波方法、装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI444073B (zh) * 2011-10-31 2014-07-01 Univ Nat Central Location and Tracking of Low Complexity Decentralized Message Transmission with Multiple Heterogeneous Data Fusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505532A (zh) * 2009-03-12 2009-08-12 华南理工大学 一种基于分布式处理的无线传感器网络目标跟踪方法
CN103889047A (zh) * 2012-12-20 2014-06-25 江南大学 一种基于卡尔曼滤波的目标跟踪算法
CN103955892A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及扩展截断无迹卡尔曼滤波方法、装置
KR101402206B1 (ko) * 2014-04-10 2014-05-30 국방과학연구소 운동학 및 형상 정보를 활용한 다중 표적 추적 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Cooperative distributed target tracking algorithm in mobile wireless sensor networks;Chen Wei;《IEEE》;20100930;全文 *
H∞ Consensus Tracking in Sensor Networks with Time-Varying Sensing;Ya Zhang;《IEEE》;20130923;全文 *
分布式无线传感网络的协作目标跟踪策略;王雪等;《电子学报》;20070515;全文 *
基于分布式聚类的有向传感器网络移动目标跟踪算法研究;左现刚等;《传感技术学报》;20160713;全文 *

Also Published As

Publication number Publication date
CN107659989A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN107659989B (zh) 无线传感器网络节点分布式测量休眠和目标跟踪方法
Gharehshiran et al. Coalition formation for bearings-only localization in sensor networks—a cooperative game approach
CN107453993B (zh) 基于Fisher信息矩阵与SUKF的目标跟踪方法
Torkestani Mobility prediction in mobile wireless networks
Larios et al. LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN
CN108055683B (zh) 一种水下无线传感器网络均衡能耗并保持覆盖的方法
CN105828287A (zh) 一种基于强化学习的无线传感器网络协同跟踪方法
CN102014344A (zh) 一种基于dpso的智能无线传感网络分簇控制方法
CN101594677A (zh) 一种基于分簇的非规则Ad hoc网络节点自定位系统
CN110213813B (zh) 一种室内定位技术中惯性传感器的智能管理方法
CN113329490B (zh) 一种基于量子虎鲨机制的无线传感器网络节点定位方法
CN110099443B (zh) 一种无线传感器网络中节点追踪的负载均衡方法
CN114205769A (zh) 基于无人机数据采集系统的联合轨迹优化与带宽分配方法
CN110300380B (zh) 移动wsn中平衡系统能耗与追踪精度的目标跟踪方法
Yu et al. Distributed single target tracking in underwater wireless sensor networks
CN115550837B (zh) 一种基于混沌映射与灰狼算法优化的DV-Hop定位方法
Tran-Quang et al. A collaborative target tracking algorithm considering energy constraint in WSNs
CN103561466B (zh) 一种提高传感器网络节点定位准确度的系统
Koutsonikolas et al. Cocoa: Coordinated cooperative localization for mobile multi-robot ad hoc networks
Armaghani et al. Sensor selection for tracking multiple groups of targets
Zhu et al. An Improved Localization Scheme Based on DV-Hop for Large-Scale Wireless Sensor Networks.
Wagner et al. Power control for target tracking in sensor networks
CN113655474A (zh) 针对组网雷达目标跟踪的功率带宽联合分配方法
Han Intelligent logistics tracking system based on wireless sensor network
Prabhavathi et al. Cluster-based mobility management for target tracking in mobile sensor networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant