CN110254249A - 一种电动汽车基于闭环的蠕行控制方法 - Google Patents

一种电动汽车基于闭环的蠕行控制方法 Download PDF

Info

Publication number
CN110254249A
CN110254249A CN201910552303.7A CN201910552303A CN110254249A CN 110254249 A CN110254249 A CN 110254249A CN 201910552303 A CN201910552303 A CN 201910552303A CN 110254249 A CN110254249 A CN 110254249A
Authority
CN
China
Prior art keywords
crawling
vehicle speed
torque
control method
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910552303.7A
Other languages
English (en)
Other versions
CN110254249B (zh
Inventor
林玉敏
孙天乐
李中立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangling Motors Corp Ltd
Original Assignee
Jiangling Motors Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangling Motors Corp Ltd filed Critical Jiangling Motors Corp Ltd
Priority to CN201910552303.7A priority Critical patent/CN110254249B/zh
Publication of CN110254249A publication Critical patent/CN110254249A/zh
Application granted granted Critical
Publication of CN110254249B publication Critical patent/CN110254249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2063Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车基于闭环的蠕行控制方法,其包含步骤:1.基于踏板开度计算目标车速:所述踏板开度是制动踏板开度和加速踏板开度合成的开度值,通过该合成的踏板开度值查表得到目标车速;2.基于速差计算目标加速度:通过目标车速与实际车速的差值查表得到目标加速度,此目标加速度应满足蠕行驾驶性要求;3.基于目标加速度计算蠕行加速所需轮边扭矩;4.基于实际加速度计算蠕行拖滞力:该实际加速度是通过实际车速利用最小二乘法计算得到;5.基于拖滞力计算蠕行扭矩:蠕行扭矩等于拖滞力加上加速轮边扭矩。整车的蠕行可以适应各种复杂路况和工况,例如遇到坡度、坑洼路面、障碍物、满载等都能按照设计的目标车速或驾驶性正常行驶。

Description

一种电动汽车基于闭环的蠕行控制方法
技术领域
本发明涉电动汽车控制领域,尤指一种电动汽车基于闭环的蠕行控制方法。
背景技术
蠕行功能,是在拥堵路况下,能省去驾驶员频繁操作,解放驾驶员双脚,减少疲劳,增加了驾驶舒适度一种操作方法。一般情况下是采用控制输出与目标蠕行速度相对应的扭矩来实现该蠕行功能。
但是现有的蠕行技术,现有电动汽车蠕行的算法一般都基于车速或电机转速,设定蠕行目标车速或电机转速,通过P I D进行蠕行扭矩计算。例如申请号为201711040153.9,名称为《车辆坡道蠕行控制方法及车辆》的发明申请,其是,在车辆执行坡道蠕行控制的时候,以蠕行速度为目标,及利用补偿扭矩来补偿原驱动控制器所输出的驱动扭矩,并且该补偿扭矩还是对应(也就是定制于)呈正相关关系的该坡度的;由此,车辆能够在不同坡度的坡道上得到不同的扭矩补偿,也就是车辆在遇到较大的坡度时会输出相应较大的扭矩以避免起步困难、溜坡等现象,以及车辆在遇到坡度较小的坡道会输出相应较小的扭矩以避免蹿车的现象,从而使得车辆在各种坡度的路面上都能较佳地实现蠕行功能。
然而,上述技术一般仅限于单一路况状态,车辆行驶过程中,会遇到各种复杂路况和工况,这类算法难以适应各种路况和工况的行驶,例如遇到坡度、坑洼路面、障碍物、满载等都不能按照设计的目标车速或驾驶性正常行驶,且P I D算法的P值和I值很难标定,因为P值和I值一般都为一维或二维表。因而需要一种整车的蠕行都可以适应各种复杂路况和工况的方法,无论是遇到坡度、坑洼路面、障碍物、满载等哪种状况,都能按照设计的目标车速或驾驶性正常行驶。
发明内容
为解决上述问题,本发明主要目的在于,提供一种能使电动汽车的蠕行适应各种复杂路况和工况的基于闭环的电动汽车蠕行控制方法,再一目的是在于,让蠕行的实车标定工作更简单,可靠。
为实现上述目的,本发明提供了一种电动汽车基于闭环的蠕行控制方法,其包含步骤:
1)基于踏板开度计算目标车速:
所述踏板开度是制动踏板开度和加速踏板开度合成的开度值,通过该合成的踏板开度值查表得到目标车速;
2)基于速差计算目标加速度:
通过目标车速与实际车速的差值查表得到目标加速度,较佳的,此目标加速度应满足蠕行驾驶性要求;
3)基于目标加速度计算蠕行加速所需轮边扭矩;
4)基于实际加速度计算蠕行拖滞力:
该实际加速度是通过实际车速利用最小二乘法计算得到;
5)基于拖滞力计算蠕行扭矩:
蠕行扭矩等于拖滞力加上加速轮边扭矩。
其中,较佳的是:
在步骤1)中,制动踏板开度为负值,加速踏板开度为正值,范围为-100到100,目标车速需经过限斜率模块,限斜率模块上升和下降值分别为10和-10,都为标定值,初始值为当前车速值。而所述步骤4)中,较佳的是先进行实际加速轮边扭矩的计算,由实际加速度乘以整车质量,再乘以轮胎半径的到实际加速轮边扭矩,然后用上一周期轮边驱动力减去实际加速轮边扭矩得到蠕行拖滞力。
进一步的,在步骤3)中,是将目标加速度乘以整车质量,再乘以轮胎半径,得到蠕行加速轮边扭矩。
进一步的,所述步骤4)中的实际车速及步骤5)中的最终得到的蠕行拖滞力需经过一阶RC滤波处理,滤波参数可分别为0.98及0.96。
较佳的,所述步骤2)中,查表得到的所述目标加速度应满足蠕行驾驶性要求。
较佳的,所述步骤5)中,蠕行扭矩等于拖滞力加上加速轮边扭矩。
本发明有益效果在于,借助上述技术方案,整车的蠕行可以适应各种复杂路况和工况,例如遇到坡度、坑洼路面、障碍物、满载等都能按照设计的目标车速或驾驶性正常行驶。而且整车的蠕行标定只需要对目标加速度进行标定,该目标加速度可依据整车驾驶性经验给初始值,进行实车验证即可。
附图说明
图1为本发明一具体实施例的某一轻型纯电动客车空载的蠕行仿真数据图;
图2为本发明一具体实施例的某一轻型纯电动客车满载的蠕行仿真数据图;
图3为本发明的控制方框流程示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案做进一步具体的说明。
为了使电动汽车的蠕行适应各种复杂路况和工况,例如遇到坡度、坑洼路面、障碍物、满载等都能按照设计的目标车速或驾驶性正常行驶。且让蠕行的实车标定工作简单。请参见图3,为本发明的控制方框示意图,本发明的主要技术构思在于,采用如下步骤:
1.基于踏板开度计算目标车速:
踏板开度是制动踏板开度和加速踏板开度合成的开度值,通过不同踏板开度值查表得到目标车速。
2.基于速差计算目标加速度:
通过目标车速与实际车速的差值查表得到目标加速度,此目标加速度应满足蠕行驾驶性要求。
3.基于目标加速度计算蠕行加速所需轮边扭矩:
将目标加速度乘以整车质量,再乘以轮胎半径,得到蠕行加速轮边扭矩。
4.基于实际加速度计算蠕行拖滞力:
实际加速度是通过实际车速利用最小二乘法计算得到;
通过上一周期的轮边驱动力减去轮边实际加速力得到蠕行拖滞力。轮边实际加速力是等于实际加速度乘以整车质量,再乘以轮胎半径得到。
5.基于拖滞力计算蠕行扭矩:
蠕行扭矩等于拖滞力加上加速轮边扭矩。
以下实施例用于说明本发明,但不用来限制本发明的范围。
步骤一.通过踏板开度计算蠕行目标车速:
踏板开度是制动踏板开度和加速踏板开度合成的开度值(制动踏板开度为负值,加速踏板开度为正值,范围为-100到100),通过不同踏板开度值查表得到目标车速。目标车速需经过限斜率模块,限斜率模块上升和下降值分别为10和-10,都为标定值,初始值为当前车速值。本具体实施例的目标车速查表如下:
表1
X踏板开度[%] -35 -25 -15 -10 -5 0 1
Y蠕行目标车速[Km/h] 0 0 2 3 4 6 6
步骤二.基于速差计算目标加速度:
速差为目标车速减去当前实际车速,通过速差查表得到目标加速度。本具体实施例的目标加速度查表如下:
表2
X车速差[kph] -1 0 1 2 3 4 5 6
Y目标加速度 -0.1 0 0.1 0.2 0.25 0.25 0.25 0.25
步骤三.基于目标加速度计算蠕行加速所需轮边扭矩:
加速轮边扭矩等于目标加速度乘以整车质量,再乘以轮胎半径。
步骤四.实际加速度计算:
实际加速度根据实际车速通过最小二乘法计算得到(该算法为常规数学公式计算在此不予累述);实际车速需经过一阶滤波处理,滤波参数为0.98(标定量);该步骤增加滤波目的:对车速做平滑处理,防止车速跳变导致计算加速度跳变。
步骤五.蠕行拖滞力计算:先计算蠕行实际加速扭矩,实际加速轮边扭矩等于实际加速度乘以整车质量,再乘以轮胎半径。用上一周期轮边驱动力减去实际加速轮边扭矩得到蠕行拖滞力,其中,较佳的是上一周期轮边驱动力需经过一阶RC滤波处理,其目的在于对轮边驱动力做平滑处理;滤波参数为0.98(标定量),蠕行拖滞力理解为蠕行范围内任意车速匀速行驶时所需轮边扭矩。最终得到的蠕行拖滞力也需经过一阶RC滤波处理,滤波参数为0.96(标定量)。
步骤六.蠕行所需轮边扭矩计算:
蠕行轮边扭矩等于蠕行拖滞力加上蠕行加速所需轮边扭矩。
最后,车辆可按照所述蠕行所需轮边扭矩实现控制。
请参见图1和图2,为本发明一具体实施例的某一轻型纯电动客车空载和满载的蠕行仿真数据图(踏板开度为0),该纯电动客车空载为2600kg,满载为3600kg。可以看出,本发明的一种电动汽车基于闭环的蠕行控制方法,使得车辆在各种路况下都能较佳地实现蠕行功能。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解,依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种电动汽车基于闭环的蠕行控制方法,其特征在于,包含步骤:
1)基于踏板开度计算目标车速:
所述踏板开度是制动踏板开度和加速踏板开度合成的开度值,通过该合成的踏板开度值查表得到目标车速;
2)基于速差计算目标加速度:
通过目标车速与实际车速的差值查表得到目标加速度;
3)基于目标加速度计算蠕行加速所需轮边扭矩;
4)基于实际加速度计算蠕行拖滞力:
该实际加速度是通过实际车速利用最小二乘法计算得到;
5)基于拖滞力计算蠕行扭矩:
蠕行扭矩等于拖滞力加上加速轮边扭矩。
2.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,在步骤1)中,制动踏板开度为负值,加速踏板开度为正值,范围为-100到100,目标车速需经过限斜率模块,限斜率模块上升和下降值分别为10和-10,都为标定值,初始值为当前车速值。
3.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,在步骤3)中,是将目标加速度乘以整车质量,再乘以轮胎半径,得到蠕行加速轮边扭矩。
4.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于:所述步骤4)中的实际车速需经过一阶RC滤波处理,滤波参数为0.98。
5.根据权利要求1或4所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于:所述步骤4)中,由实际加速度乘以整车质量,再乘以轮胎半径的到实际加速轮边扭矩,然后用上一周期轮边驱动力减去实际加速轮边扭矩得到蠕行拖滞力。
6.根据权利要求5所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,最终得到的蠕行拖滞力需经过一阶RC滤波处理,滤波参数为0.96。
7.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,所述步骤5)中,所述蠕行扭矩等于拖滞力加上加速轮边扭矩。
8.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,所述步骤1)中,加速踏板开度输出值为正值,制动踏板开度输出值为负值,合成后的开度值范围为-100到100。
9.根据权利要求1所述的一种电动汽车基于闭环的蠕行控制方法,其特征在于,所述步骤2)中,通过目标车速与实际车速的差值查表得到目标加速度,查表得到的所述目标加速度应满足蠕行驾驶性要求。
CN201910552303.7A 2019-06-25 2019-06-25 一种电动汽车基于闭环的蠕行控制方法 Active CN110254249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910552303.7A CN110254249B (zh) 2019-06-25 2019-06-25 一种电动汽车基于闭环的蠕行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910552303.7A CN110254249B (zh) 2019-06-25 2019-06-25 一种电动汽车基于闭环的蠕行控制方法

Publications (2)

Publication Number Publication Date
CN110254249A true CN110254249A (zh) 2019-09-20
CN110254249B CN110254249B (zh) 2022-04-22

Family

ID=67921150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910552303.7A Active CN110254249B (zh) 2019-06-25 2019-06-25 一种电动汽车基于闭环的蠕行控制方法

Country Status (1)

Country Link
CN (1) CN110254249B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111038283A (zh) * 2020-01-15 2020-04-21 江铃汽车股份有限公司 一种电动汽车基于加速度超前控制的最高车速限制方法
CN111422194A (zh) * 2020-03-23 2020-07-17 武汉格罗夫氢能汽车有限公司 一种用于氢能汽车的蠕行车速控制方法及系统
CN111619575A (zh) * 2020-06-05 2020-09-04 江铃汽车股份有限公司 车速控制系统、方法和车辆
CN112549992A (zh) * 2020-12-18 2021-03-26 智新控制系统有限公司 纯电动汽车无坡道传感器的蠕行控制方法及系统
FR3102413A1 (fr) * 2019-10-29 2021-04-30 Robert Bosch Gmbh Procédé pour prédéfinir un couple de consigne d’un moteur électrique de véhicule automobile
CN112895917A (zh) * 2021-03-24 2021-06-04 天津易鼎丰动力科技有限公司 电动汽车蠕行行驶的多阶梯段扭矩控制实现方法
CN113246986A (zh) * 2021-06-24 2021-08-13 江铃汽车股份有限公司 电动汽车基于目标加速度的pi蠕行控制
CN113580932A (zh) * 2021-07-29 2021-11-02 江铃汽车股份有限公司 一种电动汽车基于路面识别的最高车速控制方法
CN114537158A (zh) * 2020-11-27 2022-05-27 北京新能源汽车股份有限公司 一种蠕行扭矩的控制方法、装置及车辆

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020115529A1 (en) * 2001-02-22 2002-08-22 Nissan Motor Co., Ltd. Control of infinitely variable transmission
JP2003262240A (ja) * 2002-03-07 2003-09-19 Hitachi Ltd 自動変速機のクリープ制御装置及び方法
US20030225501A1 (en) * 2002-05-29 2003-12-04 De La Salle Stephen Apparatus and method of controlling vehicle creep control under braking
GB201408703D0 (en) * 2014-05-16 2014-07-02 Jaguar Land Rover Ltd Control system and method
CN107499313A (zh) * 2016-12-21 2017-12-22 宝沃汽车(中国)有限公司 标定车辆需求扭矩的方法及扭矩标定装置
CN107839688A (zh) * 2017-10-19 2018-03-27 吉林大学 一种电动汽车蠕行车速控制方法
CN107963073A (zh) * 2017-12-12 2018-04-27 江铃汽车股份有限公司 一种混合动力汽车p0模式电机的发电控制方法
CN108189706A (zh) * 2017-12-20 2018-06-22 中国第汽车股份有限公司 纯电动公交客车蠕行起步的控制方法
CN108544984A (zh) * 2018-04-17 2018-09-18 安徽安凯汽车股份有限公司 一种新能源客车蠕动控制方法及系统
CN108638915A (zh) * 2018-05-16 2018-10-12 江铃汽车股份有限公司 电动汽车行驶到蠕行速度前人为加油时的扭矩控制方法
CN109606130A (zh) * 2018-11-20 2019-04-12 智车优行科技(上海)有限公司 电动汽车蠕行控制方法及系统
US20190111928A1 (en) * 2017-10-18 2019-04-18 Hyundai Motor Company Apparatus and method for controlling creep torque in environmentally-friendly vehicle
CN109774721A (zh) * 2019-02-28 2019-05-21 国机智骏科技有限公司 速度闭环控制系统、方法及电动汽车
US20190176827A1 (en) * 2017-12-08 2019-06-13 Hyundai Motor Company System for controlling braking energy regeneration step variable and method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020115529A1 (en) * 2001-02-22 2002-08-22 Nissan Motor Co., Ltd. Control of infinitely variable transmission
JP2003262240A (ja) * 2002-03-07 2003-09-19 Hitachi Ltd 自動変速機のクリープ制御装置及び方法
US20030225501A1 (en) * 2002-05-29 2003-12-04 De La Salle Stephen Apparatus and method of controlling vehicle creep control under braking
GB201408703D0 (en) * 2014-05-16 2014-07-02 Jaguar Land Rover Ltd Control system and method
CN107499313A (zh) * 2016-12-21 2017-12-22 宝沃汽车(中国)有限公司 标定车辆需求扭矩的方法及扭矩标定装置
US20190111928A1 (en) * 2017-10-18 2019-04-18 Hyundai Motor Company Apparatus and method for controlling creep torque in environmentally-friendly vehicle
CN107839688A (zh) * 2017-10-19 2018-03-27 吉林大学 一种电动汽车蠕行车速控制方法
US20190176827A1 (en) * 2017-12-08 2019-06-13 Hyundai Motor Company System for controlling braking energy regeneration step variable and method thereof
CN107963073A (zh) * 2017-12-12 2018-04-27 江铃汽车股份有限公司 一种混合动力汽车p0模式电机的发电控制方法
CN108189706A (zh) * 2017-12-20 2018-06-22 中国第汽车股份有限公司 纯电动公交客车蠕行起步的控制方法
CN108544984A (zh) * 2018-04-17 2018-09-18 安徽安凯汽车股份有限公司 一种新能源客车蠕动控制方法及系统
CN108638915A (zh) * 2018-05-16 2018-10-12 江铃汽车股份有限公司 电动汽车行驶到蠕行速度前人为加油时的扭矩控制方法
CN109606130A (zh) * 2018-11-20 2019-04-12 智车优行科技(上海)有限公司 电动汽车蠕行控制方法及系统
CN109774721A (zh) * 2019-02-28 2019-05-21 国机智骏科技有限公司 速度闭环控制系统、方法及电动汽车

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
昌和等: "离合器摩擦转矩失稳对车辆蠕行性能的影响", 《广西大学学报(自然科学版)》 *
莫旭辉等: "电动汽车坡道起步电机转速控制研究", 《计算机仿真》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102413A1 (fr) * 2019-10-29 2021-04-30 Robert Bosch Gmbh Procédé pour prédéfinir un couple de consigne d’un moteur électrique de véhicule automobile
WO2021083637A1 (de) * 2019-10-29 2021-05-06 Robert Bosch Gmbh Verfahren zum vorgeben eines solldrehmoments
CN111038283A (zh) * 2020-01-15 2020-04-21 江铃汽车股份有限公司 一种电动汽车基于加速度超前控制的最高车速限制方法
CN111422194A (zh) * 2020-03-23 2020-07-17 武汉格罗夫氢能汽车有限公司 一种用于氢能汽车的蠕行车速控制方法及系统
CN111619575A (zh) * 2020-06-05 2020-09-04 江铃汽车股份有限公司 车速控制系统、方法和车辆
CN114537158A (zh) * 2020-11-27 2022-05-27 北京新能源汽车股份有限公司 一种蠕行扭矩的控制方法、装置及车辆
CN112549992A (zh) * 2020-12-18 2021-03-26 智新控制系统有限公司 纯电动汽车无坡道传感器的蠕行控制方法及系统
CN112895917A (zh) * 2021-03-24 2021-06-04 天津易鼎丰动力科技有限公司 电动汽车蠕行行驶的多阶梯段扭矩控制实现方法
CN113246986A (zh) * 2021-06-24 2021-08-13 江铃汽车股份有限公司 电动汽车基于目标加速度的pi蠕行控制
CN113580932A (zh) * 2021-07-29 2021-11-02 江铃汽车股份有限公司 一种电动汽车基于路面识别的最高车速控制方法

Also Published As

Publication number Publication date
CN110254249B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN110254249A (zh) 一种电动汽车基于闭环的蠕行控制方法
CN105818712B (zh) 一种四轮轮毂电动汽车自适应起步控制方法
CN108215939B (zh) 一种电动汽车的蠕行扭矩控制方法
CN109131330B (zh) 一种电动汽车自适应蠕行控制方法
Kang et al. Coordinated vehicle traction control based on engine torque and brake pressure under complicated road conditions
CN108422901B (zh) 一种基于整车综合性能最优的电动轮驱动车辆车轮转矩多目标优化方法
CN107487224A (zh) 一种整车控制方法和系统
US9333970B2 (en) Traction control device and traction control method
CN102548792B (zh) 电动车辆用控制装置、具备该控制装置的电动车辆及叉式车
CN104114837B (zh) 车体减振控制装置
CN104736408A (zh) 车辆控制系统和方法
CN110155052A (zh) 改进的自适应巡航下层控制设计方法
CN108136935A (zh) 车速控制装置
CN105270386A (zh) 控制电机驱动车辆的蠕行扭矩的方法
CN104228609A (zh) 一种用于轮毂电机驱动汽车车速控制方法
CN111806420B (zh) 控制轮轴转矩分布的方法
US20150246675A1 (en) Vehicle control system
CN102717786B (zh) 一种电驱动矿车路面自适应防滑防抱死的控制方法
CN109572644A (zh) 一种集成式线控液压制动系统及其abs控制方法
CN101844583B (zh) 一种车辆双重转向控制方法
CN103879305B (zh) 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
CN110356246A (zh) 一种纯电动物流车基于驾驶习惯的电机扭矩调整方法
JP5935550B2 (ja) 車体制振制御装置
CN106869221A (zh) 平地机速度控制方法、装置和系统
JP2006200526A (ja) 車両の出力特性制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant