CN110285020B - 用于调节风力发电机的调节设备的方法 - Google Patents
用于调节风力发电机的调节设备的方法 Download PDFInfo
- Publication number
- CN110285020B CN110285020B CN201910620924.4A CN201910620924A CN110285020B CN 110285020 B CN110285020 B CN 110285020B CN 201910620924 A CN201910620924 A CN 201910620924A CN 110285020 B CN110285020 B CN 110285020B
- Authority
- CN
- China
- Prior art keywords
- drive
- drive shafts
- adjustment
- movable part
- tensioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 18
- 230000001105 regulatory effect Effects 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 13
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 241000555745 Sciuridae Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/79—Bearing, support or actuation arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/60—Control system actuates means
- F05D2270/62—Electrical actuators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
为了能在调节时对风力发电机的可动部分更好地进行控制,可规定:在调节之前,驱动轴(11‑1、11‑2、11‑3、11‑4)相对于彼此这样张紧,即通过至少一根驱动轴(11‑1)相对于其它驱动轴(11‑2、11‑3、11‑4)旋转,并且在调节期间,各驱动轴(11‑1、11‑2、11‑3、11‑4)在保持驱动轴(11‑1、11‑2、11‑3、11‑4)张紧的情况下借助位置控制而共同沿相同的旋转方向旋转,直到达到可动部分期望的最终位置()为止。
Description
技术领域
本发明涉及一种用于调节风力发电机的调节设备的方法,风力发电机的可动部分借助该调节设备转动,其中,调节设备包括至少两个驱动轴,驱动轴分别具有驱动电机,驱动轴与可动部分联接,并且本发明涉及一种包括这种调节设备的风力发电机。
背景技术
风力发电机通常具有用于风力发电机的不同可动部分的调节设备,例如是风轮桨叶调节或方位角调节,以便能针对变化的风力条件(风速、风向等)调整风力发电机,并且借此主要提高能量输出。这些调节设备常常具有多个较小的、共同作用的驱动电机,而不是单个较大的驱动电机。驱动电机通过传动小齿轮通常作用到共同的链轮齿,以便调节风力发电机的可动部分。链轮齿在此常常是位置固定地固定,例如在方位角调节时布置在塔处,或在机舱的轮毂(作为准静止部分)处用于风轮桨叶调节。驱动电机与传动小齿轮一起固定在可动部分处。但是,这一结构也可是反过来的。在此情况下,可动部分和位置固定部分通过轴承、滚动轴承或滑动轴承相互连接。在驱动电机与传动小齿轮之间通常也布置有传动机构、常常是行星齿轮,该行星齿轮作为液力变矩器起作用,即,驱动电机的高转速和低转矩在传动小齿轮处的更低的转速的情况下转化为较高的转矩。此外,常常尤其是在滚动轴承的情况下,也设有制动装置、通常是一个大多数情况下为液压的调节制动器,以便能对风力发电机的可动部分制动或固定。在滑动轴承中通常不设有大多数情况下为液压的制动装置。在制动装置中可设有位置固定的制动环,布置在可动部分处的制动块作用到该制动环上。这一布置(结构)也可以是反过来的。附加地或替代地,驱动电机也可配备有保持制动器(停止制动器)。
在风力发电机的调节设备的驱动轴中,即驱动电机(如果必要则有传动小齿轮与链轮齿之间的传动机构和啮合部)存在较大的机械间隙和较大的弹性。例如,在传动小齿轮的齿与链轮齿之间,范围为从0.5mm至1mm之间的间隙并不少见。附加地,在驱动轴中设有较大的传动比,传动比通常是在1:20000的数量级。因此,为了将驱动电机的转矩传递到链轮齿,必须首先克服驱动轴中的间隙和弹性。为此,驱动电机的驱动轴的多次转动是必要的。由于该原因,特别是在风载荷作用下,调节设备的调节比外部看起来的更复杂。如果调节设备的液压制动(器)和/或驱动电机的停止制动(器)松开,则风可使运动的部分不受控地沿电机旋转方向旋转,直到间隙和弹性能被克服,并且驱动电机能将转矩传递到链轮齿上。为了避免这种情况,在具有调节制动的风力发电机的情况下,调节制动不会被完全打开,由此剩余制动力矩能反作用于不受控的调节运动。但是,这在调节制动(器)处产生磨损,并且由于部分松开的调节制动器而导致较大的噪音负担(制动尖叫声),这也可能在风力发电机认证时导致问题。
为了排除这一问题,在EP 2 101 058B1中也已提出了:将至少一种调节驱动件控制成其转速与其它调节驱动件的转速不同,使得该调节驱动件引起制动力矩。以此方式,调节驱动件被张紧并且克服机械间隙和弹性。调节驱动件实施为受变频器控制的电动马达,借此能调整转速或转矩。在这种情况下缺点在于,起作用的制动力矩是确定的。在较低的风载荷的情况下,这一制动力矩通常过高,这使得这类调节在所耗费的能量方面是低效率的。在高风载荷的情况下,在调节设备进行调节时,制动力矩仍会由外部负载来克服,并且调节设备的可动部分不受控地进行调节。由于转速控制或转矩控制,张力因此被消除,并且可能失去对可动部分(例如,机舱)的控制。
发明内容
因此,本发明的任务是提出一种用于调节风力发电机的可动部分的方法和调节设备,借助它们可在调节时对风力发电机的可动部分的运动进行控制。
该任务这样解决,即,在调节之前,各驱动轴相对彼此这样张紧,即通过至少一根驱动轴相对于其它驱动轴旋转,并且在调节期间,各驱动轴在保持驱动轴张紧的情况下借助位置控制来共同沿相同的旋转方向旋转,直到达到期望的可动部分的最终位置。通过张紧,在本来的调节之前,对各驱动轴彼此之间的经定义的位置进行调整。通过如下的位置控制保持张紧状态,因为始终是所有驱动轴共同借助位置控制而沿相同的方向进行旋转。为了位置控制,在驱动轴中使用角度位置传感器,其将驱动轴的角度位置例如提供给驱动电机,该角度位置在位置控制中作为位置控制的位置实际值进行处理。由此,位置控制用于使得调节始终能受控地进行,因为直接对位置、即驱动轴的角度位置进行调整。
附加地,位置控制也用于:当作用过强的风试图沿旋转方向对风力发电机的可动部分进行加速时,自动对驱动轴制动。这尤其是在驱动轴的总力矩与运动相反地定向的实施方式中是有利的。如果风较强使得风对可动部分与制动作用相反地进行加速,则其它驱动轴由于位置控制而制动地进行支持。由此阻止了可动部分由于风导致的不受控的运动。
有利的是,在张紧时,尤其是当该总力矩反作用于可动部分的期望运动时,将期望的总力矩调整为驱动轴的各单个驱动力矩之和。该总力矩由此制动地并作为阻尼地在调节时起作用。
优选地,通过如下方式进行张紧,即、通过至少一根驱动轴沿与其它驱动轴相反的旋转方向旋转,或者通过所有驱动轴沿相同的旋转方向旋转,其中,至少一根驱动轴转得比其它驱动轴更慢,或者通过至少一根驱动轴被保持(停住),而其它驱动轴旋转。
优选地,张紧这样保持,即,通过借助位置控制,将驱动轴的驱动电机在张紧时达到的相对位置相对于彼此进行保持。
特别有利的是,(一根)驱动轴确定为主驱动轴,而其它驱动轴跟随该主驱动轴的运动。由此可确保:特别精确地维持各驱动轴相对于彼此的相对位置,因为从驱动轴跟随主驱动轴的实际运动。
对于调节特别有利的是,驱动轴在张紧与调节开始之间再次被重新张紧,因为借此在调节之前对张紧状态的可能的、不期望的改变进行了补偿,这是用于特别良好且可靠的调节的。
附图说明
在下文中将参照图1至图6更详细地阐述目标发明,图1至图6示例地、示意性地并且非限制地示出本发明有利的设计构造。其中,
图1示出风力发电机的典型的实施形式,
图2示出具有作为风向跟踪的驱动轴的调节设备的一实施形式,
图3示出驱动轴在调节设备处的布置,
图4示出调节设备用于使可动部分旋转的调节,
图5示出对驱动轴的控制的有利的实施形式,并且
图6示出用于保持(停住)可动部分的驱动轴的张紧。
具体实施方式
本发明不限制普遍性地、示例性描述用于风力发电机1的机舱3的方位角调节(风向跟踪(件)7)。自然地,本发明也可在用于风力发电机1的可动部分的其它调节设备中使用,其中设有至少两个驱动轴11,例如用于调节风轮桨叶4的定位的风轮桨叶调节件6。
图1示出具有位置固定的塔2的典型的风力发电机1,机舱3布置在塔2上。在机舱3处布置有传动系统8,传动系统8通常由风轮(轮毂5,在轮毂5处布置有风轮桨叶4)和发电机构成,它们通过轴相互连接,其中,轴自然对应地受支承。常常在传动系统8中、在发电机之前也设有传动装置并且可能也设有制动器。发电机由风轮驱动。风轮桨叶4的定位可通过作为调节设备10的风轮桨叶调节件6来进行调节。同样地,机舱3借助作为调节设备10的风向追踪件7布置为能围绕塔2的垂直轴线18旋转。风轮桨叶4或机舱3由此是风力发电机1的可动部分,其根据需求进行调节,具体是进行旋转,例如以便根据当前的风改变风轮桨叶4的定位,或以便跟踪当前的风向。
图2中示出了风力发电机1的可动部分的根据本发明的调节设备10的驱动轴11,调节设备10在该情况下以风向跟踪件7为例。经由轴承17、在此是滚动轴承,机舱3可旋转地布置在塔2处。机舱3由此被支承为能围绕塔2的垂直轴线18旋转。此外,可设有调节制动器19,该调节制动器例如具有在塔2处的制动环25,并且例如具有在机舱3处可液压操作的制动钳26,这些制动钳26能与制动环25一起作用以供制动。驱动轴11为了调节与风力发电机1的可动部分机械联接,例如用于使可动部分旋转。轴承17自然也可实施为滑动轴承,并且调节制动器19也可省去。
驱动轴11由驱动电机12与驱动传动机构13组成,该驱动电机驱动可动的联接部分27、在所示实施例中为传动小齿轮14,如图2所示。驱动电机12可以是电动机,例如是异步电动机、例如鼠笼式电动机,或例如是同步电动机,例如永磁体激励式或电磁激励式同步电动机。但是,驱动电机12也可以是液压马达或任何其它合适的马达。在驱动电机12和联接部分27(传动小齿轮14)之间通常还设有驱动传动机构13,例如是行星齿轮。传动小齿轮14与在塔2处位置固定地布置的联接部分28共同作用以与其机械联接,在所示实施例中为具有外啮合齿的链轮齿16。在传动小齿轮14旋转时,机舱3可因此相对于塔2旋转,例如从而使机舱3跟踪风向。调节设备10由至少两个这样的驱动轴11构成,其中,每个驱动轴11作用到同一个位置固定的联接部分28(链轮齿16)上。自然地,该布置仅是示例性的,并且也可实施为任何其它的。例如,链轮齿可实施为具有内啮合齿。同样地,链轮齿16可布置在机舱3处(由此,可以与机舱一起运动),并且驱动轴11位置固定地布置在塔2处。驱动电机12也可实施为具有电气、气动或液压停止制动器(保持制动器)23。由此,驱动轴11也可独立于或附加于调节制动器19被保持。具体实施形式对于本发明是不太重要的。
替代用于机械联接的传动小齿轮14和链轮齿16,用于传动轴11与风力发电机1的可动部分之间的机械联接的其它可动联接部分27和位置固定的联接部分28也是可能的,例如,分别由驱动电机12驱动的摩擦轮、皮带传动或链传动。
根据本发明,设有用于调节设备11的至少两个驱动轴11、例如是如图3所示的四个驱动轴11-1、11-2、11-3、11-4(其中为了简化仅示出了驱动电机12-1、12-2、12-3、12-4)。
如在上文阐释的,在驱动轴11中可存在较大的间隙,特别是在传动小齿轮14与链轮齿16之间的齿隙以及在调节驱动件13中的可能的齿隙,或是在其它机械联接中的间隙,以及出现较大的弹性,例如是由于传动比和抗扭强度。为了能将驱动电机12的旋转运动传递到风力发电机1的可动部分上,首先必须克服间隙和弹性。例如,所有作用的传动装置的齿面先必须沿旋转方向相互紧贴。风力发电机1的可动部分、这里是机舱3然后才能由驱动轴11运动。然而,为此可能需要驱动电机12非常多圈旋转。这可能导致调节设备10的运动和控制方面显著的问题,尤其是因为同时较大的、外部的、动态的风力可能作用为调节设备10的载荷。
为了消除这一问题,根据本发明使用驱动轴11的位置控制。借助驱动轴11的位置控制对驱动电机12的角位置进行调整。驱动轴11的位置控制的主要特征在于,设有驱动电机12(或等同地为驱动轴11的其它部分)的位置反馈,该位置反馈在驱动控制单元24(硬件和/或软件)中进行处理,以便调整驱动电机12(或等同地为驱动轴11的其它部分)的角度位置,该驱动控制单元例如由驱动放大器20(硬件和/或软件)和调节控制单元21(硬件和/或软件)构成。驱动放大器20可在此情况下也集成在驱动电机12中。为了进行位置反馈,在驱动电机12处可设有角度位置传感器15,该角度位置传感器提供作为位置值的传感器值M,根据该位置值可以推出驱动电机12的旋转角度。这样的角度位置传感器15以不同的实施形式充分已知,例如作为旋转编码器或解角器。驱动放大器20产生对于驱动电机12必需的调节变量,例如用于电驱动电机12的电力供应,例如用于作为驱动电机12的三相电机的三个相电压U、V、W,以便在每个时间点实现所期望的旋转运动。对于其它类型的驱动电机12,自然地也可使用其它调节变量,例如用于液压阀的调整命令或在液压马达的情况下是用于液压泵的调整命令。驱动电机20也可处理控制信号S以进行位置控制,控制信号S例如由调节控制单元21(硬件和/或软件)提供。驱动控制单元24或调节控制单元21可又由风力发电机1的设备控制装置22进行控制。驱动控制单元24或调节控制单元21当然可在设备控制装置22中执行、例如作为软件。调节控制单元21和驱动放大器20可作为共同的硬件执行。同样可能的是,调节控制单元21、驱动放大器20和设备控制装置22作为共同的硬件来执行。同样,多个驱动放大器20作为共同的硬件来执行,该硬件受调节控制单元21控制。在一有利的设计构造中,设有调节控制单元21,该调节控制单元控制驱动轴11-1、11-2、11-3、11-4的至少一个驱动放大器20-1、20-2、20-3、20-4、一组驱动放大器20-1、20-2、20-3、20-4或所有驱动放大器20-1、20-2、20-3、20-4。每个驱动轴11-1、11-2、11-3、11-4的驱动控制单元24-1、24-2、24-3、24-4则例如由同样的调节控制单元21和相应的驱动放大器20-1、20-2、20-3、20-4构成。驱动放大器20或也是调节控制单元21或总体上驱动控制单元24也可控制驱动电机12的可能现有的停止制动器23。
将根据图4,以具有四个驱动轴11-1、11-2、11-3、11-4的调节设备10为例(如图3所示)阐释调节设备10的根据本发明的方法。
在调节开始时,优选地,关闭驱动电机12-1、12-2、12-3、12-4的可能现有的保持制动器23,并且关闭可能现有的调节制动器19。在t0时刻,上一级的设备控制装置22将用于调节的指令B给到驱动轴11-1、11-2、11-3、11-4的驱动控制单元24-1、24-2、24-3、24-4,在所描述的实施例中是给到调节控制单元21处,该调节控制单元21控制至少一个驱动放大器20-1、20-2、20-3、20-4。因此,可能现有(存在)的并且关闭的停止制动器23作为准备性操作而被松开。
作为根据本发明的方法的第一步骤,驱动轴11-1、11-2、11-3、11-4在原本的调节之前、优选地在风力发电机1的可动部分的静止状态中被张紧。为此,至少一根驱动轴11-1相对于其它驱动轴11-2、11-3、11-4旋转。例如,为了张紧,至少一个驱动轴11-1可沿其它驱动轴11-2、11-3、11-4的相反的旋转方向运动。替代地,也可通过所有驱动轴11-1、11-2、11-3、11-4沿相同的旋转方向旋转来张紧,其中,但至少一根驱动轴11-1比其它驱动轴11-2、11-3、11-4旋转得更慢,或通过在其它驱动轴11-2、11-3、11-4旋转、优选地但非强制地沿相同旋转方向旋转期间,使至少一根驱动轴11-1停止来张紧。当然,这些张紧的可能性也可组合。在张紧状态中,借助已知的、预先给定的或经配置的转矩使驱动电机12-1、12-2、12-3、12-4不会进一步旋转,由此克服了间隙和弹性。这一力矩当然通过驱动电机12-1、12-2、12-3、12-4和/或驱动轴11-1、11-2、11-3、11-4的部件进行限制,以避免损坏或过载。
张紧也可以这样进行,使得驱动轴11-1、11-2、11-3、11-4首先以第一转矩张紧,从而确保实际上会克服间隙和弹性,并且实际上会抵抗位置固定的联接部分28、例如链轮齿16而张紧。该第一转矩当然选择为使得可靠地克服间隙和弹性。在这一初始的第一转矩之后,张紧能以与其相对的、较低的第二转矩结束。通过该较低的第二转矩产生了用于控制驱动轴11-1、11-2、11-3、11-4的更高的转矩储备。从较高的第一转矩到较低的第二转矩的过渡可以在此任意地进行、由此例如是跳跃式的或也可以是连续的。
张紧可基本上任意地进行,例如借助在驱动控制单元24-1、24-2、24-3、24-4中的驱动轴11-1、11-2、11-3、11-4的转速控制、转矩控制或位置控制。如果对于每个驱动轴11-1、11-2、11-3、11-4调整期望的转矩,则优选地使用转矩控制,即,驱动轴11-1、11-2、11-3、11-4的驱动放大器20-1、20-2、20-3、20-4调整期望的、例如由调节控制单元21或设备控制装置22预先给定的或经配置的张紧力矩。在此情况下也可规定,各单独的驱动轴11-1、11-2、11-3、11-4的所有所产生的驱动力矩的总力矩不必是零。也可调整与可动部分的期望的旋转方向相反的剩余力矩,其然后用作制动力矩,以便用作相对于外部作用的风的阻尼。在张紧时,驱动轴11-1、11-2、11-3、11-4旋转直到克服了机械间隙和弹性为止,这也是借助转速控制或位置控制可实现的。
借助转矩控制的张紧有时可能持续相对长。为了对此进行改进,可以规定,提前确定对于达到特定的张紧状态(用于张紧的转矩)所必需的相对位置。然后张紧也可借助位置控制简单地进行、即通过向驱动轴11-1、11-2、11-3、11-4的位置控制器预先给出所需的理论位置来进行,以便达到相对位置。在这种情况下,也可借助位置控制进行粗定位,粗定位可以非常快速地执行,并且之后借助转矩控制进行精定位以便精细地调整该转矩。以此方式,张紧比起借助单单转矩控制能明显更快地执行。
为了确定所需的相对位置,可在调节设备10空载的情况下使至少一个驱动轴11-1相对于其它驱动轴11-2、11-3、11-4旋转,并且在此情况下可获取所达到的转矩和所达到的相对位置。当然,也可调整(例如、借助转矩控制)特定的转矩并且获取所属的相对位置,或者反过来可行进到特定的相对位置并且获取所调整的转矩。这可以在所得到的转矩-相对位置曲线上的多个点上完成。由此,可在所获取的点之间进行插值,或可将回归曲线置于所获取的点中,以便获得在该转矩范围上的特征曲线。也可对于不同的温度执行这一确定(计算)。由此可以由所确定的关系快速地确定和调整对于用于张紧所期望的转矩所需要的相对位置,这可能也取决于不同的温度。对于关系的确定也能以特定的时间间隔进行重复,以便考虑到变化的运行状态和/或也考虑到可能的老化的影响或磨损的影响。所确定的关系当然也以合适的方式存储,例如作为表格、曲线或特征曲线,以便在运行期间使用它。
在图4的示例中示出了驱动轴11-1、11-2、11-3、11-4的转速n1、n2、n3、n4。显然的是,第一驱动轴11-1调整转速n1,该转速与其它驱动轴11-2、11-3、11-4的转速n2、n3、n4相反地定向。在张紧状态中,可借助一定的的、预先给定的或经配置的力矩使驱动电机12-1、12-2、12-3、12-4不进一步旋转,因此四个驱动轴11的转速n1、n2、n3、n4下降到零。
在张紧状态中,大多数时候存在的调节制动器19松开,这根据实施形式可持续几秒钟。在此应注意的是,张紧本身也可在松开的或不存在的调节制动器19的情况下执行。在t1时刻,例如由设备控制装置22引入原本的调节过程。最迟在该时刻时,调整为驱动轴11-1、11-2、11-3、11-4的位置控制,优选地是在该时刻之前,例如在张紧过程结束之后。进行位置控制从而保持张紧。为此,所有驱动轴11-1、11-2、11-3、11-4共同在保持张紧的情况下沿相同的旋转方向调节。在此情况下,驱动轴11-1、11-2、11-3、11-4的张紧(张力)优选地不要下降、至少不要过强地下降,但却可增加。这例如发生,使得驱动轴11-1、11-2、11-3、11-4对于彼此的相对位置通过位置控制而保持不变。在调节时,驱动轴11-1、11-2、11-3、11-4基本上调节为沿相同的旋转方向转过相同的旋转角度。“基本上”因此,这是因为由于不可避免的调节精度、测量精度、驱动轴11-1、11-2、11-3、11-4中的与生产有关的偏差等,所以各单独的驱动轴11-1、11-2、11-3、11-4中的旋转角度通常不会精确一致。
为了改进位置控制,也可执行主/从式控制,根据图5阐释该控制。图5示出实施例的四个驱动轴11-1、11-2、11-3、11-4,分别具有驱动放大器20-1、20-2、20-3、20-4和对应的驱动电机12-1、12-2、12-3、12-4(传动系的其它部件、例如传动机构13出于简化目的并未示出)。(一个)驱动轴11-1、11-2、11-3、11-4被确定作为主驱动轴11-2,并且从调节控制单元21获得位置标称值(理论值)Sp。其它驱动轴11-1、11-3、11-4从主驱动轴11-2的驱动放大器20-2获得相应的位置标称值SS。从主驱动轴11-2传到从驱动轴11-1、11-3、11-4处的位置标称值SS优选地为借助主驱动电机12-2的角度位置传感器15获得的角度实际值MM。由此,从驱动轴11-1、11-3、11-4精确地遵循主驱动轴11-2的运动。但是也可能的是,设有超过一个主驱动轴11-2,其中,为每个主驱动轴11-2处分配有一些从驱动轴11-1、11-3、11-4。然后,如所述地进行对每个主驱动轴11-2及其从驱动轴11-1、11-3、11-4的控制。
在另一种设计构造中,位置标称值SP也可从调节控制单元21传递到所有从驱动轴11-1、11-3、11-4处以便调节。
也可设想这样的结合:设有至少一个主驱动轴11-2和至少一个从驱动轴11-1、11-3、11-4,并且其它从驱动轴11-1、11-3、11-4直接获得位置标称值SP。
为了实现该控制,驱动轴11-1、11-2、11-3、11-4的驱动放大器20-1、20-2、20-3、20-4可相互连接用于数据通信,和/或通过合适的通信总线、例如POWERLINK或CAN而与调节控制单元21相互连接用于数据通信。
从例如呈旋转角度形式的位置标称值SP、SS和作为控制的实际值所获取的传感器值M(或者由此得出的旋转角度)中,在驱动放大器20中根据通常作为软件执行的调节器(例如在PID调节器中)计算出所需要的控制的调节变量,例如是电力供应(电源)U、V、W,该调节变量是需要的,由此可使位置实际值遵循位置标称值。代替电力供应,在驱动放大器20中也可计算其它数值作为调节变量,例如在已知的PWM(脉冲宽度调制,Pulsweitenmodulation)控制的情况下的占空比或脉冲/间隔比,该数值然后在驱动电机12中自行换算为电力供应。在该情况下,控制和功率电子(用于提供电力供应使用)也可分开。这类在驱动件中的位置控制是充分已知的,因此不必再进一步对其详细研究。
为了使所有驱动轴11-1、11-2、11-3、11-4进行控制位置以对调节设备10进行调节,由调节控制单元21预先给出位置标称值SP,该位置标称值由驱动轴11-1、11-2、11-3、11-4实现,例如像参照图5阐释的。在该情况下,位置标称值SP自然对应于所需要的值,以便借助调节设备10使风力发电机1的可动部分旋转到期望的最终位置中,例如沿期望的方向旋转10°。
该实现(转化)可再次以各种的方式进行。例如,在主驱动放大器20-2中可构造有速度斜坡,以便实现位置预先给定值,例如如图4所示。为此,主驱动轴11-2可在t1时刻首先以预先给定的或经配置的加速度、例如可能的最大加速度进行加速,直到达到预先给定的或经配置的调节速度nv为止。从驱动轴11-1、11-3、11-4如上所述地跟随该主运动。当然,所有的驱动轴或某些驱动轴11-1、11-2、11-3、11-4也可从设备控制件21获得位置标称值SP,并且借助相同的速度斜坡实现。取代速度斜坡,当然也可实现每种其它的速度曲线。通过经配置的或预先给定的速度斜坡,驱动轴11-1、11-2、11-3、11-4会及时减速,从而在速度斜坡的末端(结尾)处实现期望的最终位置例如是期望的旋转角度。这样的速度斜坡或任意其它的速度曲线是能简单地计算出的。
替代地,调节控制单元21当然同样可实现期望的速度曲线,并且以预先给定的时间步长、例如在毫秒范围内的时间步长向各驱动放大器20预先给定旋转角度。在此情况下,可再次执行主/从式构造,在该构造中,仅主驱动放大器20-2获得待调整的旋转角度,而从驱动轴11-1、11-3、11-4再次跟随,或者又可能是所有驱动放大器20-1、20-2、20-3、20-4由调节控制单元21获得旋转角度。
然而,也可能的是,调节控制单元21的设备控制装置22(或驱动放大器20-1、20-2、20-3、20-4)仅给出用于沿期望的旋转方向调节的指令,并且驱动轴11-1、11-2、11-3、11-4随后借助确定的速度曲线加速,直到达到调节速度nv为止,并且接着以调节速度nv继续旋转,直到设备控制装置22给出用于停止的指令为止。为了停止,可以又执行或构造对应的速度曲线,例如具有最大减速度的制动,直到停止状态为止。这也可以优选地又以驱动轴11-1、11-2、11-3、11-4的主/从式构造来实现。
如图4中清楚的,驱动电机12-1、12-2、12-3、12-4的转速n1、n2、n3、n4在借助位置控制进行调节时基本上(在可达到的精度之内)是相同的,因为调节的是基本上相同的旋转角度,以便维持驱动轴11-1、11-2、11-3、11-4的张紧。
在t2时刻,驱动轴11-1、11-2、11-3、11-4的驱动电机12-1、12-2、12-3、12-4被置于停止状态,由此调节运动结束。
之后,只要存在,驱动电机12-1、12-2、12-3、12-4的停止制动器23和/或调节设备10的调节制动器19就可关闭。
在本发明的一有利的设计构造中,在本来的调节之前,即在t1时刻之前,驱动轴11-1、11-2、11-3、11-4再一次地重新张紧。在初始的张紧与本来的调节之间,例如在调节制动器19打开期间,可能由于外部作用的风载荷而产生调节设备10的不受控的调节。由此,张紧状态可能以不期望的方式改变,这可能对后续的调节产生负面影响。为了避免该情况,驱动轴11-1可使多个或所有驱动轴11-1、11-2、11-3、11-4再次重新张紧,以便再次产生经定义的张紧状态,例如期望的、起作用的总力矩。在根据图4的实施例中,第一驱动轴11-1再次这样地重新张紧,即通过第一驱动轴11-1的驱动电机12-1再次沿预先给定的旋转方向工作,直到达到期望的张紧状态为止。
同样可以有利的是,在结束的调节运动之后再次重复驱动轴的张紧,以便再次产生定义的张紧状态。在该情况下,重复并不强制地意味着,以与调节运动开始时相同的转矩或以相同的类型和方式进行张紧,而仅意味着驱动轴11-1、11-2、11-3、11-4进行再一次张紧。由此,可有利地在下一次调节运动之前缩短张紧所需要的时间。在已结束的调节运动之后的这一后张紧(再张紧)可在如有必要则存在的驱动电机12-1、12-2、12-3、12-4的停止制动器23和/或调节设备10的调节制动器19关闭之前或之后进行。
本发明的另一优点在于,对风力发电机1的可动部分的停住仅借助调节设备10的驱动轴11-1、11-2、11-3、11-4是可能的。由此,特别是在调节设备10的完全打开的调节制动器19的情况下,尽管有风,调节运动仍是可能的。然而,这也可用于保持调节设备10的可动部分,如下文所实施的。
如已经实施的,可动部分可通过调节制动器19来制动和/或通过在作为轴承17的滑动轴承中的摩擦和/或借助在驱动轴11-1、11-2、11-3、11-4中的保持制动器23来制动。在所有情况下可能发生的是,外部风载荷是较大的,例如在离岸风力发电机遭遇台风的情况下,从而所施加的制动力矩被克服,并且风力发电机1的可动部分由于作用的风而不受控地旋转。这会由于在调节制动器19或保持制动器23中不能避免的磨损而变得更糟,因为随着渐进的磨损,制动效果可能减弱。为了消除或至少缓和该问题,驱动轴11-1、11-2、11-3、11-4根据本发明也可用于使可动部分停住,例如用于制动支持。
为了保持,由此出发:驱动轴11-1、11-2、11-3、11-4在保持开始时,在t1时刻如上所述地被张紧。为了保持,有利的是,在张紧时优选地均匀地分配驱动轴11-1、11-2、11-3、11-4,即,例如,相同多的驱动轴11-1、11-2沿一个方向旋转并且沿另一个方向旋转,因为风能使可动部分沿两个方向旋转。在如图3所示的四个驱动轴11-1、11-2、11-3、11-4的情况下,优选地使两个驱动轴11-1、11-2沿一个方向旋转以便张紧,并且另外两个驱动轴11-3、11-4沿另一方向旋转,如图6所示。同样地,为了使可动部分停住,在张紧时,优选地调整成总力矩为零。
在张紧的驱动轴11-1、11-2、11-3、11-4的情况下,现在为了使可动部分停住,通过控制(调节)来保持驱动轴11-1、11-2、11-3、11-4的经调整的张紧(又在可能的精度内)。这可有利地再次借助位置控制进行,然而也可借助转矩控制或也可借助转速控制进行。只要张紧还有效,风力发电机1的可动部分就不会运动。在用于维持张紧的控制中,驱动轴11-1、11-2、11-3、11-4可因此运动,以便补偿由于风可能产生的对张紧的外部干扰。
如果由于作用的风产生的外力太大,使得张紧被风克服,但这会导致可动部分的运动。因此,停住只能确保到某一确定的风载荷为止,该确定的风载荷又取决于经调整的张紧状态。可动部分的这些运动是可接受的,或可通过规则再修正。例如,在驱动控制单元24-1、24-2、24-3、24-4中可设有对可动部分的位置的叠加的规则,借助该规则在保持开始时对控制部分的初始位置进行调整。该规则可如上文对于可动部分的调节所描述地执行。
例如,可对于每个驱动轴11-1、11-2、11-3、11-4预先给定作为位置标称值Sp的理论位置,该标称值对应于保持开始时的初始位置或张紧之后的位置。为此,可例如对每个驱动轴11-1、11-2、11-3、11-4预先给定相应的初始位置作为位置标称值Sp。由此,驱动轴11-1、11-2、11-3、11-4通过位置控制保持在初始位置中,并且可能的、由于风导致的外部干扰由此被调整。如果尽管有工作的驱动轴11-1、11-2、11-3、11-4可动部分仍然由于作用的风而产生不期望的旋转,则初始位置可通过位置控制重建并且校正可动部分的旋转。然而,也可对驱动轴11-1、11-2、11-3、11-4的相对于彼此的相对位置进行调整,由此可以进行可动部分的可能的旋转。可动部分的这样的旋转可通过对可动部分的位置的叠加的控制来进行补偿。
可动部分的保持也可在关闭的调节制动器19的情况下进行,由此实现对调节制动器19的支持。如果在打开的调节制动器19的情况下或在没有调节制动器19的调节设备10的情况下进行对可动部分的保持,则驱动轴11-1、11-2、11-3、11-4也可唯一地产生抵抗作用的风的保持(制动)可动部分的制动效果。
然而,保持也可借助转速控制实现。在此,例如可预先给定驱动轴11-1、11-2、11-3、11-4为零的转速作为标称值,该转速然后由驱动轴11-1、11-2、11-3、11-4的控制(规则)进行调整。由风产生的可能带来旋转的外部干扰由此受调整。同样地,这可借助转矩控制来实现,借助该转矩控制可对影响到可动部分上的转矩进行调整。在这些情况下,可动部分的旋转也可通过控制(规则)进行补偿,例如通过对可动部分的位置的上一级控制。
无论是否借助位置控制、转速控制或转矩控制,保持的目的是借助驱动轴11-1、11-2、11-3、11-4来抵抗起作用的风而固定住调节设备10的可动部分,并且这直到某一风载荷为止是可能的。
因为驱动电机12-1、12-2、12-3、12-4通常借助在电机轴上的通风机进行冷却,并且该通风机在停止状态中不旋转或在低转速的情况下仅缓慢旋转,优选地也可监测驱动电机12-1、12-2、12-3、12-4的温度,从而避免热过载。为了将驱动电机12-1、12-2、12-3、12-4的热载荷保持为尽可能低,当不需要介入任何控制时,停止制动器23可再次关闭。同样可设想的是,用信号向设备控制装置22和/或调节控制单元21发出关于热过载的警告。在该情况下,可中断对驱动轴11-1、11-2、11-3、11-4的停住(保持)。
为了执行对驱动轴11-1、11-2、11-3、11-4的保持,设备驱动装置22可以给驱动控制单元24或驱动控制单元24的调节控制单元21一用于保持的指令。然后,只要驱动轴不是已经处于张紧的状态中,驱动控制单元24就用于驱动轴11-1、11-2、11-3、11-4的张紧。例如,如上文所述地进行张紧。在张紧之后或在获得用于张紧的指令之后,例如,所有驱动轴11-1、11-2、11-3、11-4的初始位置被储存,并且通过位置控制停住直到驱动电机12-1、12-2、12-3、12-4的经配置的最大转矩为止,该转矩也可达到传动机构13-1、13-2、13-3、13-4的最大力矩和/或最大待传递的转矩。
借助该停住,由于磨损导致失去损失的制动效果也可通过驱动轴11-1、11-2、11-3、11-4补偿。附加地,由此也可将风力发电机的制动系统、例如调节制动器19设计得更小并且由此成本更低。
Claims (11)
1.一种用于调节风力发电机(1)的调节设备(10)的方法,所述风力发电机(1)的可动部分借助所述调节设备旋转,其中,所述调节设备(10)包括具有相应的驱动电机(12-1、12-2、12-3、12-4)的至少两根驱动轴(11-1、11-2、11-3、11-4),所述驱动轴与所述可动部分机械联接,其特征在于,在所述调节之前,所述驱动轴(11-1、11-2、11-3、11-4)相对于彼此通过如下方式进行张紧:通过至少一根所述驱动轴(11-1)相对于其它所述驱动轴(11-2、11-3、11-4)旋转,并且在所述调节期间,所述驱动轴(11-1、11-2、11-3、11-4)在保持所述驱动轴(11-1、11-2、11-3、11-4)张紧期间借助所述驱动轴(11-1、11-2、11-3、11-4)的位置控制而共同沿相同的旋转方向旋转,直到达到所述可动部分期望的最终位置(φS)为止。
2.如权利要求1所述的方法,其特征在于,通过至少一根所述驱动轴(11-1)沿其它所述驱动轴(11-2、11-3、11-4)的相反的旋转方向旋转来进行张紧。
3.如权利要求1所述的方法,其特征在于,通过所有所述驱动轴(11-1、11-2、11-3、11-4)沿相同旋转方向旋转来进行张紧,其中,至少一根所述驱动轴(11-1)比其它所述驱动轴(11-2、11-3、11-4)旋转得更慢。
4.如权利要求1所述的方法,其特征在于,通过使至少一根所述驱动轴(11-1)停止而其它所述驱动轴(11-2、11-3、11-4)旋转来进行张紧。
5.如权利要求1至4中任一项所述的方法,其特征在于,通过维持所述驱动轴(11-1、11-2、11-3、11-4)的所述驱动电机(12-1、12-2、12-3、12-4)在张紧时达到的相对于彼此的相对位置来维持张紧。
6.如权利要求1至4中任一项所述的方法,其特征在于,在张紧时,将期望的总力矩调整为所述驱动轴(11-1、11-2、11-3、11-4)的各个驱动力矩之和。
7.如权利要求6所述的方法,其特征在于,所述总力矩反作用于所述可动部分的期望的运动。
8.如权利要求1至4中任一项所述的方法,其特征在于,至少一根所述驱动轴(11-2)确定为主动驱动轴,并且多个其它的所述驱动轴(11-1、11-3、11-4)遵循所述主动驱动轴(11-2)的运动。
9.如权利要求1至4中任一项所述的方法,其特征在于,所述驱动轴(11-1、11-2、11-3、11-4)在所述张紧与所述调节开始之间再次被重新张紧。
10.一种具有调节设备(10)的风力发电机(1),所述调节设备用于使所述风力发电机(1)的可动部分旋转,其中,所述调节设备(10)包括具有相应的驱动电机(12-1、12-2、12-3、12-4)的至少两根驱动轴(11-1、11-2、11-3、11-4),所述驱动轴与所述可动部分机械联接,其特征在于,设有驱动控制单元(24),所述驱动控制单元使至少一根所述驱动轴(11-1)相对于其它所述驱动轴(11-2、11-3、11-4)旋转从而张紧,并且在所述驱动控制单元(24)中执行所述驱动轴(11-1、11-2、11-3、11-4)的位置控制,所述驱动控制单元使所述驱动轴(11-1、11-2、11-3、11-4)借助所述位置控制在保持所述驱动轴(11-1、11-2、11-3、11-4)张紧的情况下共同沿相同的旋转方向旋转,直到达到所述可动部分期望的最终位置(φS)为止。
11.如权利要求10所述的风力发电机,其特征在于,所述调节设备(10)是风向跟踪件(7)或风轮桨叶调节件(6)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19159737.6A EP3702611B1 (de) | 2019-02-27 | 2019-02-27 | Verfahren zum verstellen einer verstelleinrichtung einer windkraftanlage |
EP19159737.6 | 2019-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110285020A CN110285020A (zh) | 2019-09-27 |
CN110285020B true CN110285020B (zh) | 2023-09-08 |
Family
ID=65628682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910620924.4A Active CN110285020B (zh) | 2019-02-27 | 2019-07-10 | 用于调节风力发电机的调节设备的方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11225946B2 (zh) |
EP (1) | EP3702611B1 (zh) |
JP (1) | JP2020139502A (zh) |
KR (1) | KR20200105430A (zh) |
CN (1) | CN110285020B (zh) |
BR (1) | BR102020003457A2 (zh) |
CA (1) | CA3073418A1 (zh) |
RU (1) | RU2020108013A (zh) |
TW (1) | TW202032002A (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022173914A (ja) * | 2021-05-10 | 2022-11-22 | ナブテスコ株式会社 | 風車制動制御装置および風車 |
CN113909971B (zh) * | 2021-10-26 | 2023-12-12 | 湖北宜昌精森机械有限公司 | 一种金属制品加工装置 |
CN114428452B (zh) * | 2022-04-06 | 2022-07-15 | 成都凯天电子股份有限公司 | 位置检测与收放控制设备的双余度控制装置及其控制方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2101058A2 (de) * | 2008-03-12 | 2009-09-16 | Nordex Energy GmbH | Verfahren und Vorrichtung zum Drehen einer Komponente einer Windenergieanlage |
CN101915210A (zh) * | 2010-07-26 | 2010-12-15 | 林琪 | 风力发电机的风力驱动装置 |
CN102232144A (zh) * | 2009-11-11 | 2011-11-02 | 美国超导威德泰克有限公司 | 风轮叶片调节装置、风能转换器和调节风轮叶片的方法 |
EP2495435A1 (en) * | 2011-03-01 | 2012-09-05 | Areva Wind GmbH | Pitch drive system and method for controlling a pitch of a rotor blade of a wind energy plant |
US8371976B2 (en) * | 2010-05-31 | 2013-02-12 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, and method of controlling the wind turbine generator |
CN103354882A (zh) * | 2011-01-06 | 2013-10-16 | B&R工程私营有限责任公司 | 抬升装置 |
CN106460781A (zh) * | 2014-05-06 | 2017-02-22 | 乌本产权有限公司 | 风能设施的方位角调节 |
WO2018105590A1 (ja) * | 2016-12-05 | 2018-06-14 | ナブテスコ株式会社 | 風車用駆動装置、風車用駆動装置ユニット及び風車 |
CN108474347A (zh) * | 2015-11-20 | 2018-08-31 | 比伯拉赫利勃海尔零部件有限公司 | 调整和/或驱动单元、具有调整和/或驱动单元的风电站及控制调整和/或驱动单元的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10106208C2 (de) * | 2001-02-10 | 2002-12-19 | Aloys Wobben | Windenergieanlage |
ES2853979T3 (es) * | 2016-11-18 | 2021-09-20 | Liebherr Components Biberach Gmbh | Unidad de desplazamiento y/o de accionamiento, aerogenerador con una unidad de desplazamiento y/o de accionamiento de este tipo y procedimiento para controlar una unidad de desplazamiento y/o de accionamiento de este tipo |
-
2019
- 2019-02-27 EP EP19159737.6A patent/EP3702611B1/de active Active
- 2019-07-10 CN CN201910620924.4A patent/CN110285020B/zh active Active
-
2020
- 2020-02-19 BR BR102020003457-0A patent/BR102020003457A2/pt not_active IP Right Cessation
- 2020-02-20 JP JP2020026842A patent/JP2020139502A/ja active Pending
- 2020-02-24 CA CA3073418A patent/CA3073418A1/en not_active Abandoned
- 2020-02-25 RU RU2020108013A patent/RU2020108013A/ru unknown
- 2020-02-25 US US16/800,433 patent/US11225946B2/en active Active
- 2020-02-26 TW TW109106266A patent/TW202032002A/zh unknown
- 2020-02-27 KR KR1020200024204A patent/KR20200105430A/ko unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2101058A2 (de) * | 2008-03-12 | 2009-09-16 | Nordex Energy GmbH | Verfahren und Vorrichtung zum Drehen einer Komponente einer Windenergieanlage |
CN102232144A (zh) * | 2009-11-11 | 2011-11-02 | 美国超导威德泰克有限公司 | 风轮叶片调节装置、风能转换器和调节风轮叶片的方法 |
US8371976B2 (en) * | 2010-05-31 | 2013-02-12 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, and method of controlling the wind turbine generator |
CN101915210A (zh) * | 2010-07-26 | 2010-12-15 | 林琪 | 风力发电机的风力驱动装置 |
CN103354882A (zh) * | 2011-01-06 | 2013-10-16 | B&R工程私营有限责任公司 | 抬升装置 |
EP2495435A1 (en) * | 2011-03-01 | 2012-09-05 | Areva Wind GmbH | Pitch drive system and method for controlling a pitch of a rotor blade of a wind energy plant |
CN106460781A (zh) * | 2014-05-06 | 2017-02-22 | 乌本产权有限公司 | 风能设施的方位角调节 |
CN108474347A (zh) * | 2015-11-20 | 2018-08-31 | 比伯拉赫利勃海尔零部件有限公司 | 调整和/或驱动单元、具有调整和/或驱动单元的风电站及控制调整和/或驱动单元的方法 |
WO2018105590A1 (ja) * | 2016-12-05 | 2018-06-14 | ナブテスコ株式会社 | 風車用駆動装置、風車用駆動装置ユニット及び風車 |
Also Published As
Publication number | Publication date |
---|---|
US11225946B2 (en) | 2022-01-18 |
RU2020108013A3 (zh) | 2021-11-25 |
RU2020108013A (ru) | 2021-08-25 |
JP2020139502A (ja) | 2020-09-03 |
TW202032002A (zh) | 2020-09-01 |
EP3702611A1 (de) | 2020-09-02 |
US20200271092A1 (en) | 2020-08-27 |
CN110285020A (zh) | 2019-09-27 |
KR20200105430A (ko) | 2020-09-07 |
BR102020003457A2 (pt) | 2020-09-29 |
EP3702611B1 (de) | 2022-06-22 |
CA3073418A1 (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110285020B (zh) | 用于调节风力发电机的调节设备的方法 | |
KR101711768B1 (ko) | 풍력 발전 설비를 위한 방법과 조절 장치, 컴퓨터 프로그램 제품, 디지털 저장 매체 및 풍력 발전 설비 | |
JP3709137B2 (ja) | 風力発電設備の風向き追従駆動装置 | |
EP2696068B1 (en) | System and method for controlling speed and torque of a wind turbine beyond rated wind speed conditions | |
EP2495435B1 (en) | Pitch drive system and method for controlling a pitch of a rotor blade of a wind energy plant | |
EP2072814B1 (en) | Braking and positioning system for a wind turbine rotor | |
US8075266B2 (en) | Method and apparatus for rotating a component of a wind energy plant | |
DK2467600T3 (en) | Wind power plant and method for operating control of a wind power plant | |
CN112253389B (zh) | 一种风力发电机组偏航控制系统启停控制方法 | |
CN113474550B (zh) | 用于保持风力发电机的可动部分的方法 | |
US12123395B2 (en) | Method for retaining a moving part of a wind turbine | |
US9726146B2 (en) | Assembly for fixing a rotor blade of a wind power plant | |
CN114151279B (zh) | 一种风力发电机组偏航启动控制方法及系统 | |
CN115822872A (zh) | 偏航制动控制方法、偏航制动系统及风力发电机 | |
CN112576440A (zh) | 风力发电机组及其控制方法和装置、计算机可读存储介质 | |
CN118582334A (zh) | 一种风力发电机组的电磁阻尼偏航系统和控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |