CN110289327B - 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用 - Google Patents

基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用 Download PDF

Info

Publication number
CN110289327B
CN110289327B CN201910552798.3A CN201910552798A CN110289327B CN 110289327 B CN110289327 B CN 110289327B CN 201910552798 A CN201910552798 A CN 201910552798A CN 110289327 B CN110289327 B CN 110289327B
Authority
CN
China
Prior art keywords
pbbr
cspbbr
film
solution
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910552798.3A
Other languages
English (en)
Other versions
CN110289327A (zh
Inventor
唐群委
赵媛媛
段加龙
王宇迪
杨希娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao yienfang energy and Environmental Protection Technology Co., Ltd
Original Assignee
Qingdao Yienfang Energy And Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Yienfang Energy And Environmental Protection Technology Co Ltd filed Critical Qingdao Yienfang Energy And Environmental Protection Technology Co Ltd
Priority to CN201910552798.3A priority Critical patent/CN110289327B/zh
Publication of CN110289327A publication Critical patent/CN110289327A/zh
Application granted granted Critical
Publication of CN110289327B publication Critical patent/CN110289327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用,具体是在导电薄膜基底上旋涂量子点溶液制备电子传输层,经加热后再旋涂PbBr2溶液,退火形成PbBr2多孔薄膜,之后再多次旋涂CsBr溶液制备CsPbBr3钙钛矿薄膜。通过改变PbBr2的结晶温度调控PbBr2薄膜中的孔隙率,以使CsBr快速扩散至PbBr2薄膜内部制备大晶粒CsPbBr3薄膜。PbBr2薄膜的微孔结构为大晶粒CsPbBr3的生长提供空间,减小钙钛矿晶粒的残余压应力。本发明所提供的全无机CsPbBr3薄膜最大晶粒可达1.62微米,由其组装的太阳能电池稳定性好、光电转化率高,对于促进钙钛矿太阳能电池的产业化进程具有重要的实用价值和经济价值。

Description

基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其 制备方法和应用
技术领域
本发明属于新材料以及新能源技术领域,特别涉及基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用。
背景技术
煤、石油、天然气等化石燃料的过度使用导致的能源短缺、环境污染和生态破坏已成为人类面临的重大挑战,开发可再生的清洁能源是实现世界经济可持续发展的战略性选择。在众多新能源当中,太阳能取之不尽、用之不竭,因此开发并高效利用太阳能被认为是未来能源发展战略的核心之一。太阳能电池是一种将太阳能转化成电能的装置,其中钙钛矿太阳能电池发展迅猛,其光电转换效率已从3.8%跃升至24.2%,是光伏领域一颗冉冉升起的新星。虽然有机-无机杂化钙钛矿太阳能电池的光电转换效率较高,但稳定性较差;全无机CsPbBr3钙钛矿太阳能电池因具有优异的环境稳定性而成为光伏领域的研究热点。目前全无机CsPbBr3钙钛矿太阳能电池仍存在以下问题亟待解决:第一,采用常规技术制备的CsPbBr3钙钛矿薄膜晶粒尺寸小、晶界多、存在针孔结构,薄膜缺陷态密度高,钙钛矿层内载流子复合严重;第二,载流子传输层/钙钛矿层之间存在能级势垒,使得光生载流子在电池界面处复合严重。以上两方面问题不利于该类电池光电转换效率的进一步提升,因此,开发一种大晶粒CsPbBr3钙钛矿薄膜的制备方法以及加快界面电荷提取的修饰技术对于推动全无机CsPbBr3钙钛矿太阳能电池的商业化进程具有重要的理论意义和实用价值。
发明内容
本发明的目的在于提供了基于PbBr2微孔调控的全无机CsPbBr3薄膜的钙钛矿太阳能电池及其制备方法和应用,通过本发明所制备的CsPbBr3薄膜的最大晶粒可达1.62微米,由其组装的FTO/SnO2/CsPbBr3/N-CQDs/Carbon太阳能电池的光电转换效率可达10.71%,开路电压可达1.622 V,稳定性好、光电转化率高,对于促进钙钛矿太阳能电池的产业化进程具有重要的实用价值和经济价值。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明采用上述技术方案后,主要有以下优点:
(1)、本发明通过改变PbBr2的结晶温度精准调控PbBr2薄膜的孔隙率,有利于CsBr溶液快速渗入PbBr2薄膜并与之充分接触,使PbBr2和CsBr之间的反应更快速、更充分。本发明与常规两步法相比,有利于减少钙钛矿薄膜中CsPb2Br5、Cs4PbBr6等非钙钛矿相的生成,对提高电池的光电转换效率以及稳定性至关重要。
(2)、经计算得知PbBr2与CsBr反应生成CsPbBr3时体积会膨胀2.18倍,而PbBr2薄膜与基底之间的附着力会阻碍其体积膨胀导致残余压应力的生成。因此,多孔PbBr2薄膜可以抵消一部分因与CsBr反应而造成的体积膨胀,PbBr2薄膜的微孔结构为CsPbBr3晶粒的生长提供空间,减小残余压应力的生成,以使CsPbBr3晶粒不受压应力的束缚、自由长大。
(3)、本发明充分利用了碳量子点的能带结构可调性,通过掺杂氮元素,使碳量子点与钙钛矿层间的能带结构更匹配,加速了电子传输过程,降低了空间电荷积累,减少了载流子的复合反应,明显提高了电池性能,将目前全无机CsPbBr3钙钛矿太阳能电池的效率提升至10.71%。
附图说明
图1为本发明所制备的PbBr2薄膜的照片、表面SEM图和截面SEM图。
图2为本发明所制备的CsPbBr3薄膜的表面SEM图和截面SEM图。
图3为本发明所制备的全无机CsPbBr3钙钛矿太阳能电池的效率曲线。
图4为本发明所制备的全无机CsPbBr3钙钛矿太阳能电池经过N-CQDs修饰前后的电池效率曲线。
图5为本发明所制备的全无机CsPbBr3钙钛矿太阳能电池的长期稳定性结果。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细的说明。
实施例1
本实施例提供了一种基于PbBr2微孔调控制备的全无机CsPbBr3薄膜,它通过以下制备方法获得:
(1)、将840~860 mg SnCl2和330~350 mg CH4N2S溶解在25~35 mL去离子水中,在敞口容器中室温高速搅拌20~40 h。离心去除白色沉淀,并用PTFE滤膜过滤,得到黄色透明的SnO2量子点溶液。
(2)、将FTO导电玻璃导电面朝上置于等离子清洗机中清洗,清洗的时间为5~10分钟。将(1)中所述SnO2量子点溶液和等离子清洗后的FTO导电玻璃置于加热台上预热,预热温度均为70~90 oC,SnO2量子点溶液的预热时间为15~30分钟,FTO导电玻璃的预热时间为3~12分钟。
(3)、将预热后的SnO2量子点溶液旋涂在预热后的FTO导电玻璃上,转速为2000~4000 rpm/s,旋涂时间为20~40 s得到FTO/SnO2基底。
(4)、将PbBr2溶解在DMF中,配置成0.7~2 M的溶液,并将其置于80~100 oC的加热台上3~8小时,使之充分溶解;将CsBr溶解在无水甲醇中,配置成0.05~1 M的溶液,超声20~60分钟,使之充分溶解。
(5)、将(3)中所述的FTO/SnO2基底以及所述PbBr2溶液置于一定温度的加热台上预热,FTO/SnO2基底的预热时间为3~12分钟,PbBr2溶液的预热时间为15~30分钟,预热温度分别选择为20~25oC、35~45oC、67~72oC、78~82oC、88~92oC、98~102oC、108~112oC、118~122oC其中之一,并将预热后的PbBr2溶液旋涂在FTO/SnO2基底上,转速为2000~4000 rpm/s,时间为20~40 s。然后放在相同温度的加热台上退火25~45分钟,退火温度与预热的温度需要保持一致,得到PbBr2薄膜。在一定温度下退火,溶剂就会慢慢挥发掉,因此溶质就会过饱和析出,结晶成膜。
(6)、在(4)中所述的PbBr2薄膜上旋涂CsBr溶液,转速为2000~4000 rpm/s,时间为20~40 s,并在240~260 oC加热台上退火5~10分钟,如此反复5~9次,直至形成均匀的黄色CsPbBr3钙钛矿薄膜。
本实施例还提供了一种基于PbBr2微孔调控制备的全无机CsPbBr3钙钛矿太阳能电池的制备方法,它包括以下步骤:
(1)、在30~50 mL去离子水中加入0.3~0.8 g 200目的草莓粉和50~500 μL NH3·H2O,剧烈搅拌10~15分钟后,在160~180 oC下水热3h,制得N-CQDs量子点溶液。随后,用3500D透析膜在去离子水中反复透析,然后在40~70 oC真空干燥箱中干燥直至得到干燥的N-CQDs粉末。最后,将得到的N-CQDs粉末分散在DMF溶液中,得到浓度为8~25 mgmL-1N-CQDs量子点溶液。
(2)、在上述制得的FTO/SnO2/CsPbBr3表面旋涂所述N-CQDs量子点溶液,转速为2000~4000 rpm/s,时间为20~40 s,加热。
(3)、在步骤(2)所述的FTO/SnO2/CsPbBr3/N-CQDs表面刮涂碳电极,加热。
实施例2
本实施例的基于PbBr2微孔调控制备的全无机CsPbBr3薄膜,它通过以下制备方法获得:
(1)、将853 mg SnCl2和338 mg CH4N2S溶解在30 mL去离子水中,在敞口容器中室温搅拌36 h。离心处理除去白色沉淀,并用PTFE滤膜过滤,得到黄色透明的SnO2量子点溶液。
(2)、将FTO导电玻璃导电面朝上置于等离子清洗机中清洗5分钟。将步骤1制备的SnO2量子点溶液和等离子清洗后的FTO导电玻璃置于80 oC的加热台上预热,SnO2量子点溶液的预热时间为20分钟,FTO导电玻璃的预热时间为5分钟。
(3)、将预热后的SnO2量子点溶液旋涂在预热后的FTO导电玻璃上,转速为2000rpm/s,时间为30 s。将一定质量的PbBr2溶解在DMF中,配置成1 M的溶液,并将其置于90 oC的加热台上5小时,使之充分溶解;将一定质量的CsBr溶解在无水甲醇中,配置成0.07 M的溶液,超声40分钟,使之充分溶解。
(4)、将步骤3制备的FTO/SnO2基底以及PbBr2溶液置于90 oC的加热台上预热,FTO/SnO2基底的预热时间为5分钟,PbBr2溶液的预热时间为20分钟,预热温度分别选取25℃、40℃、70℃、80℃、90℃、100℃、110℃和120℃其中之一,然后将预热后的PbBr2溶液旋涂在FTO/SnO2基底上,转速为2000 rpm/s,时间为30 s。然后放在相同温度的加热台上退火30分钟,退火温度与预热温度保持一致,得到PbBr2薄膜。
(5)、在步骤4制备的FTO/SnO2/PbBr2上旋涂CsBr溶液,转速为20000 rpm/s,时间为30 s,并在250 oC加热台上退火5分钟,如此反复7~8次,直到形成均匀的黄色CsPbBr3钙钛矿薄膜。
本实施例中基于PbBr2微孔调控制备的全无机CsPbBr3钙钛矿太阳能电池,它通过以下制备方法制得:
(1)、在40 mL去离子水中加入0.5 g 200目的草莓粉和300 μL NH3·H2O,剧烈搅拌10分钟后,在170 oC下水热3 h,制得N-CQDs量子点溶液。随后,用3500 D透析膜在去离子水中反复透析,然后在60 oC真空干燥箱中干燥直至得到干燥的N-CQDs粉末。最后,将得到的N-CQDs粉末分散在DMF溶液中,得到浓度为10 mg mL-1N-CQDs量子点溶液。
(2)、在制备的FTO/SnO2/CsPbBr3表面旋涂N-CQDs量子点溶液,转速为2000 rpm/s,时间为30 s,加热。
(3)、在步骤(2)制备的FTO/SnO2/CsPbBr3/N-CQDs表面刮涂碳电极,加热。
实施例3、制备的钙钛矿太阳能电池的性能测试
1、分别测试不同结晶温度条件下制备的FTO/SnO2/PbBr2薄膜的照片、表面SEM图以及截面SEM图,如图1所示。
从图1可以看出,图a1-a8分别是在20~25oC,35~45oC,67~72oC,78~82oC,88~92oC,98~102oC,108~112oC,118~122oC的结晶温度下制备的PbBr2薄膜的照片,可以看出,随着结晶温度升高,PbBr2薄膜由透明变成半透明,甚至不透明。图b1-b8和c1-c8分别是在20-25oC,35-45oC,67-72oC,78-82oC,88-92oC,98-102oC,108-112oC,118-122oC的结晶温度下制备的PbBr2薄膜的表面和截面SEM图。从图中可以看出,随着结晶温度升高,PbBr2薄膜中的孔隙逐渐增多,薄膜变厚。由此可知,通过改变PbBr2的结晶温度,可以成功调控PbBr2薄膜的膜孔结构。
2、分别测试FTO/SnO2/CsPbBr3薄膜的表面SEM图和截面SEM图,如图2所示。
从图2可以看出,随着PbBr2结晶温度升高,所制备的CsPbBr3晶粒先变大后减小,CsPbBr3薄膜的厚度也随之增大。这是由于PbBr2结晶温度升高,PbBr2薄膜中的孔隙率增大,具有多孔结构的PbBr2薄膜有利于CsBr溶液的快速渗入,并与之充分接触,有利于PbBr2和CsBr之间的反应更快速、更充分。此外,经计算得知PbBr2与CsBr反应生成CsPbBr3时体积会膨胀2.18倍,而PbBr2薄膜与基底之间的附着力会阻碍其体积膨胀导致残余压应力的生成。因此,多孔PbBr2薄膜可以抵消一部分因与CsBr反应而造成的体积膨胀,减小残余压应力的生成,以使CsPbBr3晶粒不受压应力的束缚、自由长大。当PbBr2的结晶温度为88-92 oC时,CsPbBr3薄膜的晶粒最大可达1.62微米。PbBr2的结晶温度过高时,PbBr2薄膜的孔隙率过高,PbBr2和CsBr反应导致的体积膨胀无法完全填充PbBr2薄膜中的孔隙,导致所生成的CsPbBr3薄膜中存在针孔等缺陷。
3、分别测试全无机CsPbBr3钙钛矿太阳能电池的效率曲线,如图3所示。
从图3可以看出,当PbBr2的结晶温度为88~92oC时,所制备的全无机CsPbBr3钙钛矿太阳能电池的效率最高。
4、分别测试经N-CQDs界面修饰的全无机CsPbBr3钙钛矿太阳能电池的效率曲线,测试结果如图4所示。从图4可以看出,经N-CQDs修饰后,全无机CsPbBr3钙钛矿太阳能电池的效率得到了进一步提升。
5、测试经N-CQDs量子点修饰的全无机CsPbBr3钙钛矿太阳能电池的长期稳定性,测试结果如图5所示。从图5中可以看出,本发明所述CsPbBr3钙钛矿太阳能电池在湿度为70%-90%的环境中放置480小时后电池效率仍能保持原来的87%。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (5)

1.利用全无机CsPbBr3薄膜的全无机CsPbBr3钙钛矿太阳能电池的制备方法,其特征在于它包括以下步骤:
(1)、在去离子水中加入草莓粉和NH3·H2O经搅拌、水热、透析、干燥制得的粉末分散在DMF溶液中制得浓度为8~25 mg mL-1N-CQDs量子点溶液;
(2)、在所述CsPbBr3薄膜表面旋涂N-CQDs量子点溶液,并加热;
(3)、在步骤(2)制得的FTO/SnO2/CsPbBr3/N-CQDs表面刮涂碳电极,并加热;
所述全无机CsPbBr3薄膜通过以下制备方法制得:
1)将SnCl2和CH4N2S溶解在去离子水中,室温高速搅拌,离心,除沉淀,过滤得SnO2量子点溶液,SnCl2和CH4N2S的摩尔比为0.8~1.2:1,SnCl2的摩尔浓度为0.1~0.2 mol L-1
2)将步骤1)中所述SnO2量子点溶液和等离子清洗后的FTO导电玻璃置于加热台上预热;将预热后的SnO2量子点溶液旋涂在预热后的FTO导电玻璃上得到FTO/SnO2基底;所述预热温度为70~90 oC,SnO2量子点溶液的预热时间为15~30分钟,FTO导电玻璃的预热时间为3~12分钟;
3)配制PbBr2溶液和CsBr溶液;将所述的FTO/SnO2基底和PbBr2溶液预热,所述FTO/SnO2基底的预热时间为3~12分钟,PbBr2溶液的预热时间为15~30分钟;
并将预热后的PbBr2溶液旋涂在FTO/SnO2基底上,然后退火,得PbBr2薄膜;所述PbBr2溶液预热温度分别选择为20~25oC、35~45oC、67~72oC、78~82oC、88~92oC、98~102oC、108~112oC或118~122oC;
4)在步骤3)中所述的PbBr2薄膜上旋涂步骤3)中所述的CsBr溶液,然后加热,退火,制得所述CsPbBr3薄膜。
2.权利要求1所述的制备方法制得的全无机CsPbBr3钙钛矿太阳能电池。
3.根据权利要求2所述的全无机CsPbBr3钙钛矿太阳能电池,其特征在于:所述全无机CsPbBr3钙钛矿太阳能电池的开路电压为1.2~1.7 V、短路电流为6~9 mA·cm-2、填充因子为0.6~0.9、光电转换效率为9~11%。
4.权利要求2所述的全无机CsPbBr3钙钛矿太阳能电池在制备电池组件中的应用。
5.权利要求2所述的全无机CsPbBr3钙钛矿太阳能电池在制备电站中的应用。
CN201910552798.3A 2019-06-25 2019-06-25 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用 Active CN110289327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910552798.3A CN110289327B (zh) 2019-06-25 2019-06-25 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910552798.3A CN110289327B (zh) 2019-06-25 2019-06-25 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110289327A CN110289327A (zh) 2019-09-27
CN110289327B true CN110289327B (zh) 2021-05-18

Family

ID=68005461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910552798.3A Active CN110289327B (zh) 2019-06-25 2019-06-25 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110289327B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550655A (zh) * 2018-05-16 2018-09-18 暨南大学 基于喷雾辅助法制备的全无机钙钛矿太阳能电池及其制备方法和应用
CN108807676A (zh) * 2018-05-16 2018-11-13 暨南大学 基于有机光活化层的宽光谱响应无机钙钛矿太阳能电池及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550655A (zh) * 2018-05-16 2018-09-18 暨南大学 基于喷雾辅助法制备的全无机钙钛矿太阳能电池及其制备方法和应用
CN108807676A (zh) * 2018-05-16 2018-11-13 暨南大学 基于有机光活化层的宽光谱响应无机钙钛矿太阳能电池及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Carbon quantum dots as new hole transport material for perovskite solar cells;Sofia Paulo等;《Synthetic Metals》;20160519;第222卷;第17页右栏第3段-第18页左栏第1段 *
One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions;Hong Huang等;《RSC Advances》;20130910;第3卷;第21692页左栏第2段 *
Using SnO2 QDs and CsMBr3 (M=Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V;Yuanyuan Zhao等;《Sol. RRL》;20190108;第3卷(第3期);第1800284.2页右栏第2段,Supporting Information 第21页第2段-第22页第3段 *
Yuanyuan Zhao等.Using SnO2 QDs and CsMBr3 (M=Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V.《Sol. RRL》.2019,第3卷(第3期), *

Also Published As

Publication number Publication date
CN110289327A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN109560204B (zh) 一种钙钛矿薄膜及其制备方法和其应用
CN112436091B (zh) 一种稀土离子掺杂的新型钙钛矿太阳能电池
CN112542549B (zh) 一种宽带隙钙钛矿太阳能电池及其制备和应用
CN109192860B (zh) 一种三元混合溶剂的钙钛矿太阳电池制备方法
CN114649480B (zh) 一种掺杂全氟有机化合物的钙钛矿型太阳能电池及其制备方法
CN113471366B (zh) 基于环己甲胺碘盐的2d/3d钙钛矿太阳能电池的制备方法
CN114914362A (zh) 一种高效稳定钛矿太阳能电池的制备方法
CN113416213B (zh) 有机鏻鎓盐分子在钙钛矿太阳能电池中的应用及其器件的制备方法
CN108878657B (zh) 一种高效率碳基钙钛矿太阳能电池的制备方法
CN110289327B (zh) 基于PbBr2微孔调控的全无机CsPbBr3钙钛矿太阳能电池及其制备方法和应用
CN116253694B (zh) 配体、金属有机框架材料及其应用和钙钛矿太阳能电池
CN108878662B (zh) 一种在Perovskite中掺杂PEDOT:PSS的钙钛矿太阳能电池的制备方法
CN114149580B (zh) 一种刚性扭曲微孔聚合物-磺化聚醚砜多孔复合膜及其制备方法和应用
CN111276566B (zh) 基于液相连续旋涂直接相转变法制备的全无机钙钛矿太阳能电池及其制备方法和应用
CN114284437A (zh) 一种铵盐修饰SnO2电子传输层制备高效钙钛矿太阳能电池的方法
KR101405588B1 (ko) 다공성 박막 필름 고체 전해질 제조방법 및 이를 이용하여 제조한 염료감응 태양전지
CN105826078A (zh) 薄带状纳米镍及其制备方法和应用
CN112687802B (zh) 钙钛矿电池的电子传输层及其制备方法、钙钛矿电池
CN113078266B (zh) 一种多酸修饰的二氧化钛纳米材料及其制备方法和应用
CN113178522B (zh) 基于卤素化羟基氧化物量子点界面层的钙钛矿太阳能电池及制备方法
CN114695679B (zh) 一种制备可机械损伤自修复的钙钛矿薄膜的方法
CN116082776B (zh) 一种电致变色器件用聚合物固态电解质胶膜及其制备方法和应用
CN110165060B (zh) 一种无孔洞空穴传输层的制备方法
CN116234337A (zh) 一种邻苯二甲酸氢钾改性MAPbI3钙钛矿太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200910

Address after: Room 304, R & D Building 1, science and Technology Park, Shandong University of science and technology, 579 qianwangang Road, Huangdao District, Qingdao, Shandong Province 266000

Applicant after: Qingdao yienfang energy and Environmental Protection Technology Co., Ltd

Address before: 511400 No. 106 Fengze East Road, Nansha District, Guangzhou City, Guangdong Province (Building No. 1), X1301-H6893 (Cluster Registration) (JM)

Applicant before: Guangzhou Yienfang Energy and Environmental Protection Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant