CN110283087B - 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法 - Google Patents

杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法 Download PDF

Info

Publication number
CN110283087B
CN110283087B CN201910670958.4A CN201910670958A CN110283087B CN 110283087 B CN110283087 B CN 110283087B CN 201910670958 A CN201910670958 A CN 201910670958A CN 110283087 B CN110283087 B CN 110283087B
Authority
CN
China
Prior art keywords
squaramide
calix
reaction
cyclohexanediamine
cyclohexanediamine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910670958.4A
Other languages
English (en)
Other versions
CN110283087A (zh
Inventor
李正义
童洪笑
殷乐
杨科
孙小强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910670958.4A priority Critical patent/CN110283087B/zh
Publication of CN110283087A publication Critical patent/CN110283087A/zh
Application granted granted Critical
Publication of CN110283087B publication Critical patent/CN110283087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/20Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/74Benzo[b]pyrans, hydrogenated in the carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/92Naphthopyrans; Hydrogenated naphthopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/92Systems containing at least three condensed rings with a condensed ring system consisting of at least two mutually uncondensed aromatic ring systems, linked by an annular structure formed by carbon chains on non-adjacent positions of the aromatic system, e.g. cyclophanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化有机合成技术领域,具体涉及一种杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应的方法,以不饱和酮酸酯和1,3‑二羰基环酮为原料,杯[4]方酰胺环己二胺衍生物为催化剂,二氯甲烷为溶剂进行Michael加成与缩醛化串联催化反应,反应结束后,浓缩溶剂,通过硅胶柱层析分离得产物。本发明的杯[4]方酰胺环己二胺催化剂合成工艺条件温和、中间体无需分离、催化效率高,且室温条件下催化反应即可获得较好的ee值,具有广阔的应用前景。

Description

杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与 缩醛化串联反应方法
技术领域
本发明属于催化有机合成技术领域,尤其涉及一种杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法。
背景技术
1,3-二羰基化合物与β,γ-不饱和羰基化合物的Michael加成反应在有机合成中是一类非常重要的反应,其产物具有生物和药物活性。不饱和酮酸酯是一类含有碳-碳不饱和键(烯基或炔基)、酮羰基和酯基的多官能团化合物,结构上具有较高的反应活性和独特的反应多样性。随着化学家的不断探索和研究,不饱和酮酸酯被引入到串联反应中,开发了很多新的合成方法,创造了大量新的杂环化合物。串联反应具有众多优点:反应条件温和,中间体无需分离,操作简易,节约溶剂,降低消耗等。
但是,现有技术中不饱和酮酸酯的串联反应中通常采用金属配合物类催化剂、小分子硫脲类和小分子方酰胺类催化剂,超分子催化剂应用相对较少,因此,需要寻找新型催化剂来提高在该反应中的催化效果。作为氢键供体的一员,方酰胺已经逐渐被人所熟悉,并用于不对称催化中。但是,方酰胺超分子催化剂的种类和应用相对较少,因此,需要设计新型催化剂来改善相应催化效果。
发明内容
本发明要解决的技术问题是:为了克服现有技术中不对称Michael加成与缩醛化串联反应催化剂制备困难、催化效率低等问题,提供一种杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应的方法。
本发明解决其技术问题所采用的技术方案是:一种杯[4]方酰胺环己二胺衍生物,其结构式为式I所示:
Figure BDA0002141675000000021
所述的杯[4]方酰胺环己二胺衍生物结构式I。
上述杯[4]方酰胺环己二胺衍生物用作催化剂催化不饱和酮酸酯和1,3-二羰基环酮进行不对称Michael加成与缩醛化串联反应。
一种催化不对称Michael加成与缩醛化串联反应的方法,包括以下步骤:
(1)以不饱和酮酸酯和1,3-二羰基环酮为原料,杯[4]方酰胺环己二胺衍生物I为催化剂,在溶剂存在的条件下进行Michael加成与缩醛化串联反应,反应温度为-10~25℃,反应时间为2~8小时;
(2)步骤(1)反应结束后,浓缩溶剂,经乙酸乙酯和石油醚柱层析分离,纯化得产物。
所述不饱和酮酸酯与1,3-二羰基环酮的摩尔比为1:1.1;所述催化剂用量为不饱和酮酸酯摩尔量的1~5mol%;所述溶剂为H2O、DMSO(二甲基亚砜)、CH3OH(甲醇)、CH3CN(乙腈)、THF(四氢呋喃)、Et2O(乙醚)、1,4-dioxane(1,4-二氧六环)、PhMe(甲苯)、CH2Cl2(二氯甲烷)或CHCl3(三氯甲烷)。
所述不饱和酮酸酯为芳香族不饱和酮酸酯;所述芳香族不饱和酮酸酯为苯基酮酸(甲、乙、丙)酯、取代苯基酮酸乙酯、杂环酮酸乙酯。所述取代苯基酮酸乙酯为苯基酮酸乙酯的苯环上的氢被1~5个取代基取代;所述取代基为氟、氯、溴、硝基、三氟甲基、烷基或烷氧基中的一种或几种。
所述1,3-二羰基环酮为1,3-环己二酮、2-羟基-1,4-萘醌、达米酮、4-羟基香豆素。
作为优选,所述催化剂用量为不饱和酮酸酯的2.5mol%;所述反应温度为25℃;所述溶剂为THF(四氢呋喃)、Et2O(乙醚)、1,4-dioxane(1,4-二氧六环)、PhMe(甲苯)、CH2Cl2(二氯甲烷)或CHCl3(三氯甲烷),最优选为CH2Cl2(二氯甲烷)。
本发明的有益效果是:
1)本发明提供的杯[4]方酰胺环己二胺衍生物,可以有效发挥杯芳烃超分子协同作用进行催化,实现先Michael加成再缩醛关环的串联反应,并且具有合成工艺条件温和、中间体无需分离、催化效率高和工业应用前景广阔等优势;
2)通过方酰胺的桥连作用,直接在杯芳烃上沿进行手性修饰,与以往常规下沿接入的方式相比较是一种突破,将极大地丰富手性杯芳烃化学修饰的种类,并且利用杯芳烃上沿空腔与底物包结优势,发挥杯穴的选择识别作用。
附图说明
图1为1,3-环己二酮和2-羟基-1,4-萘醌作用的两种过渡态模型图。
具体实施方式
下面结合具体实施例,进一步对本发明进行阐述,应理解,引用实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例中采用薄层色谱法(GF254硅胶板)监测反应进程,柱色谱法(200~300目硅胶柱,洗脱剂为石油醚和乙酸乙酯的混合液)纯化粗产物。实施例中给出的产率为经柱色谱法纯化后的产物收率;产物的对映体过量值(ee)通过测定对映异构体的手性高效液相色谱测定;手性固定相采用AD-H、OD-H和IC-H手性柱。
实施例1
本实施例为杯[4]方酰胺环己二胺催化剂I的制备方法,具体合成方法如下:
杯[4]方酰胺环己二胺催化剂I的合成
Figure BDA0002141675000000041
将1a(0.339g,0.5mmol)、方酸二甲酯(0.149g,1.05mmol)在8mL MeOH溶液中加热回流,TLC点板跟踪反应进程,待原料消失后停止反应,蒸除溶剂,粗产品经柱层析分离提纯(乙酸乙酯:石油醚=1:10)得浅黄色固体2a(0.369g,产率82%)。
2a.mp:>300℃;1H NMR(300MHz,DMSO-d6):δ=0.97(t,J=6.9Hz,12H),1.39-1.46(m,8H),1.82-1.90(m,8H),3.13(d,J=13.5Hz,4H),3.78-3.87(m,8H),4.33(d,J=12.6Hz,4H),6.57-6.76(m,10H),10.33(s,2H).13C NMR(75MHz,DMSO-d6):14.4,19.3,19.4,30.8,32.2,32.3,60.8,75.0,120.0,122.4,128.4,132.2,134.4,135.8,153.6,156.3,193.1.ESI-MS:m/z=921([M+Na]+).
在25mL单口烧瓶中,分别将2a(0.360g,0.40mmol),(1S,2S)-1-氨基-2-(二甲基氨基)环己烷(0.149g,0.82mmol)加入到10mL二氯甲烷中,磁力搅拌,25℃反应反应3-5h,TLC点板跟踪反应进程直至原料消失,减压旋蒸掉大部分二氯甲烷后,柱层析分离得白色固体I(0.425g,产率95%)。
催化剂I.Mp:>300℃;[α]D 25+192.3°(C=1.0,in CHCl3);1H NMR(300MHz,DMSO-d6):δ=0.98(dt,J1=7.2Hz,J2=3.0Hz,12H),1.20-1.26(m,8H),1.31-1.75(m,16H),1.84-2.12(m,12H),2.20(s,12H),3.14(d,J=12.9Hz,4H),3.72(t,J=6.6Hz,4H),3.92(t,J=7.8Hz,4H),4.34(d,J=12.9Hz,4H),6.36(t,J=7.2Hz,2H),6.46(d,J=7.8Hz,4H),7.08(d,J=16.5Hz,4H),7.60(d,J=8.7Hz,2H),9.53(s,2H).13C NMR(75MHz,DMSO-d6):14.3,14.4,19.2,19.6,21.9,24.9,30.8,32.1,32.5,35.2,55.0,66.8,75.0,119.0,122.5,128.1,133.4,133.5,136.7,153.0,155.6,164.0,168.9,180.4,183.7.ESI-MS:m/z=1119([M+H]+).
实施例2
本实施例以2-氧代-4-苯基丁-3-烯酸乙酯和1,3-环己二酮为底物,对杯[4]方酰胺环己二胺衍生物I催化的不对称Michael加成与缩醛化串联反应的主要影响因素如溶剂种类、反应温度、反应时间、以及催化剂用量进行了系统研究。
Figure BDA0002141675000000051
产物的HPLC分析方法:
高效液相色谱仪:岛津LC-20A;色谱柱:Chiralcel OD-H(Daicel,250mm×4.6mm,5μm)硅胶表面涂覆有纤维素-三(3,5-二甲苯基氨基甲酸酯)手性色谱柱;流动相:正己烷/异丙醇;检测波长:254nm;流速:0.7mL/min;进样体积:10μL;柱温:25℃。
表1是溶剂对杯[4]方酰胺环己二胺衍生物I催化不对称Michael加成与缩醛化串联反应的影响结果。
表1
Figure BDA0002141675000000061
a试剂和条件:催化剂(2.5mol%)、2-氧代-4-苯基-3-丁烯酸乙酯(0.5mmol)、1,3环己二酮(0.55mmol)、Solvent(4mL)、25℃
表2是温度对杯[4]方酰胺环己二胺衍生物I催化不对称Michael加成与缩醛化串联反应的影响结果。
表2
Figure BDA0002141675000000062
a试剂和条件:催化剂(2.5mol%)、2-氧代-4-苯基-3-丁烯酸乙酯(0.5mmol)、1,3环己二酮(0.55mmol)、CH2Cl2(4mL)
表3是催化剂量对杯[4]方酰胺环己二胺衍生物I催化不对称Michael加成与缩醛化串联反应的影响结果。
表3
Figure BDA0002141675000000063
a试剂和条件:催化剂、2-氧代-4-苯基-3-丁烯酸乙酯(0.5mmol)、1,3环己二酮(0.55mmol)、CH2Cl2(4mL)、25℃
反应条件优化结果如表1、2和3所示,因此,杯[4]方酰胺环己二胺衍生物I催化的不对称Michael加成与缩醛化串联反应的最佳实验条件为:催化剂用量为2.5mol%,二氯甲烷作溶剂,反应温度25℃。
实施例3
本实施例参照实施例3中最佳实验条件对杯[4]方酰胺环己二胺I催化的不对称Michael加成与缩醛化串联反应的不饱和酮酸酯的适用范围进行了考察。
实验方法为:称不饱和酮酸酯(0.5mmol)、1,3-环己二酮(0.55mmol)和杯[4]方酰胺环己二胺衍生物I(0.0125mmol)分别加入到盛有4mL二氯甲烷的试管中,磁力搅拌,反应液在25℃下反应,反应时间为2~8小时,TLC点板跟踪反应进程直至原料消失,反应结束后,浓缩有机相,通过硅胶柱层析分离(乙酸乙酯和石油醚)纯化得化合物,采用HPLC分析产物的光学选择性(ee)。实验结果见表4。
表4不饱和酮酸酯的适用范围考察
Figure BDA0002141675000000071
表4
Figure BDA0002141675000000072
Figure BDA0002141675000000081
实施例4
本实施例参照实施例2中最佳实验条件对杯[4]方酰胺环己二胺I催化的不对称Michael加成与缩醛化串联反应的1,3-二羰基环酮的适用范围进行了考察。
实验方法为:称2-氧代-4-苯基丁-3-烯酸乙酯(0.5mmol)、1,3-二羰基环酮(0.55mmol)和杯[4]方酰胺环己二胺衍生物I(0.0125mmol)分别加入到盛有4mL二氯甲烷的试管中,磁力搅拌,反应液在25℃下反应,TLC点板跟踪反应进程直至原料消失,反应结束后,浓缩有机相,通过硅胶柱层析分离(乙酸乙酯和石油醚)纯化得化合物,采用HPLC分析产物的光学选择性(ee)。实验结果见表5。
表5 1,3-二羰基环酮的适用范围考察
表5
Figure BDA0002141675000000082
根据反应结果分析和催化剂构造,假设了可能的反应机理。
在催化剂I催化的不对称Michael加成与缩醛化串联反应中,发明人以β,γ-不饱和-α-酮酯分别与1,3-环己二酮、2-羟基-1,4-萘醌的反应为例假设了一种可能的过渡态模型,如图1所示,催化剂I方酰胺的NH基团与β,γ-不饱和-α-酮酯的两个羰基之间形成两个特征性氢键,通过方酰胺固定和活化β,γ-不饱和-α-酮酯。将去质子化的环状二酮直接进攻β,γ-不饱和-α-酮酯,形成三元络合物。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

1.一种杯[4]方酰胺环己二胺衍生物,其特征在于:所述的杯[4]方酰胺环己二胺衍生物的结构式为:
Figure FDA0003393849310000011
2.一种如权利要求1所述的杯[4]方酰胺环己二胺衍生物的应用,其特征在于:所述杯[4]方酰胺环己二胺衍生物用作催化剂催化不饱和酮酸酯和1,3-二羰基环酮进行不对称迈克尔加成与缩醛化串联反应;
所述不饱和酮酸酯结构式为
Figure FDA0003393849310000012
其中,R1为Ph时,R2为Me,Et或i-Pr;当R2为Et时,R1为4-CF3-C6H4,4-F-C6H4,4-Cl-C6H4,4-Br-C6H4,4-CH3O-C6H4,4-CH3-C6H4,4-NO2-C6H4或2-噻吩基;
所述1,3-二羰基环酮为1,3-环己二酮、2-羟基-1,4-萘醌、达米酮、4-羟基香豆素。
3.如权利要求2所述的杯[4]方酰胺环己二胺衍生物的应用,其特征在于:所述催化不对称迈克尔加成与缩醛化串联反应的方法步骤如下:
(1)以不饱和酮酸酯和1,3-二羰基环酮为原料,杯[4]方酰胺环己二胺衍生物为催化剂,在溶剂存在的条件下进行迈克尔加成与缩醛化串联反应,反应温度为-10~25℃,反应时间为2~8小时;
(2)步骤(1)反应结束后,浓缩溶剂,经乙酸乙酯和石油醚柱层析分离,纯化得产物。
4.如权利要求3所述的杯[4]方酰胺环己二胺衍生物的应用,其特征在于:所述不饱和酮酸酯与1,3-二羰基环酮的摩尔比为1:1.1;所述杯[4]方酰胺环己二胺衍生物用量为不饱和酮酸酯的摩尔量的1~5%;所述溶剂为H2O、DMSO、CH3OH、CH3CN、THF、Et2O、1,4-二氧六环、PhMe、CH2Cl2或CHCl3
5.如权利要求3所述的杯[4]方酰胺环己二胺衍生物的应用,其特征在于:所述催化剂用量为不饱和酮酸酯摩尔量的2.5%;所述反应温度为25℃;所述溶剂为二氯甲烷。
CN201910670958.4A 2019-07-24 2019-07-24 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法 Active CN110283087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910670958.4A CN110283087B (zh) 2019-07-24 2019-07-24 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910670958.4A CN110283087B (zh) 2019-07-24 2019-07-24 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法

Publications (2)

Publication Number Publication Date
CN110283087A CN110283087A (zh) 2019-09-27
CN110283087B true CN110283087B (zh) 2022-02-11

Family

ID=68022394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910670958.4A Active CN110283087B (zh) 2019-07-24 2019-07-24 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法

Country Status (1)

Country Link
CN (1) CN110283087B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731506B (zh) * 2021-09-28 2023-05-26 常州大学 杯[4]芳烃酰胺化合物协助钯催化脂肪醛c-h芳基化反应的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467351A (zh) * 2013-08-30 2013-12-25 常州大学 杯[4]脯氨酸衍生物及其绿色催化不对称Aldol反应的方法
CN108727241A (zh) * 2018-05-22 2018-11-02 常州大学 一种杯[4]硫脲环己二胺衍生物及其催化不对称Michael加成反应的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467351A (zh) * 2013-08-30 2013-12-25 常州大学 杯[4]脯氨酸衍生物及其绿色催化不对称Aldol反应的方法
CN108727241A (zh) * 2018-05-22 2018-11-02 常州大学 一种杯[4]硫脲环己二胺衍生物及其催化不对称Michael加成反应的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A NOVEL CALIX[4]ARENE-BASED BIFUNCTIONAL SQUARAMIDE ORGANOCATALYST FOR ENANTIOSELECTIVE MICHAEL ADDITION OF ACETYL ACETONE TO NITROOLEFINS;U.VURAL 等;《ORG.CHEM.FRONT》;20161231(第3期);730-736 *
SQUARAMIDES:BRIDGING FROM MOLECULAR RECOGNITION TO BIFUNCTIONAL ORGANOCATALYSIS;JOSE ALEMAN 等;《CHEM .EUR.J.》;20111231;第17卷;6890-6899 *
WATER-SOLUBLE CALIXARENES AS NEW INVERSE PHASE-TRANSFER CATALYSTS. THEIR APPLICATION TO ALDOL-TYPE CONDENSATION AND MICHAEL ADDITION REACTIONS IN WATER;SHOICHI SHIMIZU 等;《TETRAHEDRON》;20011231;第57卷;6169-6173 *

Also Published As

Publication number Publication date
CN110283087A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
Peach et al. Asymmetric transfer hydrogenation of α, β-unsaturated, α-tosyloxy and α-substituted ketones
Sanchez-Larios et al. NHC-Catalyzed Spiro Bis-Indane Formation via Domino Stetter− Aldol− Michael and Stetter− Aldol− Aldol Reactions
Bringmann et al. Enantioselective addition of diethylzinc to aldehydes using novel axially chiral 2-aminomethyl-1-(2′-hydroxyphenyl) naphthalene catalysts
Muzart et al. Asymmetric protonation of enolic species: Dramatic increase in the selectivity with temperature and unexpected eyring diagram
Matthews et al. Asymmetric hydrocyanation of a range of aromatic and aliphatic aldehydes
Bai et al. Structure influence of chiral 1, 1′-biscarboline-N, N′-dioxide on the enantioselective allylation of aldehydes with allyltrichlorosilanes
Han et al. New chiral amino alcohol ligands derived from 1-phenylethylamine for efficient Ru-catalyzed asymmetric transfer hydrogenation
Szőllősi et al. Up to 96% Enantioselectivities in the Hydrogenation of Fluorine Substituted (E)‐2, 3‐Diphenylpropenoic Acids over Cinchonidine‐Modified Palladium Catalyst
CN104447725A (zh) 一种手性含亚胺吡啶噁唑啉的化合物及其制备方法
Błocka et al. Enantioselective cyanosilylation of aldehydes catalyzed by novel camphor derived Schiff bases-titanium (IV) complexes
Serra et al. d-Penicillamine and l-cysteine derived thiazolidine catalysts: an efficient approach to both enantiomers of secondary alcohols
Yang et al. Asymmetric Michael addition reactions catalyzed by a novel upper-rim functionalized calix [4] squaramide organocatalyst
CN110283087B (zh) 杯[4]方酰胺环己二胺衍生物及其催化不对称Michael加成与缩醛化串联反应方法
Peng et al. Efficient enantioselective fluorination of β-keto esters/amides catalysed by diphenylamine-linked bis (thiazoline)–Cu (OTf) 2 complexes
Song et al. Asymmetric synthesis of highly functionalized spirothiazolidinone tetrahydroquinolines via a squaramide-catalyzed cascade reaction
CN115466215A (zh) 一种基于螺二氢茚骨架的手性胺-方酰胺类化合物及其制备方法和应用
Steele et al. Enantioselective cyanosilylation of aldehydes catalysed by a diastereomeric mixture of atropisomeric thioureas
CN102391154A (zh) 一种α-羟基-β-氨基酮衍生物及其合成方法和应用
WO2016013976A1 (en) Method of forming a multi-substituted benzene compound
CN110372514B (zh) 一种催化不对称Michael加成反应的方法及其催化剂
Szöllösi et al. Enantioselective Michael addition catalyzed by cinchona alkaloids
CN103131734A (zh) 应用两种醇脱氢酶还原酮类化合物的方法
CN111848623A (zh) 一种手性磷酸催化合成含氟的手性缩酮胺的方法
CN111303096B (zh) 一种多取代1,3-二氢萘并[2,3-c]呋喃衍生物的合成方法
Aoki et al. Synthesis of 1, 4-dicarbonyl compounds and 4-keto pimelates by palladium-catalyzed carbonylation of siloxycyclopropanes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant